Mechanism of L,D-Transpeptidase Inhibition by Β-Lactams and Diazabicyclooctanes Zainab Edoo

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism of L,D-Transpeptidase Inhibition by Β-Lactams and Diazabicyclooctanes Zainab Edoo Mechanism of L,D-transpeptidase inhibition by β-lactams and diazabicyclooctanes Zainab Edoo To cite this version: Zainab Edoo. Mechanism of L,D-transpeptidase inhibition by β-lactams and diazabicyclooctanes. Microbiology and Parasitology. Sorbonne Université, 2019. English. NNT : 2019SORUS565. tel- 03173551 HAL Id: tel-03173551 https://tel.archives-ouvertes.fr/tel-03173551 Submitted on 18 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 515 « Complexité du Vivant » Laboratoire de Structures Bactériennes Impliquées dans la Modulation de la Résistance aux Antibiotiques Centre de Recherche des Cordeliers, UMRS 1138, Equipe 12 Mechanism of L,D-transpeptidase inhibition by β-lactams and diazabicyclooctanes. Mécanisme d’inhibition des L,D-transpeptidases par les β-lactamines et les diazabicyclooctanes. Par Zainab Edoo Thèse de doctorat de Biochimie Dirigée par Jean-Emmanuel Hugonnet Présentée et soutenue publiquement le 22 novembre 2019 Devant un jury composé de : Pr. Sandrine Betuing, Sorbonne Université Présidente Dr. Alain Baulard, Institut Pasteur de Lille Rapporteur Dr. Luiz Pedro Carvalho, Francis Crick Institute Rapporteur Dr. Célia Caillet-Saguy, Institut Pasteur Examinatrice Pr. Jean-Marie Frère, Université de Liège Examinateur Dr. Jean-Emmanuel Hugonnet, Sorbonne Université Directeur de thèse Acknowledgement I would like to start by thanking the members of my thesis jury: the rapporteurs, Alain Baulard and Luiz Pedro Carvalho, and the examinateurs, Sandrine Betuing, Célia Caillet-Saguy, and Jean-Marie Frère, for accepting to evaluate my work, and Jean-Emmanuel Hugonnet for supervising my PhD. I am grateful to the Fondation pour la Recherche Médicale for financial support and to the doctoral school for their assistance. Doing a PhD was harder than I thought but more rewarding than I could have imagined. This achievement would not have been possible without the support and guidance of many individuals. Thank you Jean-Emmanuel (Manu) for your unfailing encouragement during my thesis. You have been of great help and advice throughout the years. Thank you for believing in me! I am deeply grateful to the head of the lab, Michel Arthur. Thank you for your invaluable guidance and for being so generous with your time. I have learned so much from you. I would like to thank the members of my thesis committee, Houssain Benabdelhak, Thierry Touzé, Guennadi Sezonov, and Wladimir Sougakoff, for their feedback and warm encouragement. I had the great opportunity to collaborate with these wonderful people during my thesis: Mélanie Etheve-Quelquejeu, Laura Iannazzo, and Flavie Bouchet (Université de Paris); Ines Gallay and Herman van Tilbeurgh (Université Paris-Saclay); Catherine Bougault and Jean-Pierre Simorre (Institut de Biologie Structurale); Lionel Dubost (Muséum National d’Histoire Naturelle); Waldemar Vollmer (Newcastle University); Nadine Bongaerts, Edwin Wintermute, and Ariel Lindner (Centre de Recherches Interdisciplinaires); Landys Lopez Quezada and Carl Nathan (Weill Cornell Medicine). My sincere appreciation goes to the past and current members of Equipe 12. It has been a pleasure to work with all of you. Special thanks to Grazyna for keeping us in line and treating us with cakes, Sébastien for patiently walking me through enzyme kinetics during my Master’s internship, Matthieu for answering my chemistry-related questions, Delphine for her technical help, Antoine for the cheerfulness he brought to our office, Jean-Luc for his excellence, and David for being the best labmate. Cheers