Swedres-Svarm 2010

Total Page:16

File Type:pdf, Size:1020Kb

Swedres-Svarm 2010 SVARM|2010 Swedish Veterinary Antimicrobial Resistance Monitoring Content Swedish Veterinary Antimicrobial Resistance Monitoring 2010 Preface .............................................................................................3 Guidance for readers ........................................................................4 Editors Summary ..........................................................................................5 Björn Bengtsson, Helle Ericsson Unnerstad, Sammanfattning...............................................................................7 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Use of antimicrobials .......................................................................9 Department of Animal Health and Zoonotic bacteria ...........................................................................14 Antimicrobial Strategies, National Veterinary Salmonella ...................................................................................14 Institute (SVA) SE-751 89 Uppsala, Sweden Campylobacter .............................................................................18 Methicillin resistant Staphylococcus aureus (MRSA) ....................19 Authors Highlight: Escherichia coli with ESBL - or transferrable Björn Bengtsson, Helle Ericsson Unnerstad, AmpC-type resistance in broilers .............................................22 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Indicator bacteria ...........................................................................24 Department of Animal Health and Escherichia coli .............................................................................24 Antimicrobial Strategies, SVA Enterococcus .................................................................................28 Maria Egervärn, Hans Lindmark National Food Administration Highlight: Coagulase positive staphylococci from broiler, pig and cattle carcasses ..............................................................34 SVARM laboratory working group Animal pathogens ..........................................................................36 Stefan Börjesson, Kerstin Ekström, Maria Pig ..............................................................................................36 Finn, Margareta Horn af Rantzien, Annica Landén and Eva Säker Cattle .........................................................................................39 Department of Animal Health and Farmed fish ................................................................................40 Antimicrobial Strategies, SVA Highlight: SVARMpat ...................................................................41 Horse .........................................................................................42 Acknowledgements Several people have in various ways been Dog ............................................................................................45 involved in the work with SVARM and Cat .............................................................................................47 we express our gratitude to all who have Highlight: Methicillin resistant Staphylococcus contributed. pseudintermedius (MRSP) – an update .......................................48 Text and tables may be cited and reprinted Appendix 1: Demographic data .....................................................49 only with reference to this report Appendix 2: Materials and methods, use of antimicrobials ...........51 Suggested citation: SVARM 2010, Swedish Veterinary Antimicrobial Resistance Appendix 3: Materials and methods, resistance monitoring..........52 Monitoring. The National Veterinary Appendix 4: Cut-off values for resistance ......................................55 Institute (SVA), Uppsala, Sweden, 2011. Appendix 5: Antimicrobial agents licensed ....................................56 www.sva.se, ISSN 1650-6332. Appendix 6: References ..................................................................57 This report is available at www.sva.se Appendix 7: SVARM 2000-2010 - an overview .............................60 Reprints can be ordered from Department of Animal Health and Antimicrobial Strategies National Veterinary Institute SE-751 89 Uppsala Sweden Phone: +46 (0) 18 67 40 00 © Statens Veterinärmedicinska Anstalt, Fax: +46 (0) 18 30 91 62 National Veterinary Institute, Uppsala, Sweden e-mail: [email protected] Printed by Edita Västra Aros, Västerås, Sweden ISSN Produced by SVA Graphic production by Edita Västra Aros, Västerås, Sweden Photographs by Bengt Ekberg, SVA SVARM|2010 3 Preface WELCOME to the eleventh Swedish report combining results cine, preventive herd health is a well known concept. Herd from the monitoring of antimicrobial resistance and antimi- health programs combine knowledge from diverse fields such crobial usage in both veterinary and human medicine: SVARM as animal husbandry, composition of animal feed and disease and SWEDRES. These two reports are printed jointly to control. If properly designed, such programs can be instru- increase the awareness of trends in incidence of use and occur- mental to mitigate emergence and spread of resistance in rence of antimicrobial resistance in the respective areas. animal populations. Antimicrobial resistance is a good example of the rele- An important aspect of strategies against resistance is reli- vance of the one health concept. Fundamental is that bacteria able diagnostics, including susceptibility testing. In the clini- in animals, humans and in the environment are interlinked cal setting, diagnostics are needed to support the prudent by several direct or indirect routes. Thereby resistant bacte- and rational choice of therapy. But diagnostics