ARCH-Vet Anresis.Ch

Total Page:16

File Type:pdf, Size:1020Kb

ARCH-Vet Anresis.Ch Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland Joint report 2013 ARCH-Vet anresis.ch Publishing details © Federal Office of Public Health FOPH Published by: Federal Office of Public Health FOPH Publication date: November 2015 Editors: Federal Office of Public Health FOPH, Division Communicable Diseases. Elisabetta Peduzzi, Judith Klomp, Virginie Masserey Design and layout: diff. Marke & Kommunikation GmbH, Bern FOPH publication number: 2015-OEG-17 Source: SFBL, Distribution of Publications, CH-3003 Bern www.bundespublikationen.admin.ch Order number: 316.402.eng Internet: www.bag.admin.ch/star www.blv.admin.ch/gesundheit_tiere/04661/04666 Table of contents 1 Foreword 4 Vorwort 5 Avant-propos 6 Prefazione 7 2 Summary 10 Zusammenfassung 12 Synthèse 14 Sintesi 17 3 Introduction 20 3.1 Antibiotic resistance 20 3.2 About anresis.ch 20 3.3 About ARCH-Vet 21 3.4 Guidance for readers 21 4 Abbreviations 24 5 Antibacterial consumption in human medicine 26 5.1 Hospital care 26 5.2 Outpatient care 31 5.3 Discussion 32 6 Antibacterial sales in veterinary medicines 36 6.1 Total antibacterial sales for use in animals 36 6.2 Antibacterial sales – pets 37 6.3 Antibacterial sales – food producing animals 38 6.4 Discussion 40 7 Resistance in bacteria from human clinical isolates 42 7.1 Escherichia coli 42 7.2 Klebsiella pneumoniae 44 7.3 Pseudomonas aeruginosa 48 7.4 Acinetobacter spp. 49 7.5 Streptococcus pneumoniae 52 7.6 Enterococci 54 7.7 Staphylococcus aureus 55 Table of contents 1 8 Resistance in zoonotic bacteria 58 8.1 Salmonella spp. 58 8.2 Campylobacter spp. 61 9 Resistance in indicator bacteria in animals 68 9.1 Enterococci 68 9.2 Escherichia coli 72 9.3 ESBL / pAmpC-producing Escherichia coli 76 9.4 Methicillin resistant Sta phy lococcus aureus (MRSA) 81 10 Resistance in diagnostic submissions from animals 86 10.1 Staphylococcus spp. 86 11 Materials and methods 92 11.1 Data on Antibacterial consumption in human medicine 92 11.2 Data on antibacterial sales in veterinary medicine 92 11.3 Bacterial isolates from humans (clinical probes) 93 11.4 Bacterial isolates from animals (for monitoring: clinical and not clinical probes) 93 11.5 Susceptibility testing, breakpoints, processing antibiotic resistance data from human isolates 94 11.6 Susceptibility testing, cut-off, processing anti biotic resistance data from animal isolates 95 Annex I 100 Defined daily dose (DDD) of antibiotics for patient treatment Annex II 104 Distribution of minimal inhibitory concentrations (MICs) in bacterial isolates from animals Annex III 114 Tables of multi-resistance patterns in bacterial isolates from animals Annex IV 128 anresis.ch participants and steering committee Index 131 Figures, tables and textboxes 2 Table of contents 1 Foreword Antibacterial consumption in human medicine 3 1 Foreword Antibiotic resistance is an emerging global public health a system to enable the continuous monitoring of resistance threat. The use of antibiotics contributes to the selection of in farm animals, meat and dairy products in Switzerland. Ad- resistant bacteria leading to treatment failure of bacterial dis- ditionally it compiles data on sales of antimicrobial agents for eases in humans and animals. Resistant bacteria can spread veterinary medicine. Since 2009 data on sales of veterinary between humans in the community and healthcare. On the antimicrobials and results of the monitoring of resistance in other hand, resistant bacteria from animals and the environ- farm animals are published yearly in the ARCH-Vet report. ment can be transmitted to humans either through direct The present report, which is the first joint report from anre- contact or through ingestion of contaminated food or other sis.ch and ARCH-Vet, presents Swiss data for 2013. In addi- contaminated vehicles. Increasing global trade