to my fellow PhD students with whom I shared the ups and downs of the last three years, and the interns, the youngest being 5-year-old Margot, who joined the lab for brief but fun periods. My heartfelt gratitude goes to the teachers who have inspired and encouraged me over the years. I am forever indebted to my family and friends, near and far. I have been truly blessed! You all hold a very special place in my heart. Henri, thank you for always managing to make me laugh! To my family – Thank you for your unwavering support and love. I owe it all to you. ZAK forever ♥ Foreword Antibacterial chemotherapy is one of the most essential contributions of medicine to human health in the last century. Ever since the discovery of the first antibiotic, penicillin, peptidoglycan biosynthesis has been one of the preferred targets for the discovery of new antibiotics. Peptidoglycan is an essential component of bacterial cells. It is composed of glycan chains, which are connected by short peptide stems. In most bacteria, the synthesis of the cross-links between the peptide stems is catalyzed by the Penicillin-Binding Proteins (PBPs). As their name implies, the PBPs are targeted by penicillin, which was the first discovered member of the β-lactam family. β-lactams have since been extensively developed for antibacterial activity against Gram-positive and Gram- negative bacteria. However, their use is threatened by numerous resistance mechanisms, the most important of which is the production of β-lactamases. The development of β-lactams that are not hydrolyzed by β-lactamases and of β-lactamase inhibitors have nonetheless contributed towards defeating emerging resistance. Peptidoglycan cross-links are not only formed by the classical PBPs but also by an unrelated family of enzymes, the L,D-transpeptidases (LDTs). This unusual mode of cross-linking is predominant in a few pathogenic bacteria, including Mycobacterium tuberculosis. PBPs and LDTs are structurally unrelated, function with different catalytic nucleophiles (Ser vs. Cys, respectively), and use different peptidoglycan precursors for the cross-linking reaction. In contrast to PBPs, which are potentially inactivated by all β-lactam classes, LDTs are efficaciously inactivated only by the carbapenem class. The two objectives of the thesis are to investigate the mechanism of inhibition of LDTs by carbapenems and to explore whether the diazabicyclooctane scaffold, recently developed for β-lactamase inhibition, also inactivates LDTs. The manuscript will begin with an introduction on the role and synthesis of peptidoglycan, the mode of action of β-lactams, and the catalytic activities of PBPs and LDTs. The introduction is followed by a description of the specific objectives of the thesis. The result section is based on published papers and is divided into two parts focused on the mechanism of inhibition of LDTs by β-lactams and diazabicyclooctanes. The last section consists of a discussion on the implications of the findings regarding the catalytic mechanism of LDTs for optimization of inhibitors. In parallel to the main objectives of the thesis, I contributed to two studies investigating the LDTs from Clostridium difficile and inhibition of LDTs by copper(II) ions. These two publications appear in an annex at the end of the manuscript. 