is also vital for ria can spread within and between human communities, appraisal of the situation regarding resistant strains in herds animal populations and the environment. One of the routes of animals or in patients at veterinary clinics. Thus, it is only connecting intestinal bacteria of animals and humans is food. possible to manage what can be measured and only if the It is therefore our intention to further develop the studies in situation is known can effective action be taken. In a wider SVARM on resistance in bacteria from food. context, monitoring programs provide knowledge needed Not only the epidemiology of resistance is complex but for informed decisions on interventions and also measure the also the actions needed to counteract resistance comprise a effects of interventions. It is our hope and belief that the data multitude of aspects. Paramount is reduction of the selec- presented in SVARM will be useful for appraisal of the situa- tion pressure exerted by use of antimicrobials. This is best tion on a national level and in a wider context also adds a piece achieved by reducing the need for antimicrobials by preven- to the global puzzle on antimicrobial resistance. tion of diseases in animals and humans. In veterinary medi- 4 SVARM|2010 Guidance for readers Cut-off values for resistance Multiresistance In SVARM, isolates of indicator bacteria and zoonotic bacte- The term “multiresistance” is used in SVARM with a mean- ria are classified as susceptible or resistant by epidemiological ing as proposed by Schwarz et al. (2010). Briefly, isolates with cut-off values (ECOFF) issued by EUCAST and available on phenotypically identified acquired resistance to three or more line at www.eucast.org. Also animal pathogens are classified by antimicrobial classes are deemed multiresistant. This implies ECOFFs when such values are available. Cut-off values used for example that resistance to ciprofloxacin, enrofloxacin are given in Appendix 4. and nalidixic acid represents resistance to one class of antimi- ECOFFs classify isolates with acquired reduced susceptibil- crobials. ity as non-wild type, in SVARM called “resistant”. This clas- sification is relevant for monitoring purposes, but it should be Antimicrobial abbreviations understood that this does not always implies clinical resistance. Since the first report from SVARM, some cut-off values for Am ampicillin Fu fusidic acid resistance have been changed. To facilitate comparisons when Ba bacitracin Gm gentamicin retrospect data are presented in SVARM 2010, levels of resist- Ce ceftiofur Km kanamycin ance have been recalculated using current cut-off values if not Ci ciprofloxacin Na narasin otherwise stated. Cl clindamycin Nal nalidixic acid Cm chloramphenicol Ox oxacillin Indicator bacteria Col colistin Sm streptomycin In SVARM, Escherichia coli, Enterococcus faecalis and Enterococcus Ct cephalothin Su sulphonamide serve as indicators for presence of antimicrobial resist- faecium Ctx cefotaxime Tc tetracycline ance in the enteric flora of healthy animals and in the flora Ef enrofloxacin Tp trimethoprim contaminating retail meat. The prevalence of acquired resist- Em erythromycin Va vancomycin. ance in such commensal bacteria indicates the magnitude of Fox cefoxitin Vi virginiamycin the selective pressure from use of antimicrobials in an animal population. Most bacteria of the enteric flora are unlikely to Ff florfenicol cause disease, but they can be reservoirs for resistance genes that can spread to bacteria that cause infections in animals or humans. Prevalence of resistance in bacteria contaminating Other abbreviations meat indicates the magnitude of the potential risk of human exposure to such reservoirs in food producing animals. ESBL extended spectrum beta-lactamases EUCAST European Committe on Antimicrobial Susceptibility Testing
Recommended publications
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • Conjunctivitis Or Worse?
    Red Eye in Dogs and CatS: Conjunctivitis or Worse? Tracy Revoir, DVM Senior Manager of Veterinary Support, Dechra Veterinary Products It should come as no surprise that conjunctivitis is Common Causes of Conjunctivitis the most common ophthalmic disorder in dogs and cats. But because the clinical signs of conjunctivitis If you do confirm conjunctivitis, the next step is can mimic those of more serious ophthalmic identifying the cause. If both eyes are affected and diseases (glaucoma and uveitis), it’s important to abnormal clinical signs are apparent in other body confirm your diagnosis. systems, think underlying systemic disease. If only one eye is affected, rule out infection, tear film What are important clues to the severity of the deficiencies, an irritant, anatomical abnormality, condition? With conjunctivitis, the inflammation or deeper ocular disease. should be limited to the conjunctiva. Hyperemic conjunctival vessels are superficial, branching, In dogs, conjunctivitis can result from anatomical and bright red. They are movable over the deeper disorders, irritants, infection (usually bacterial), or episcleral vessels and can be blanched with topical atopy. Most bacterial infections are secondary dilute phenylephrine. With glaucoma and uveitis, the conditions, most often to allergies. In cats, herpes- episcleral vessels are engorged; they are dark red, virus and Chlamydophila felis are the most common deep, straight, and immobile and do not blanch with causes of conjunctivitis. Atopy can also be topical dilute phenylephrine. With conjunctivitis, an issue in cats. the Schirmer tear test and intraocular pressures are normal. And the cornea should be clear and no aqueous flare should be present. The pupil and Addressing the Problem pupillary responses are normal and intraocular structures should be visible.
