Oxygen-Enriched Air: Is It Bad for the Diver?

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen-Enriched Air: Is It Bad for the Diver? Oxygen-Enriched Air: Is it bad for the diver? Zenske A1, Schipke JD 2, Kähler W3, Koch A3, Stirban A4, Krüll M5 1Klinikum Landshut, Landshut & Charité, Berlin, 2University Hospital Düsseldorf, Research Group SchiffMedInst, Kiel Experim. Surgery, Düsseldorf, 3SchiffMedInst der Marine, Kiel, 4Profil, Metabolic Research Institute, Neuss, 5Medical Institute Berlin-Marathon & Charité, Berlin Background Results Discussion While SCUBA diving, the increasing 1. Pulmonary function Already in 1878, Paul Bert investigated ambient pressure increases pO 2 in Nitrox and described its potential toxicity parallel with increasing depth. Usage of (O-radicals; oxidative stress). oxygen enriched air (=Nitrox) as breath- ing gas, additionally increases pO 2 and Nitrox is increasingly used by recreational thus, oxidative stress. On the other hand, divers, in particular by dive guides. Thus, pN 2 is decreased with Nitrox, thereby possible harmful effects could become decreasing potential narcotic N 2 effects. more relevant. Until now, predominantly O 2 effects on Aim of study CNS and lungs were investigated. We suggest to also address other organs like Investigate whether increasing O 2 and Fig. 1: Diving with either breathing gas left skeletal and cardiac muscle, blood and the reducing N 2 exerts effects on total pulmonary resistance unchanged but eyes, as oxidative stress likely induces (1) pulmonary function, lead to an increase of the peripheral pulmo- injury in all cell types. (2) elastic properties of blood vessels, nary resistance (AX): air: +9 %, Nx40: 19 %. (3) cognitive competence, and With the advent of newer measuring (4) bubble formation. devices, more subtle aspects (peripheral 2. Reactive hyperemia (RH) pulmonary resistance) and/or other aspects (RH) were investigated in this study. Volunteers & Methods Luft; max. Blutstrom Nx40; max. Blutstrom 160 160 Our results suggest that the increased oxidative stress impairs small pulmonary 25 divers (~40 ys) performed one dive 120 120 airways as well as the vascular com- with air and another with Nitrox40 (i.e. 80 80 pliance. On the other hand, cognitive ~60 % N 2 and 40 % O 2). Maximum depth 40 40 competence is better preserved with less was 25 m, and dive time was 40 min. narcotic N 2-effects and less N 2-bubbles are 0 0 Before and after the dive, pulmonary vor nach vor nach formed (see table). function (MasterScreen-IOS, CareFusion; Nitrox40 Fig. 2: RH after air remained unchanged but top, left) and reactive hyperemia (RH) Lungs peripheral resistance L was reduced by 29.5% after Nx40 measured with Laser-Doppler (Peri- Blood vessels dilatative capacity L flux5000, Perimed; top, right) were Cognition memory / alertness assessed. 3. Cognitive competence N2-bubbles bubble trouble Cognitive competence (memory; after Helmstaedter C, VLMT-A 2001 & Conclusion alertness; Oswald WD, Roth E; ZVT-A; 1970; bottom, left) was assessed during the dive, and bubbles in the internal Under the conditions of this study, jugular vein (Doppler; bottom, right) were Nitrox40 exerts both advantages and counted 30, 60, and 90 min after the end disadvantages. As disadvantages of the dive. might accumulate over time, dive Fig. 3: Nx40 improved memory and alertness. pauses should be allowed for injured organic tissue to recover. 3. Bubble trouble 150 Acknowledgements 120 Pulmonary function, Spirometry / Oscillometry 90 HJ Smith; Fa. Care Fusion, Höchberg 60 Bubble formation, Prof. A Salm, Esslingen Summe Blasen Summe 30 Training Centre for Trimix & Mixed Gas Diving, 0 Timo Zischka, Geretsried 30 min 60 min 90 min Fig. 4: Nx40 reduced bubble formation by Sponsor 15 % (30 min) and 50 % (60 min). Bubble amount peaked at 60 min relatively late GTÜM, German Society for Diving after end of dive and Hyperbaric Medicine, Murnau 93. Annual Meeting of the DPG, Mainz 2014.