and travel tion to resistance data it includes data on the consumption favor additionally the spread of antimicrobial resistance be- of antibiotics in humans and sales of antimicrobials in veter- tween countries and continents. Regarding the complexity inary medicine. It is the basis for the detection, interpreta- of the epidemiology of antimicrobial resistance, it is impor- tion and evaluation of trends regarding usage of antibiotics tant to monitor trends in antibiotic resistance in a holistic and occurrence of resistance. Although the data for human approach (“One Health approach”) including data on usage and veterinary medicine are presented in one report, it is and resistance in human and veterinary medicine as well as important to be aware that differences between the moni- in food production. toring systems for collection, interpretation and reporting In response to the growing concern about antibiotic resist- hamper direct comparisons of the results. Cooperation and ance, the Ministries of home and economic affairs assigned coordination between the different monitoring-networks the Federal Office of Public Health (FOPH), the Food Safety have to be strengthened and refined to improve comparabil- and Veterinary Office (FSVO), the Federal Office for Agricul- ity and fill the gaps, as it is foreseen in the national strategy ture (FOAG) and the Federal Office for the Environment on antimicrobial resistance (StAR). (FOEN) to develop and implement a national strategy to combat antibiotic resistance (“Strategie Antibiotikaresisten- The editors would like to thank all those who contributed to zen, StAR”). The approval by the Federal Council is planned data collection and the writing of this report for their excel- for the end of 2015. The strategy will encompass all the ac- lent work. tion fields of the different sectors (regulatory, prudent use, surveillance, research, control in hospitals etc.). The global goal of the strategy is to ensure the long-term efficacy of antibiotics in preserving human and animal health. It empha- sizes the importance of monitoring antimicrobial drug usage and resistance in both human and veterinary medicine. The first National Research ”Antibiotic Resistance” (NRP 49) in Switzerland was approved in 1999 and ran between 2001 and 2006. A very important achievement of this pro- gram was the establishment of a surveillance system for human medicine (anresis.ch). Since 2004, anresis.ch has been collecting routine antibiotic resistance data from hu- man microbiology laboratories. The system has been further developed and at present, it also monitors data on human antibiotic consumption (hospitals and outpatient). The NRP 49 also provided the basis for a monitoring pro- gram in veterinary medicine. In 2006, the FSVO introduced Daniel Koch Josef Schmidt Division Communicable Diseases Division Animal Health Federal Office of Public Health Federal Food Safety and Veterinary Office 4 Foreword 1 Vorwort Antibiotikaresistenzen sind ein globales Problem und bedro- bio logischen Laboratorien. Das System wurde dann weiter- hen die öffentliche Gesundheit weltweit. Die Verwendung entwickelt und überwacht nun auch die Daten zum mensch- von Antibiotika trägt zur Selektion resistenter Bakterien bei, lichen Antibiotikakonsum (Spitäler und ambulanter Bereich). was zu Behandlungsversagen bei bakteriellen Erkrankungen Das NFP 49 bildete auch die Grundlage für ein Monitoring- von Mensch und Tier führt. Resistente Bakterien können programm in der Veterinärmedizin. 