    [Show full text]
  • Polymyxin B & Colistin Dosing Tip Sheet
    Stanford Antimicrobial Safety & Sustainability Program Polymyxin B & Colistin Dosing Tip Sheet What: Polymyxin B is preferred over Colistin (polymyxin E) for infections due to multidrug resistant gram- negative bacilli at Stanford Health Care. SHC formulary restriction criteria – Polymyxin B 1. Infectious Disease Consultation and ID recommendation for use 2. Cystic Fibrosis team SHC formulary restriction criteria – Colistin 1. Treatment of urinary tract infections 2. Inhalation route Why: Polymyxin B and Colistin have the same spectrum of activity. However, Polymyxin B has favorable clinical pharmacologic properties compared to Colistin o Polymyxin B is an active drug, whereas Colistin is administered as the prodrug colistimethate sodium (CMS) and has variable and slow (hours) conversion to the active moiety o Polymyxin B may be less nephrotoxic How: Polymyxin B and Colistin dosing is NOT interchangeable o Polymyxin B is usually dosed by “unit”, not “mg” o Note that with Polymyxin B, each 500,000 units is diluted in 300-500mL: a typical dose may result in 1L of fluid o Consult ID pharmacists if MIC ≥ 2 for alternative dosing strategies Dosing 50-79 30-49 10-29 IHD Route ≥80 mL/min mL/min mL/min mL/min CRRT Polymyxin B No Data; Use actual body IV 7,500 – 12,500 units/kg Q12H Consult ID weight; adjusted body wt for obese pharmacist 2.5 mg/kg 1.5 mg/kg 5 mg/kg/day 1.25–1.9 mg/kg Q24H 1.5 mg/kg Q24-48h Colistin IV in 2-3 divided -OR- Use ideal body Q12H Q36H 2.5 mg/kg weight doses 1.25 mg/kg Q12h Q12-24H Doses expressed in colistin base activity Inhalation 150 mg inhalation Q12H Conversions: Colistimethate sodium 1 mg = ~12,500 units of colistimethate sodium Colistimethate sodium ~2.67 mg = 1 mg of colistin base activity 1 mg colistin base activity (CBA) = 30,000 IU colistin 1 mg polymyxin B = 10,000 IU polymyxin B Orig date: 2/23/2015 LM, EM Stanford Antimicrobial Safety & Sustainability Program References: Micromedex online, accessed 2/17/2016 Nelson, Brian C., et al.
    [Show full text]
  • Farrukh Javaid Malik
    I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent.
    [Show full text]
  • Belgian Veterinary Surveillance of Antibacterial Consumption National
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2020 Publication : 22 June 2021 1 SUMMARY This annual BelVet-SAC report is now published for the 12th time and describes the antimicrobial use (AMU) in animals in Belgium in 2020 and the evolution since 2011. For the third year this report combines sales data (collected at the level of the wholesalers-distributors and the compound feed producers) and usage data (collected at farm level). This allows to dig deeper into AMU at species and farm level in Belgium. With a consumption of 87,6 mg antibacterial compounds/kg biomass an increase of +0.2% is seen in 2020 in comparison to 2019. The increase seen in 2020 is spread over both pharmaceuticals (+0.2%) and antibacterial premixes (+4.0%). This unfortunately marks the end of a successful reduction in antibacterial product sales that was seen over the last 6 years resulting in a cumulative reduction of -40,2% since 2011. The gap seen in the coverage of the sales data with the Sanitel-Med collected usage data increased substantially compared to 2019, meaning continuous efforts need to be taken to ensure completeness of the collected usage data. When looking at the evolution in the number of treatment days (BD100) at the species level, as calculated from the SANITEL- MED use data, use increased in poultry (+5,0%) and veal calves (+1,9%), while it decreased in pigs (-3,1%). However, the numerator data for this indicator remain to be updated for 2020, potentially influencing the reliability of the result.