Recommended publications
  • Nitrox CONFIRME
    Formation théorique NITROX Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Sommaire de la formation • Rappels • La réglementation • La crise Hyperoxique l’effet Paul Bert l’effet Lorrain Smith • La table NOAA • Le compteur SNC • Les UPDT ou OTU • Les autres effets physiologiques La syncope Hypoxique Effet vasoconstricteur de l’O2 • La fabrication des mélanges Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air L'air sec au voisinage du sol est approximativement composé de: • 78,08 % d’azote, • 20,95 % d’oxygène, • moins de 1 % d'autres gaz dont : • argon 0,93%, • néon 0,0018%, • krypton 0,00011%, • xénon 0,00009% • dioxyde de carbone 0,033 %. Il contient aussi des traces d'hydrogène 0,000072%, mais aussi d'ozone et de radon. Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air Nous considérons que la composition de l’air est la suivante : - Oxygène (O²) 21 % - Azote (N²) 79 % Convention d’appellation Par convention, on désigne ce mélange en citant en premier sa teneur en O² puis sa teneur en N², on obtient une indication du type : O²/N² ou XX / YY . un mélange définit comme suit : 40/60 Désigne un NITROX contenant 40 % d’O² et 60 % de N² Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Limites et contraintes Liés à l’augmentation de la pression partielle d’oxygène (PpO²) - Limitation de la profondeur maximum par rapport à l’air( PpO²max = 1,6b .) - Limitation variable de la profondeur en fonction du mélange respiré - Risque d’accident hyperoxique si les profondeurs planchées ou la durée d’utilisation sont dépassés, - Manipulation plus contraignante et plus dangereuse, - Nécessite un matériel spécifique ( compresseur, équipement spécifique si Nitrox > 40/60) - Planification des plongées obligatoires et plus complexes - Prix de revient plus élevé que l’air.
    [Show full text]
  • Hyperbaric Physiology the Rouse Story Arrival at Recompression
    Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen
    [Show full text]
  • Development of the Crew Dragon ECLSS
    ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • Code of Federal Regulations GPO Access
    4±23±97 Wednesday Vol. 62 No. 78 April 23, 1997 Pages 19667±19896 Briefings on how to use the Federal Register For information on briefings in Washington, DC, see announcement on the inside cover of this issue. Now Available Online Code of Federal Regulations via GPO Access (Selected Volumes) Free, easy, online access to selected Code of Federal Regulations (CFR) volumes is now available via GPO Access, a service of the United States Government Printing Office (GPO). CFR titles will be added to GPO Access incrementally throughout calendar years 1996 and 1997 until a complete set is available. GPO is taking steps so that the online and printed versions of the CFR will be released concurrently. The CFR and Federal Register on GPO Access, are the official online editions authorized by the Administrative Committee of the Federal Register. New titles and/or volumes will be added to this online service as they become available. http://www.access.gpo.gov/nara/cfr For additional information on GPO Access products, services and access methods, see page II or contact the GPO Access User Support Team via: ★ Phone: toll-free: 1-888-293-6498 ★ Email: [email protected] federal register 1 II Federal Register / Vol. 62, No. 78 / Wednesday, April 23, 1997 SUBSCRIPTIONS AND COPIES PUBLIC Subscriptions: Paper or fiche 202±512±1800 Assistance with public subscriptions 512±1806 General online information 202±512±1530; 1±888±293±6498 FEDERAL REGISTER Published daily, Monday through Friday, Single copies/back copies: (not published on Saturdays, Sundays, or on official holidays), by the Office of the Federal Register, National Archives and Paper or fiche 512±1800 Records Administration, Washington, DC 20408, under the Federal Assistance with public single copies 512±1803 Register Act (49 Stat.
    [Show full text]
  • Leonardo User Manual
    Direction for use Computer Leonardo ENGLISH cressi.com 2 TABLE OF CONTENTS Main specifications page 4 TIME SET mode: General recommendations Date and time adjustment page 31 and safety measures page 5 SYSTEM mode: Introduction page 10 Setting of measurement unit and reset page 31 1 - COMPUTER CONTROL 3 - WHILE DIVING: COMPUTER Operation of the Leonardo computer page 13 FUNCTIONS 2 - BEFORE DIVING Diving within no decompression limits page 36 DIVE SET mode: DIVE AIR function: Setting of dive parameters page 16 Dive with Air page 37 Oxygen partial pressure (PO2) page 16 DIVE NITROX function: Nitrox - Percentage of the oxygen (FO2) page 18 Dive with Nitrox page 37 Dive Safety Factor (SF) page 22 Before a Nitrox dive page 37 Deep Stop page 22 Diving with Nitrox page 40 Altitude page 23 CNS toxicity display page 40 PLAN mode: PO2 alarm page 43 Dive planning page 27 Ascent rate page 45 GAGE mode: Safety Stop page 45 Depth gauge and timer page 27 Decompression forewarning page 46 Deep Stop page 46 3 Diving outside no decompression limits page 50 5 - CARE AND MAINTENANCE Omitted Decompression stage alarm page 51 Battery replacement page 71 GAGE MODE depth gauge and timer) page 52 6 - TECHNICAL SPECIFICATIONS Use of the computer with 7 - WARRANTY poor visibility page 56 4 - ON SURFACE AFTER DIVING Data display and management page 59 Surface interval page 59 PLAN function - Dive plan page 60 LOG BOOK function - Dive log page 61 HISTORY function - Dive history page 65 DIVE PROFILE function - Dive profile page 65 PCLINK function Pc compatible interface page 66 System Reset Reset of the instrument page 70 4 Congratulations on your purchase of your Leo - trox) dive.