2006 führte das BLV ein sich einerseits zwischen Menschen in der Bevölkerung und System ein, um in der Schweiz ein kontinuierliches Antibio- in Gesundheitseinrichtungen ausbreiten. Andererseits kön- tikaresistenzmonitoring bei Nutztieren, Fleisch und Milch- nen resistente Bakterien von Tieren und aus der Umwelt produkten zu ermöglichen. Zusätzlich trägt es Daten zum entweder durch direkten Kontakt oder durch kontaminierte Vertrieb von Antibiotika in der Veterinärmedizin zusammen. Lebensmittel oder andere Trägerstoffe auf Menschen über- Seit 2009 werden die Daten zum Vertrieb von Veterinäranti- tragen werden. Zunehmender globaler Handel und Reiseak- biotika und die Ergebnisse des Antibiotikaresistenzmonito- tivitäten fördern zusätzlich die Verbreitung von Antibiotikare- rings bei Nutztieren jährlich im ARCH-Vet Bericht veröffent- sistenzen über Länder und Kontinente hinweg. Angesichts licht. der komplexen Epidemiologie von Antibiotikaresistenzen ist Das vorliegende Dokument, bei dem es sich um den ersten es wichtig, Trends bei resistenten Bakterien nach einem gemeinsamen Bericht von anresis.ch und ARCH-Vet han- ganzheitlichen Ansatz («One Health Approach») zu überwa- delt, präsentiert Schweizer Daten für das Jahr 2013. Zusätz- chen und Daten zur Antibiotikaverwendung und Resistenz- lich zu den Resistenzdaten umfasst er Daten zum menschli- lage aus der Human- und Veterinärmedizin sowie der Le- chen Verbrauch antibiotischer Wirkstoffe und zum Vertrieb bensmittelproduktion einzubeziehen. von Antibiotika in der Veterinärmedizin. Er bildet die Grund- Als Reaktion auf die wachsende Besorgnis bezüglich Anti- lage für die Erkennung, Interpretation und Evaluation von biotikaresistenzen erteilten die Eidgenössischen Departe- Trends bezüglich Verwendung antibiotischer Wirkstoffe und mente des Innern (EDI) und für Wirtschaft, Bildung und For- Auftreten von Resistenzen. Obwohl die Daten der Human- schung (WBF) den Bundesämtern für Gesundheit (BAG), für und der Veterinärmedizin in einem Bericht erscheinen, gilt Lebensmittelsicherheit und Veterinärwesen (BLV), für Land- es zu beachten, dass die Überwachungssysteme Unter- wirtschaft (BLW) und für Umwelt (BAFU)
Recommended publications
  • Survey of Tiamulin+Oxytetracyclinein Control of CRD Complex Due to La Sota Vaccine in Broiler Chickens
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library European Journal of Zoological Research, 2013, 2 (4): 45-49 (http://scholarsresearchlibrary.com/archive.html) ISSN: 2278–7356 Survey of Tiamulin+Oxytetracyclinein control of CRD complex due to La Sota vaccine in broiler chickens Adel Feizi Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran _____________________________________________________________________________________________ ABSTRACT Mycoplasma gallisepticum (MG) is one of the most important diseases of poultry industry in Iran and all over the world. Mortality, poor weight gain and increasing of feed conversion ratio (FCR) were seen in MG infected flocks. Several drugs are used for prevention and control of MG, the purpose of this study was to investigateoxytetracycline + Tiamulinefficacy on MG, and its role on broilers performance.In this study, 240 Ross 308 broilers divided in 2 groups. In one of the groups, oxytetracycline + Tiamulinwere used in days 21 to 30 following La Sota vaccination for controlling vaccination reaction and in the secondgroup, placebo was used and that group mentioned as a control group. Gross lesions, mortality, and growth parameters include body weight gain,feed intake and FCR were calculated in all groups weekly after 21 st day.Results showed that in treatment groups mortality percent was significantly (p<0.05) lower than control group and pericarditis, perihepatitis and airsacculitis was sever in control groups in comparison to antibiotic treated groups. Also body weight and FCR was significantly were different between control group and oxytetracycline + Tiamulin group (p<0.05).It can be concluded that usage of these antibiotics simultaneously could prevent vaccination reaction due to La Sota vaccine and also following MG complications, economical losses in poultry and finally it can be improve broilers performance Key words: Vaccination Reaction, Mycoplasma Gallisepticum, Oxytetracycline, Tiamulin, Ross 308.