    [Show full text]
  • Neomycin and Polymyxin B Sulfates and Bacitracin Zinc Ophthalmic Ointment, USP)
    NDA 50-417/S-011 Page 3 NEOSPORIN® Ophthalmic Ointment Sterile (neomycin and polymyxin B sulfates and bacitracin zinc ophthalmic ointment, USP) Description: NEOSPORIN Ophthalmic Ointment (neomycin and polymyxin B sulfates and bacitracin zinc ophthalmic ointment) is a sterile antimicrobial ointment for ophthalmic use. Each gram contains: neomycin sulfate equivalent to 3.5 mg neomycin base, polymyxin B sulfate equivalent to 10,000 polymyxin B units, bacitracin zinc equivalent to 400 bacitracin units, and white petrolatum, q.s. Neomycin sulfate is the sulfate salt of neomycin B and C, which are produced by the growth of Streptomyces fradiae Waksman (Fam. Streptomycetaceae). It has a potency equivalent of not less than 600 µg of neomycin standard per mg, calculated on an anhydrous basis. The structural formulae are: [Structure] Polymyxin B sulfate is the sulfate salt of polymyxin B 1 and B 2 , which are produced by the growth of Bacillus polymyxa (Prazmowski) Migula (Fam. Bacillaceae). It has a potency of not less than 6,000 polymyxin B units per mg, calculated on an anhydrous basis. The structural formulae are: [Structure] Bacitracin zinc is the zinc salt of bacitracin, a mixture of related cyclic polypeptides (mainly bacitracin A) produced by the growth of an organism of the licheniformis group of Bacillus subtilis var Tracy. It has a potency of not less than 40 bacitracin units per mg. The structural formula is: [Structure] CLINICAL PHARMACOLOGY: A wide range of antibacterial action is provided by the overlapping spectra of neomycin, polymyxin B sulfate, and bacitracin. Neomycin is bactericidal for many gram-positive and gram-negative organisms.
    [Show full text]
  • DANMAP 2016 - Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark Borck Høg, Birgitte; Korsgaard, Helle Bisgaard; Wolff Sönksen, Ute; Bager, Flemming; Bortolaia, Valeria; Ellis-Iversen, Johanne; Hendriksen, Rene S.; Borck Høg, Birgitte; Jensen, Lars Bogø; Korsgaard, Helle Bisgaard Total number of authors: 27 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Borck Høg, B. (Ed.), Korsgaard, H. B. (Ed.), Wolff Sönksen, U. (Ed.), Bager, F., Bortolaia, V., Ellis-Iversen, J., Hendriksen, R. S., Borck Høg, B., Jensen, L. B., Korsgaard, H. B., Pedersen, K., Dalby, T., Træholt Franck, K., Hammerum, A. M., Hasman, H., Hoffmann, S., Gaardbo Kuhn, K., Rhod Larsen, A., Larsen, J., ... Vorobieva, V. (2017). DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • (ESVAC) Web-Based Sales and Animal Population
    16 July 2019 EMA/210691/2015-Rev.2 Veterinary Medicines Division European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Sales Data and Animal Population Data Collection Protocol (version 3) Superseded by a new version Superseded Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of content 1. Introduction ....................................................................................................................... 3 1.1. Terms of reference ........................................................................................................... 3 1.2. Approach ........................................................................................................................ 3 1.3. Target groups of the protocol and templates ......................................................................... 4 1.4. Organization of the ESVAC project ...................................................................................... 4 1.5. Web based delivery of data ................................................................................................ 5 2. ESVAC sales data ............................................................................................................... 5 2.1.