    [Show full text]
  • Special Operations Rebreathers
    Special Operations Underwater Life Support Systems INTRODUCTION TO JFD JFD is the world leading underwater capability provider facilitating the commercial and defence diving industries by offering innovative diving, submarine rescue and subsea technical solutions. JFD has a well-established history in the development of advanced and innovative diving and submarine rescue systems spanning over 30 years. Our systems continue to set the president in terms of capability and performance and JFD is relied upon by divers worldwide across both the defence and commercial sectors. Our products and services have been delivered to a large number of countries across all continents. With in-service support established in many of these locations and tailored Integrated Logistics Support (ILS) packages, JFD is able to provide high customer equipment availability, rapid technical support and tailored training packages. 2 | Introduction JFD offers two highly capable underwater life support systems to meet the full mission profile of today’s Special Operations diver. A modular approach enables customisation of the life support system in response to demands across the full operational spectrum. SHADOW ENFORCER The solution for extended duration and deeper diving The lightweight solution for short duration mission mission profiles. profiles. 3 | Offering A common life support platform facilitates a multi-mission capability offering numerous operational and logistic benefits that include: ENHANCED MISSION EFFECTIVENESS • Front and back mount options • Oxygen
    [Show full text]
  • Nitrox Recreational Mode - Perdix
    Nitrox Recreational Mode - Perdix User Manual Shearwater Perdix Nitrox Recreational Mode 8. System Setup+ ...........................................................18 Table of Contents 8�1� Dive Setup ��������������������������������������������������������������������������������������������������������� 18 Mode �������������������������������������������������������������������������������������������������������� 18 Table of Contents �����������������������������������������������������������������������������������������������������2 Salinity ����������������������������������������������������������������������������������������������������� 18 Conventions Used in this Manual �����������������������������������������������������������������������3 8�2� Deco Setup ������������������������������������������������������������������������������������������������������� 19 1. Introduction .................................................................. 4 Conservatism ������������������������������������������������������������������������������������������� 19 1�1� Features ���������������������������������������������������������������������������������������������������������������4 Safety Stop ���������������������������������������������������������������������������������������������� 19 8�3� Bottom Row ����������������������������������������������������������������������������������������������������� 19 2. Modes Covered by this Manual ................................. 5 8�4� Nitrox Gases ����������������������������������������������������������������������������������������������������
    [Show full text]
  • A Primer for Technical Diving Decompression Theory
    SCUBA AA PPRRIIMMEERR FFOORR TECH TTEECCHHNNIICCAALL DDIIVVIINNGG DDEECCOOMMPPRREESSSSIIOONN PHILIPPINES TTHHEEOORRYY 1 | P a g e ©Andy Davis 2015 www.scubatechphilippines.com Sidemount, Technical & Wreck Guide | Andy Davis First Published 2016 All documents compiled in this publication are open-source and freely available on the internet. Copyright Is applicable to the named authors stated within the document. Cover and logo images are copyright to ScubaTechPhilippines/Andy Davis. Not for resale. This publication is not intended to be used as a substitute for appropriate dive training. Diving is a dangerous sport and proper training should only be conducted under the safe supervision of an appropriate, active, diving instructor until you are fully qualified, and then, only in conditions and circumstances which are as good or better than the conditions in which you were trained. Technical scuba diving should be taught by a specialized instructor with training credentials and experience at that level of diving. Careful risk assessment, continuing education and skill practice may reduce your likelihood of an accident, but are in no means a guarantee of complete safety. This publication assumes a basic understanding of diving skills and knowledge. It should be used to complement the undertaking of prerequisite training on the route to enrolling upon technical diving training. 2 | P a g e ©Andy Davis 2015 www.scubatechphilippines.com This primer on decompression theory is designed as a supplement to your technical diving training. Becoming familiar with the concepts and terms outlined in this document will enable you to get the most out of your theory training with me; and subsequently enjoy safer, more refined dive planning and management in your technical diving activities.