    [Show full text]
  • Partners in Practice
    ADRENALS: Spring 2012 What you won’t find in a textbook Partners in Practice Dr Sue Foster BVSc, MVetClinStud, FACVSc Vetnostics Small Animal Medical Consultant ➤ Cutaneous Mycobacterial Disease in Dogs and Cats: Part 2 PART 4b: UCCr and CALP ➤ The Most Difficult and Frustrating Diagnoses As part 4 of this series looks at diagnostic tests, we can’t Corticosteroid-induced alkaline phosphatase escape some statistics. So, some very simplistic explanations (c-ALP) relative to hyperA are as follows: ➤ Adrenals: Part 4b Increased serum ALP, the most common routine laboratory Sensitivity: the likelihood that the test will detect hyperA abnormality in hyperA is due mainly to the induction Specificity: the chance that a positive test is truly hyperA of a specific ALP isoenzyme by glucocorticoids. The corticosteroid-induced isoenzyme of ALP can be measured Then, there are predictive values which take into account by electrophoretic separation, heat inactivation or more the prevalence or likelihood of a disease in addition to usually in commercial laboratories, by levamisole-inhibition. sensitivity and specificity. The levamisole inhibition explains why c-ALP is sometimes referred to as l-ALP but this terminology can be confusing Positive predictive value (PPV): the chance of a positive as sometimes l-ALP is used to describe the liver isoenzyme; result being indicative of hyperA in dogs with signs of it is also referred to as CAP (corticosteroid-induced ALP) or hyperA (e.g. Can we confidently diagnose hyperA when we SIAP (steroid-induced alkaline phosphatase). get a “positive” result?) The sensitivity of c-ALP has been reported to be 0.81-0.95.7-9 Negative predictive value (NPV): the likelihood that a Specificity is poor (0.18-0.44)7-9 and PPV in one study was negative results eliminates the possibility of hyperA in dogs as low as 21.4%7 thus this test cannot be recommended as with signs of hyperA (e.g.
    [Show full text]
  • First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland
    pathogens Article First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland Michał Michalik 1, Maja Kosecka-Strojek 2,* , Mariola Wolska 2, Alfred Samet 1, Adrianna Podbielska-Kubera 1 and Jacek Mi˛edzobrodzki 2 1 MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland; [email protected] (M.M.); [email protected] (A.S.); [email protected] (A.P.-K.) 2 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; [email protected] (M.W.); [email protected] (J.M.) * Correspondence: [email protected] Abstract: Linezolid is currently used to treat infections caused by multidrug-resistant Gram-positive cocci. Both linezolid-resistant S. aureus (LRSA) and coagulase-negative staphylococci (CoNS) strains have been collected worldwide. Two isolates carrying linezolid resistance genes were recovered from laryngological patients and characterized by determining their antimicrobial resistance patterns and using molecular methods such as spa typing, MLST, SCCmec typing, detection of virulence genes and ica operon expression, and analysis of antimicrobial resistance determinants. Both isolates were multidrug resistant, including resistance to methicillin. The S. aureus strain was identified as ST- 398/t4474/SCCmec IVe, harboring adhesin, hemolysin genes, and the ica operon. The S. haemolyticus strain was identified as ST-42/mecA-positive and harbored hemolysin genes. Linezolid resistance Citation: Michalik, M.; S. aureus Kosecka-Strojek, M.; Wolska, M.; in strain was associated with the mutations in the ribosomal proteins L3 and L4, and in Samet, A.; Podbielska-Kubera, A.; S.
    [Show full text]
  • Simultaneous Determination of Amoxicillin and Clavulanic Acid in Pharmaceutical Preparations by Capillary Zone Electrophoresis
    Brazilian Journal of Pharmaceutical Sciences vol. 52, n. 2, apr./jun., 2016 Article http://dx.doi.org/10.1590/S1984-82502016000200006 Simultaneous determination of amoxicillin and clavulanic acid in pharmaceutical preparations by capillary zone electrophoresis Gabriel Hancu1,*, Anamaria Neacşu1, Lajos Attila Papp1, Adriana Ciurba2 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, TîrguMureş, Romania, 2Department of PharmaceuticalTechnology, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania Clavulanic acid enhances the antibacterial spectrum of amoxicillin by rendering most β-lactamase producing isolates susceptible to the drug. A fast, simple and efficient capillary electrophoresis method was developed for the simultaneous determination of amoxicillin and clavulanic acid from complex mixtures. Using a 25 mM sodium tetraborate as background electrolyte at a pH of 9.30, + 25 kV applied voltage, 25 °C system temperature, UV determination at 230 nm; we succeeded in simultaneous separation of amoxicillin and clavulanic acid in approximately 2 minutes. The analytical performance of the method was evaluated in terms of reproducibility, precision, accuracy, and linearity. The optimized analytical method was applied for the determination of the two analytes from combined commercial pharmaceutical preparations. This CE method is fast, inexpensive, efficient, and environmentally friendly when compared with the more frequently used high performance liquid chromatography methods described in the literature. Uniterms: Amoxicillin/determination. Clavulanic acid/determination. Capillary electrophoresis/ quantitative analysis. Antibacterials/quantitative analysis. O ácido clavulânico acentua o espectro antibacteriano de amoxicilina, tornando a maioria dos isolados produtores de β-lactamase sensíveis ao fármaco. Desenvolveu-se um método rápido, simples e eficiente de electroforese capilar (EC) para a determinação simultânea de amoxicilina e de ácido clavulânico a partir de misturas complexas.