    [Show full text]
  • Polymyxin B April 2019 Background Polymyxin B Injection Is Available
    Polymyxin B April 2019 Background . Polymyxin B injection is available for inpatient use. This product is being used by the irrigation mode of administration. The proposal is to implement the intravenous route of administration with restrictions for use. Several changes were made to the FDA drug approval process in the 1960s which is after the time (1951) when polymyxin B was originally approved by the FDA.1,2 The approval process for polymyxin B was different than medications that are approved today. Thus, there is a lack of robust clinical trials on polymyxin B’s efficacy, safety and pharmacokinetics. Efficacy Polymyxin B was FDA approved for acute infections caused by susceptible strains of Pseudomonas aeruginosa and for serious infections caused by the following organisms (if susceptible) when other less toxic drugs are ineffective or contraindicated: H. influenzae (meningeal, IT route), Escherichia coli (UTI), Aerobacter (Klebsiella) aerogenes (bacteremia), Klebsiella pneumoniae (bacteremia).3 It should be noted that this drug did not go through the modern drug development process and thus, pharmacokinetic evidence since its approval has indicated that it is not appropriate for UTIs. Guidelines indicate that polymyxin B is the preferred polymyxin therapy for systemic use in invasive infections other than UTIs.5 Safety Polymyxin B has several black box warnings (BBW): administration by the IM and IT routes should only be done in hospitalized patients, nephrotoxicity and neurotoxicity can occur, safe use in pregnancy has not been established,
    [Show full text]
  • Polymyxin B* Class: Polymyxins Overview Polymyxin B Is a Polypeptide Bactericidal Antibiotic. the Polymyxins Were Discovered In
    Polymyxin B* Class: Polymyxins Overview Polymyxin B is a polypeptide bactericidal antibiotic. The polymyxins were discovered in 1947 and introduced to the medical community in the 1950s. Colistin, also called polymyxin E and its parenteral form, colistimethate, are related polymyxins. Polymyxins can be administered orally, topically or parenterally, including intrathecally and intraperitoneally. However parenteral administration is primarily used in life threatening infections caused by Gram-negative bacilli or Pseudomonas species that are resistant to other drugs. Polymyxins exert their effect on the bacterial cell membrane by affecting phospholipids and interfering with membrane function and permeability, which results in cell death. Polymyxins are more effective against Gram-negative than Gram- positive bacteria and are effective against all Gram-negative bacteria except Proteus species. These antibiotics act synergistically with potentiated sulfonamides, tetracyclines and certain other antimicrobials. Polymyxins also limit activity of endotoxins in body fluids and therefore, may be beneficial in therapy for endotoxemia. Polymyxins are not well absorbed into the blood after either oral or topical administration. Polymyxins bind to cell membranes, purulent exudates and tissue debris. The drugs are eliminated from the kidneys with approximately sixty percent of polymyxin B and ninety percent of colistin excreted unchanged. Polymyxins are considered nephrotoxic and neurotoxic and neuromuscular blockade is seen at higher concentrations. In reality, the potential for nephrotoxicity is minimal when the drugs are utilized properly, especially colistin. Polymyxin B is a potent releaser of histamines and hypersensitivity reactions can occur. Parenteral polymyxins are often characterized by intense pain at the injection site. Divalent cations, unsaturated fatty acids and quaternary ammonium compounds inhibit the activity of polymyxins.
    [Show full text]
  • Third ESVAC Report
    Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency.
    [Show full text]
  • Trend Analysis of Antibiotics Consumption Using WHO Aware Classification in Tertiary Care Hospital
    International Journal of Basic & Clinical Pharmacology Bhardwaj A et al. Int J Basic Clin Pharmacol. 2020 Nov;9(11):1675-1680 http:// www.ijbcp.com pISSN 2319-2003 | eISSN 2279-0780 DOI: https://dx.doi.org/10.18203/2319-2003.ijbcp20204493 Original Research Article Trend analysis of antibiotics consumption using WHO AWaRe classification in tertiary care hospital Ankit Bhardwaj*, Kaveri Kapoor, Vivek Singh Saraswathi institute of Medical Sciences, Pilakhuwa, Hapur, Uttar Pradesh, India Received: 21 August 2020 Accepted: 21 September 2020 *Correspondence: Dr. Ankit Bhardwaj, Email: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Aim of the study was to assess trend in antibiotics consumption pattern from 2016 to 2019 using AWaRe classification, ATC and Defined daily dose methodology (DDD) in a tertiary care hospital. Antibiotics are crucial for treating infectious diseases and have significantly improved the prognosis of patients with infectious diseases, reducing morbidity and mortality. The aim of the study is to classify the antibiotic based on WHO AWaRe classification and compare their four-year consumption trends. The study was conducted at a tertiary care center, Pilakhuwa, Hapur. Antibiotic procurement data for a period of 4 years (2016-2019) was collected from the Central medical store. Methods: This is a retrospective time series analysis of systemic antibiotics with no intervention at patient level. Antibiotic procurement was taken as proxy for consumption assuming that same has been used.
    [Show full text]