3 Table of Content ACKNOWLEDGEMENT 2 FOREWORD 3 TABLE OF CONTENT 4 LIST OF FIGURES 6 LIST OF TABLES 7 LIST OF ABBREVIATIONS 8 INTRODUCTION 9 1. PEPTIDOGLYCAN BIOSYNTHESIS 10 1.1 ROLE OF PEPTIDOGLYCAN 10 1.2 PEPTIDOGLYCAN STRUCTURE AND SYNTHESIS 11 1.3 ANTIBIOTICS TARGETING PEPTIDOGLYCAN SYNTHESIS 27 2. THE β-LACTAM ANTIBIOTICS 28 2.1 MODE OF ACTION OF β-LACTAMS 28 2.2 CLASSES OF β-LACTAMS 29 2.3 RESISTANCE TO β-LACTAMS 32 3. β-LACTAMASES 34 3.1 CLASSIFICATION OF β-LACTAMASES 34 3.2 β-LACTAMASE INHIBITORS 37 4. PENICILLIN-BINDING PROTEINS 41 4.1 CATALYTIC MECHANISM 42 4.2 CLASSIFICATION OF PBPS 45 4.3 INHIBITION OF PBPS BY β-LACTAMS 50 5. L,D-TRANSPEPTIDASES 53 5.1 IDENTIFICATION OF LDTS 53 5.2 ROLE OF LDTS IN VARIOUS BACTERIA 56 5.3 STRUCTURE OF LDTS 64 5.4 CATALYTIC MECHANISM OF L,D-TRANSPEPTIDATION 68 5.5 INHIBITION OF LDTS BY β-LACTAMS 70 OBJECTIVES 81 RESULTS 82 1. MECHANISM OF INHIBITION OF L,D-TRANSPEPTIDASES BY β-LACTAMS 83 PUBLICATION 1 85 PUBLICATION 2 85 PUBLICATION 3 85 2. INHIBITION OF L,D-TRANSPEPTIDASES BY A NOVEL DIAZABICYCLOOCTANE SCAFFOLD AND MODE OF ACTION OF THE MOLECULES IN M. TUBERCULOSIS 87 PUBLICATION 4 89 4 DISCUSSION 91 1. MODELS ACCOUNTING FOR ACYLATION OF L,D-TRANSPEPTIDASES BY β-LACTAMS 92 2. BASIS FOR FLUORESCENCE QUENCHING OBSERVED UPON L,D-TRANSPEPTIDASE ACYLATION BY β-LACTAMS 95 3. THE REACTIVITY OF β-LACTAMS HAS A KEY ROLE IN THE EFFICACY OF L,D-TRANSPEPTIDASE ACYLATION 95 4. MULTIPLE POTENTIAL TARGETS OF DBOS IN M. TUBERCULOSIS 96 5. OPTIMIZATION OF INHIBITORS TARGETING L,D-TRANSPEPTIDASES 100 ANNEX 102 ANNEX 1 103 ANNEX 2 103 REFERENCES 104 5 List of Figures Figure 1. Structure of the bacterial cell wall. ........................................................................................ 10 Figure 2. The peptidoglycan subunit and its synthesis. ........................................................................ 12 Figure 3. Common variations found in the peptidoglycan subunit of E. coli, E. faecium, and M. tuberculosis. .......................................................................................................................................... 15 Figure 4. Structure of MurJ and the conformational
Recommended publications
  • Killing of Gram-Negative Bacteria by Lactoferrin and Lysozyme
    Killing of gram-negative bacteria by lactoferrin and lysozyme. R T Ellison 3rd, T J Giehl J Clin Invest. 1991;88(4):1080-1091. https://doi.org/10.1172/JCI115407. Research Article Although lactoferrin has antimicrobial activity, its mechanism of action is not full defined. Recently we have shown that the protein alters the Gram-negative outer membrane. As this membrane protects Gram-negative cells from lysozyme, we have studied whether lactoferrin's membrane effect could enhance the antibacterial activity of lysozyme. We have found that while each protein alone is bacteriostatic, together they can be bactericidal for strains of V. cholerae, S. typhimurium, and E. coli. The bactericidal effect is dose dependent, blocked by iron saturation of lactoferrin, and inhibited by high calcium levels, although lactoferrin does not chelate calcium. Using differing media, the effect of lactoferrin and lysozyme can be partially or completely inhibited; the degree of inhibition correlating with media osmolarity. Transmission electron microscopy shows that E. coli cells exposed to lactoferrin and lysozyme at 40 mOsm become enlarged and hypodense, suggesting killing through osmotic damage. Dialysis chamber studies indicate that bacterial killing requires direct contact with lactoferrin, and work with purified LPS suggests that this relates to direct LPS-binding by the protein. As lactoferrin and lysozyme are present together in high levels in mucosal secretions and neutrophil granules, it is probable that their interaction contributes to host defense. Find the latest version: https://jci.me/115407/pdf Killing of Gram-negative Bacteria by Lactofernn and Lysozyme Richard T. Ellison III*" and Theodore J. Giehl *Medical and tResearch Services, Department of Veterans Affairs Medical Center, and Division ofInfectious Diseases, Department ofMedicine, University ofColorado School ofMedicine, Denver, Colorado 80220 Abstract (4).