    [Show full text]
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • Pharmacology
    FORM UPDATED | 04/07/20 Pharmacology 865-974-5646 Diagnostic Laboratory Service For lab Date Received: # of Samples Received: vetmed.tennessee.edu/vmc/dls use only Institution/Practice: ASSAYS CURRENTLY AVAILABLE Veterinarian: Aciclovir Gabapentin Address: Amoxicillin Galliprant Bromide Ganciclovir Bupivacaine Hydromorphone Butorphanol Itraconazole & Hydroxyitraconazole Carboplatin Ivermectin Phone: Caffeine Ketamine & Norketamine Fax: Carprofen Ketoprofen Carvedilol Lidocaine & metabolites Type of Sample: Ceftiofur Meloxicam No. of Samples: Ceftiofur Equivalents Midazolam & Hydroxmidazolam Cefovecin Metronidazole Date &Time Dosed: Chloramphenicol Moxidectin Citrate (urine only) Omeprazole Date & Time Collected: Deracoxib Oxalate (urine only) Dosage Amount: Diazepam and Nordiazepam Oxytetracycline Famciclovir/Penciclovir Piroxicam Dosage Formulation: Fenbendazole Praziquantil Route: Fentanyl Prednisolone Firocoxib Propofol Sample Identification Info: Flunixin Robenacoxib Species: Canine Feline Equine Fluconazole Terbinafine Other:__________________________________________________________ Fluoroquinolones: Thiafentanil Medication History (All medications the animal is currently on or has recently received): Ciprofloxacin Tramadol and metabolites Enrofloxacin M1, M2, M4, & M5 Fleroxacin Uric Acid Marbofloxacin Valciclovir Moxifloxacin Voriconazole Furosemide Requested Assay: If you are interested in drugs not listed, contact the laboratory with questions about assay development and cost. Ship Samples to: UTCVM Pharmacology Laboratory 2407
    [Show full text]
  • A Diverse Intrinsic Antibiotic Resistome from a Cave Bacterium
    ARTICLE Received 5 Jul 2016 | Accepted 1 Nov 2016 | Published 8 Dec 2016 DOI: 10.1038/ncomms13803 OPEN A diverse intrinsic antibiotic resistome from a cave bacterium Andrew C. Pawlowski1, Wenliang Wang1, Kalinka Koteva1, Hazel A. Barton2, Andrew G. McArthur1 & Gerard D. Wright1 Antibiotic resistance is ancient and widespread in environmental bacteria. These are there- fore reservoirs of resistance elements and reflective of the natural history of antibiotics and resistance. In a previous study, we discovered that multi-drug resistance is common in bacteria isolated from Lechuguilla Cave, an underground ecosystem that has been isolated from the surface for over 4 Myr. Here we use whole-genome sequencing, functional genomics and biochemical assays to reveal the intrinsic resistome of Paenibacillus sp. LC231, a cave bacterial isolate that is resistant to most clinically used antibiotics. We systematically link resistance phenotype to genotype and in doing so, identify 18 chromosomal resistance elements, including five determinants without characterized homologues and three mechanisms not previously shown to be involved in antibiotic resistance. A resistome comparison across related surface Paenibacillus affirms the conservation of resistance over millions of years and establishes the longevity of these genes in this genus. 1 Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1. 2 Department of Biology, University of Akron, Akron, Ohio 44325, USA. Correspondence and requests for materials should be addressed to G.D.W. (email: [email protected]). NATURE COMMUNICATIONS | 7:13803 | DOI: 10.1038/ncomms13803 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13803 nderstanding the evolution and origins of antibiotic rhizophila (formerly identified as Micrococcus luteus) resistance genes is vital to predicting, preventing and (Supplementary Tables 1 and 2).