    [Show full text]
  • The Implications of SCUBA Diving with Air Vs. Enriched-Air Nitrox on Mental and Physical Fatigue
    The Implications of SCUBA diving with Air vs. Enriched-Air Nitrox on Mental and Physical Fatigue. Introduction SCUBA (Self-Contained Underwater Breathing Apparatus) diving is commonly done using tanks filled with compressed ambient air containing 21% oxygen, 78% nitrogen, and 1% miscellaneous gases. When not SCUBA diving, nitrogen passes harmlessly through a person’s blood stream. When nitrogen is inhaled at depth, the higher pressure causes more nitrogen to diffuse into the blood stream and various body tissues. Then, after returning to lower pressure at the surface, nitrogen gas dissolved in tissues diffuses and forms bubbles in the bloodstream, which eventually off gas and escape the body through normal exhalation or, in extreme cases, can expand to block blood flow or burst the vessel (1). The blockages or bursts result in symptoms like joint or muscular pain, headaches, dizziness, fatigue, and many others. This serious medical issue is known as decompression sickness (DCS). The formation of nitrogen bubbles in the bloodstream, along with other factors, is thought to induce fatigue. By decreasing the amount of nitrogen absorbed, divers could possibly experience less fatigue and reduce the likelihood of DCS (2). The most common way to achieve this is enriched-air nitrox (EAN) diving where a diver uses a gas mixture that has an increased oxygen composition and decreased nitrogen composition. While many experienced SCUBA divers claim that EAN diving reduces post-dive fatigue, the few studies testing the impact of breathing EAN on post-dive fatigue either did not document an effort to hide the gas composition from the subjects, which would allow for a placebo effect, (3) or the study Emma Z SCUBAnauts International, Tampa Chapter 2019 conducted dry dives using a compression chamber which removes contributing factors like temperature and physical exertion felt on an actual dive (4).
    [Show full text]
  • IQ-1301 TC1 Dive Computer
    TUSA TC1 ( IQ1301 ) DIVE COMPUTER USER GUIDE【1st/en】 The CE mark is used to mark conformity with the European Union EMC directive 2014/30/EU. IN-TC1-EN-1ST Page 1 ■■■■■■■■■ USER GUIDE【1st.】 Thank you for choosing the TUSA TC1(IQ1301) Dive Computer. ◆This dive computer does not conform to Dive watches (100m) stated in the ISO6425 and JISB7023. Applications This is a dive computer to support no decompression diving safely. The TUSA TC1(IQ1301) functions as a watch, alarm, timer, stopwatch. In Dive Mode, information of water depth, water temperature, dive time, ascent rate and decompression are provided. When divers exceed no decompression limits, the dive computer will show audible and visual alarms. Comprehensive accelerated decompression is possible because each fraction of oxygen (O2) % can be set from 21% to 56% in 1% increments. The calculation model used for decompression is based on the decompression theory of Dr. A. Buhlmann (ZHL-16C). Before use, you need understand all warnings and cautions of the dive computer written in this Instruction Manual. To avoid any serious accidents, please make sure to read and fully understand the dive computer and its functions. Understanding and using the functions of the dive computer ensures your safe diving. Page 2 Safety Precautions Please read the following before use. TUSA shall assume no responsibility on damage, lost profit and/or any claims caused in use or by malfunctions of this dive computer from customers and any third parties. Danger • Make sure you understand how to use the warnings, and cautions of this dive computer within this Instruction Manual before use.
    [Show full text]
  • TDI Advanced Nitrox Diver
    TDI Advanced Nitrox Diver Are you looking to expand your dive time? Maybe you’re a scientific diver or photographer looking to stay in the water a little longer?The TDI Advanced Nitrox Course qualifies divers to use enriched air nitrox from EAN 21 through EAN 100 percent within your current certification level to a maximum depth of 40 metres/130 feet during dives that do not require staged decompression. Often taught in conjunction with the TDI Decompression Procedures course, this can be considered the foundation of your technical diving career. TDI Advanced Nitrox is also a must for SCR or CCR divers. Who this course is for: • The certified nitrox diver looking to expand their understanding of nitrox mixtures containing more than 40% oxygen • The certified nitrox diver looking to expand their in-water skills • The certified diver who has interest in moving forward with technical diving education Course prerequisites (these requirements must be met prior to the start of the course): • Minimum age 18, 15 with parental consent • Minimum certification of TDI Nitrox Diver or equivalent • Proof of 25 logged open water dives What you can expect to learn: Advanced Nitrox picks up where TDI Nitrox leaves off and offers a more in-depth look at diving with nitrox including: • Physics and physiology relating to diving with gas mixes containing more than 40% oxygen • Gas planning, dive tables, dive computers, oxygen limitations, nitrogen limitations • Equipment considerations, cylinder labeling, analyzing nitrox mixtures, gas blending procedures,
    [Show full text]