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Of Penicillin G, Other Penicillins, and a Cephalosporin
    GLYCOPEPTIDE TRANSPEPTIDASE AND D-ALANINE CARBOXYPEPTIDASE: PENICILLIN-SENSITIVE ENZYMATIC REACTIONS* BY KAZUO IZAKI, M\ICHIO M\ATSUHASHI, AND JACK L. STROMINGER DEPARTMENT OF PHARMACOLOGY, UNIVERSITY OF WISCONSIN MEDICAL SCHOOL, MADISON Communicated by Clinton L. Woolsey, January 28, 1966 In 1929, Fleming discovered penicillins and observed that this group of substances kills gram-positive bacteria more effectively than gram-negative bacteria (thus im- plying some important physiological difference between the two groups of or- ganisms).1 Subsequent knowledge of the bacterial cell wall made it possible to establish both on physiological and chemical grounds that penicillins are specific and highly selective inhibitors of the biosynthesis of cell walls, both in gram-positive and in gram-negative bacteria.2-6 The reason for the relative insensitivity of gram- negative bacteria to most penicillins has remained obscure. More recent knowledge of the structure and biosynthesis of bacterial cell walls has suggested that, in a terminal reaction in cell wall synthesis, linear glycopeptide strands are cross-linked in a transpeptidation, accompanied by release of the termi- nal D-alanine of the pentapeptide precursor, with formation of a two- or three- dimensional network. Direct chemical analyses of cell walls prepared from cells treated with penicillin7' 8 and isotopic studies of wall biosynthesis9' 10 suggested that penicillin was interfering with this hypothetical glycopeptide cross-linking reaction. In the presence of penicillin, nascent glycopeptide,
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna
    sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate
    [Show full text]
  • CARBAPENEMASE PRODUCING Enterobacteriaceae: MOLECULAR EPIDEMIOLOGY and ASSESSMENT of ALTERNATIVE THERAPEUTIC OPTIONS
    CARBAPENEMASE PRODUCING Enterobacteriaceae: MOLECULAR EPIDEMIOLOGY AND ASSESSMENT OF ALTERNATIVE THERAPEUTIC OPTIONS By LAURA JIMENA ROJAS COY Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Microbiology and Molecular Biology CASE WESTERN RESERVE UNIVERSITY May, 2018 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Laura Jimena Rojas Coy candidate for the degree of Doctor of Philosophy*. Committee Chair Dr. Arne Riestch Committee Member Dr. Liem Nguyen Committee Member Dr. Anthony Wynshaw-Boris Committee Member Dr. Robert A. Bonomo Date of Defense March 22, 2018 *We also certify that written approval has been obtained for any proprietary material contained therein. DEDICATION To my mother Maria Grelly and my father Daniel for raising me believing that with hard work I could achieve anything I set my mind to. To my loving brother Cami for constantly looking up to me, inspiring me to always do my best; and finally to my adorable little sister Angie for her infinite an unconditional love. I love you all so much. iii ACKNOWLEDGEMENTS My deepest gratitude and appreciation to my mentor, Dr. Robert A. Bonomo, for being so generous, understanding and patient and for giving me so many wonderful opportunities, in spite of not following the "traditional" path. In addition to the tremendous academic support, he has shown me by his example that humbleness, fairness and leadership is what truly makes a good scientist. To my committee members thank you for your valuable suggestions and criticisms. To everyone in the Bonomo Lab, thank you for sharing your expertise with me and, for constantly helping me, and for each and every one of your invaluable contributions to the work summarized in this dissertation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Process to Increase the Production of Clavam
    Europäisches Patentamt *EP000832247B1* (19) European Patent Office Office européen des brevets (11) EP 0 832 247 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 15/54, C12P 17/18, of the grant of the patent: C12N 1/20 24.11.2004 Bulletin 2004/48 // (C12N1/20, C12R1:465) (21) Application number: 96921954.2 (86) International application number: PCT/EP1996/002497 (22) Date of filing: 06.06.1996 (87) International publication number: WO 1996/041886 (27.12.1996 Gazette 1996/56) (54) PROCESS TO INCREASE THE PRODUCTION OF CLAVAM ANTIBIOTICS VERFAHREN ZUR ERHÖHUNG DER PRODUKTION VON CLAVAM-ANTIBIOTIKA PROCEDE POUR AUGMENTER LA PRODUCTION D’ANTIBIOTIQUES CLAVAM (84) Designated Contracting States: (56) References cited: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC EP-A- 0 349 121 WO-A-94/18326 NL PT SE Designated Extension States: • FEMS MICROBIOLOGY LETTERS, vol. 110, 1993, SI pages 239-242, XP000601357 J.M.WARD AND J.E.HODGSON: "The biosynthetic genes for (30) Priority: 09.06.1995 GB 9511679 clavulanic acid and cephamycin production occur as a ’super-cluster’ in three (43) Date of publication of application: Streptomyces" cited in the application 01.04.1998 Bulletin 1998/14 • MICROBIOLOGY, vol. 140, no. 12, December 1994, pages 3367-3377, XP000601913 H.YU ET (73) Proprietors: AL.: "Possible involvement of the lat gene in the • SmithKline Beecham plc expression of the genes encoding ACV Brentford, Middlesex TW8 9GS (GB) synthetase (pcbAB) and isopenicillin N synthase • THE GOVERNORS OF THE UNIVERSITY OF (pcbC) in Streptomyces clavuligerus" cited in ALBERTA the application Edmonton, Alberta T6G 2E1 (CA) • MALMBERG ET AL: ’Precursor flux control through targeted chromosomal insertion of the (72) Inventors: lysine epsilon-aminotransferase (LAT) gene in • HOLMS, William, Henry Bioflux Limited Cephamycin C biosynthesis.’ JOURNAL OF 54 Dumbarton Road Glasgow G11 6AQ (GB) BACTERIOLOGY vol.