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • Swedres-Svarm 2010
    SVARM|2010 Swedish Veterinary Antimicrobial Resistance Monitoring Content Swedish Veterinary Antimicrobial Resistance Monitoring 2010 Preface .............................................................................................3 Guidance for readers ........................................................................4 Editors Summary ..........................................................................................5 Björn Bengtsson, Helle Ericsson Unnerstad, Sammanfattning...............................................................................7 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Use of antimicrobials .......................................................................9 Department of Animal Health and Zoonotic bacteria ...........................................................................14 Antimicrobial Strategies, National Veterinary Salmonella ...................................................................................14 Institute (SVA) SE-751 89 Uppsala, Sweden Campylobacter .............................................................................18 Methicillin resistant Staphylococcus aureus (MRSA) ....................19 Authors Highlight: Escherichia coli with ESBL - or transferrable Björn Bengtsson, Helle Ericsson Unnerstad, AmpC-type resistance in broilers .............................................22 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Indicator bacteria ...........................................................................24
    [Show full text]
  • Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes
    Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes May 2013 Authors Mark Ferrey Contributors/acknowledgements The MPCA is reducing printing and mailing costs This report contains the results of a study that by using the Internet to distribute reports and characterizes the presence of unregulated information to wider audience. Visit our website contaminants in Minnesota’s lakes. The study for more information. was made possible through funding by the MPCA reports are printed on 100 percent post- Minnesota Clean Water Fund and by funding by consumer recycled content paper manufactured the U.S. Environmental Protection Agency without chlorine or chlorine derivatives. (EPA), which facilitated the sampling of lakes for this study. The Minnesota Pollution Control Agency (MPCA) thanks the following for assistance and advice in designing and carrying out this study: Steve Heiskary, Pam Anderson, Dereck Richter, Lee Engel, Amy Garcia, Will Long, Jesse Anderson, Ben Larson, and Kelly O’Hara for the long hours of sampling for this study. Cynthia Tomey, Kirsten Anderson, and Richard Grace of Axys Analytical Labs for the expert help in developing the list of analytes for this study and logistics to make it a success. Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.state.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.state.mn.us. Document number: tdr-g1-16 Contents Contents ...........................................................................................................................................
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Screening of Pharmaceuticals in San Francisco Bay Wastewater
    Screening of Pharmaceuticals in San Francisco Bay Wastewater Prepared by Diana Lin Rebecca Sutton Jennifer Sun John Ross San Francisco Estuary Institute CONTRIBUTION NO. 910 / October 2018 Pharmaceuticals in Wastewater Technical Report Executive Summary Previous studies have shown that pharmaceuticals are widely detected in San Francisco Bay, and some compounds occasionally approach levels of concern for wildlife. In 2016 and 2017, seven wastewater treatment facilities located throughout the Bay Area voluntarily collected wastewater samples and funded analyses for 104 pharmaceutical compounds. This dataset represents the most comprehensive analysis of pharmaceuticals in wastewater to date in this region. On behalf of the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), the complete dataset was reviewed utilizing RMP quality assurance methods. An analysis of influent and effluent information is summarized in this report, and is intended to inform future monitoring recommendations for the Bay. Influent and effluent concentration ranges measured were generally within the same order of magnitude as other US studies, with a few exceptions for effluent. Effluent concentrations were generally significantly lower than influent concentrations, though estimated removal efficiency varied by pharmaceutical, and in some cases, by treatment type. These removal efficiencies were generally consistent with those reported in other studies in the US. Pharmaceuticals detected at the highest concentrations and with the highest frequencies in effluent were commonly used drugs, including treatments for diabetes and high blood pressure, antibiotics, diuretics, and anticonvulsants. For pharmaceuticals detected in discharged effluent, screening exercises were conducted to determine which might be appropriate candidates for further examination and potential monitoring in the Bay.
    [Show full text]