    [Show full text]
  • Exploiting Knowledge on Structure–Activity Relationships for Designing Peptidomimetics of Endogenous Peptides
    biomedicines Review Exploiting Knowledge on Structure–Activity Relationships for Designing Peptidomimetics of Endogenous Peptides Juan J. Perez Department of Chemical Engineering, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain; [email protected] Abstract: Endogenous peptides are important mediators in cell communication, being consequently involved in many physiological processes. Their use as therapeutic agents is limited due to their poor pharmacokinetic profile. To circumvent this drawback, alternative diverse molecules based on the stereochemical features that confer their activity can be synthesized, using them as guidance; from peptide surrogates provided with a better pharmacokinetic profile, to small molecule peptidomimet- ics, through cyclic peptides. The design process requires a competent use of the structure-activity results available on individual peptides. Specifically, it requires synthesis and analysis of the activity of diverse analogs, biophysical information and computational work. In the present work, we show a general framework of the process and show its application to two specific examples: the design of selective AT1 antagonists of angiotensin and the design of selective B2 antagonists of bradykinin. Keywords: peptidomimetics; endogenous peptides; bradykinin; angiotensin; structure–activity rela- tionships Citation: Perez, J.J. Exploiting Knowledge on Structure–Activity Relationships for Designing 1. Introduction Peptidomimetics of Endogenous Peptides. Biomedicines 2021, 9, 651. Endogenous peptides are important mediators of hormonal, paracrine and neuronal https://doi.org/10.3390/ cell communication, being consequently involved in the regulation of many physiological biomedicines9060651 processes [1]. They are produced in diverse tissues by the action of proteolytic enzymes on precursor proteins and stored in secretory vesicles for their acute release when needed, Academic Editors: Luca Gentilucci after reception of an external stimulus [2].
    [Show full text]
  • SUPPLEMENTARY MATERIAL 1 /FODOR ET AL Zoonic and Veterinary Pathogen Candidates for the “ESCAPE Club” S1.1 Escherichia Coli Commensal Strains of E
    SUPPLEMENTARY MATERIAL 1 /FODOR ET AL Zoonic and veterinary pathogen candidates for the “ESCAPE Club” S1.1 Escherichia coli Commensal strains of E. coli, as versatile residents of the lower intestine, are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. Consequently, commensal strains acquire resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Commensal E. coli strains are regarded as indicators of the antimicrobial load of their hosts. The recent review (Szmolka, A. and Nagy, B. 2013) described the historical background of the origin, appearance and transfer mechanisms of antimicrobial resistance genes into an original animal - commensal intestinal E. coli with comparative information on their pathogenic counterparts. The most efficient mechanism used by E. coli against different antimicrobial-based efflux pumps and mobile resistance mechanisms carried by plasmids and/or mobile genetic elements is known. For a while, these mechanisms cannot protect E. coli against fabclavine (Fodor L. et al., in preparation). The emergence of hybrid plasmids, both resistance and virulent, among E. coli is of additional public concern. Co-existence and co-transfer of these “bad genes” in this huge and most versatile in vivo compartment may represent increased public health risk in the future. The significance of MDR commensal E. coli seems to be highest in the food animal industry, which may function as a reservoir for intra- and interspecific exchange, and a source for the spread of MDR determinants through contaminated food to humans. Thus, the potential of MDR occurring in these commensal bacteria living in animals used as sources of food (as meat, eggs, milk) should be a concern from the aspect of public health, and it needs to be continuously monitored in the future by using the toolkit of molecular genetics [8].
    [Show full text]
  • Evolution of Vancomycin-Resistant Enterococcus Faecium During Colonization and Infection in Immunocompromised Pediatric Patients
    Evolution of vancomycin-resistant Enterococcus faecium during colonization and infection in immunocompromised pediatric patients Gayatri Shankar Chilambia, Hayley R. Nordstroma, Daniel R. Evansa, Jose A. Ferrolinob, Randall T. Haydenc, Gabriela M. Marónb,d, Anh N. Vob,d, Michael S. Gilmoree,f, Joshua Wolfb,d,1, Jason W. Roschb,1, and Daria Van Tynea,1,2 aDivision of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; bDepartment of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105; cDepartment of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105; dDepartment of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38105; eDepartment of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA 02114; and fDepartment of Microbiology, Harvard Medical School, Boston, MA 02115 Edited by Paul E. Turner, Yale University, New Haven, CT, and approved April 8, 2020 (received for review October 13, 2019) Patients with hematological malignancies or undergoing hemato- in the hospital environment poses a major threat to patient poietic stem cell transplantation are vulnerable to colonization safety, and vancomycin-resistant E. faecium (VREfm) carrying and infection with multidrug-resistant organisms, including VanA-type resistance currently pose the biggest threat in the vancomycin-resistant Enterococcus faecium (VREfm). Over a 10-y United States (10–12). period, we collected and sequenced the genomes of 110 VREfm Immunocompromised patients are prone to drug-resistant isolates from gastrointestinal and blood cultures of 24 pediatric enterococcal infection, due to frequent use of broad-spectrum patients undergoing chemotherapy or hematopoietic stem cell antibiotics in hospital environments where resistant lineages transplantation for hematological malignancy at St.
    [Show full text]
  • The Effects of Combination Antibiotic Therapy on Methicillin-Resistant Staphylococcus Aureus Presented by Kasra Nick Fallah In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UT Digital Repository The Effects of Combination Antibiotic Therapy on Methicillin-Resistant Staphylococcus aureus Presented by Kasra Nick Fallah in partial fulfillment of the requirements for completion of the Health Science Scholars honors program in the College of Natural Sciences at The University of Texas at Austin Spring 2018 Gregory C. Palmer, Ph.D. Date Supervising Professor Texas Institute for Discovery Education in Science Department of Medical Education Ruth Buskirk, Ph.D. Date Biology Honors Advisor Biological Sciences, College of Natural Sciences Table of Contents Abstract (3) Chapter 1: Literature Review (4) 1.1: The History of Antibiotics (4) 1.1.1: The Discovery of Penicillin (4) 1.1.2: The Different Classes of Antibiotics (7) 1.1.3: The Mechanisms of Action of Antibiotics (13) 1.2: Antibiotic Resistance (16) 1.2.1: The Rise of Antibiotic Resistance (16) 1.2.2: Mechanisms of Resistance (17) 1.2.3: How Antibiotic Resistance Spreads (20) 1.2.4: Methicillin-Resistant Staphylococcus aureus (21) 1.3: Streptomyces (24) 1.3.1: Selman Waksman (24) 1.3.2: Streptomyces: A Possible Solution to Antibiotic Resistance (25) 1.4: Combination Antibiotic Therapy (27) 1.4.1: The Positive/Negative Effects of Combination Antibiotic Therapy (27) 1.4.2: Drug Interactions (29) 1.4.3: Antibiotic Stewardship (30) Chapter 2: Research Manuscript (32) 2.1: Introduction (32) 1 2.2: Methods (35) 2.2.1: Strains, Media, and Growth Conditions (35) 2.2.2: Bacterial Strain Isolation and Identification (35) 2.2.3: Ethyl acetate Extractions (36) 2.2.4: Disc Assays (36) 2.3: Results & Discussion (38) 2.3.1: Isolation of Bacteria (38) 2.3.2: Organic Extractions (41) 2.3.3: Inhibition of MSSA and MRSA (41) 2.3.4: Inhibitory effect of the antibiotic produced by S.
    [Show full text]