Statement of Need and Reasonableness: August 10, 2012

Total Page:16

File Type:pdf, Size:1020Kb

Statement of Need and Reasonableness: August 10, 2012 FUNGI ONLY Notations Used E Endangered T Threatened SC Special Concern N None (location records maintained by DNR, in most cases) N (X) None, and probably extirpated from Minnesota (location records maintained by DNR, in most cases) -- None (location records not yet maintained by DNR) * Change in scientific name accompanies change in status CHANGE IN SCIENTIFIC NAME NOT ACCOMPANIED BY A CHANGE IN STATUS Old Scientific Name New Scientific Name Status Fuscoboletinus weaverae Suillus weaverae E CHANGE IN STATUS; STATUS SHEET PROVIDED Common Name Scientific Name Current Proposed Status Status A Species of Porcini Mushroom Boletus subcaerulescens -- SC A Species of Cup Fungus Sarcosoma globosum -- SC EXTRACTED FROM Proposed Amendment of Minnesota Rules, Chapter 6134: Endangered and Threatened Species Statement of Need and Reasonableness: August 10, 2012 SPECIES STATUS SHEET SCIENTIFIC NAME: Boletus subcaerulescens COMMON NAME: A Species of Porcini Mushroom CURRENT MINNESOTA STATUS: None PROPOSED MINNESOTA STATUS: Special Concern BASIS FOR PROPOSED MINNESOTA STATUS: Boletus subcaerulescens is reported as occasional to locally common from eastern Canada, south to western New York and Michigan, but the species’ geographic range limits have not been determined. Within Minnesota, this mushroom species has been reported from only two sites: along Amity Creek in Lester Park, Duluth, southern St. Louis County and in a red pine plantation near the Willow River, General Andrews State Forest, Pine County. It is a mycorrhizal forest species that fruits on the ground in association with northern conifers and hardwoods, and was first reported in association with Pinus banksiana, but more recently with Pinus sylvestris, spruce, birch and aspen. In Minnesota, Boletus subcaerulescens is associated with Pinus resinosa or near Picea glauca, Abies balsamea, Pinus strobus, and Betula sp. In our area, it is reported to fruit from mid July until early October. This species is easily mistaken for Boletus edulis but is distinguishable by cap and stipe colors, and tubes that bruise blue. Boletus subcaerulescens has not been observed beyond the two known locations in Minnesota during recent surveys for porcini mushrooms, but additional surveys are needed. Given its limited known distribution, the assignment of Special Concern status is needed and reasonable. SELECTED REFERENCES: Bessette, A. E., W. C. Roody, and A. R. Bessette. 2000. North American Boletes. Syracuse University Press, Syracuse, NY. Both, E. A. 1993. The Boletes of North America – A Compendium. Buffalo Museum of Science, Buffalo, N.Y. Dentinger, B.T.M. 2007. Systematics and evolution of porcini and clavarioid mushrooms. Ph.D. Thesis, Univ. of Minnesota. EXTRACTED FROM Proposed Amendment of Minnesota Rules, Chapter 6134: Endangered and Threatened Species Statement of Need and Reasonableness: August 10, 2012 SPECIES STATUS SHEET SCIENTIFIC NAME: Sarcosoma globosum COMMON NAME: A Species of Cup Fungus CURRENT MINNESOTA STATUS: None PROPOSED MINNESOTA STATUS: Special Concern BASIS FOR PROPOSED MINNESOTA STATUS: Sarcosoma globosum is a large distinctive species of fungus that forms a dark brown gelatinous cup. In Minnesota, it is known from only Johnson Lake, Superior National Forest, St. Louis County, where it was found fruiting in shaded, moist pine needle duff in depauperate herbaceous layer, under Betula papyrifera, Populus tremuloides, and Abies balsamea, with Pinus strobus nearby. This species of fungus fruits in the spring, and was recorded in late May in Minnesota. Members of the Sarcosomataceae are likely saprobic. Sarcosoma globosum is reported in the literature as distributed from the Great Lakes region east to New England and adjacent Canada with occasional reports from Idaho, Oregon and California. It is considered rare in both North America and Europe, where the European Council for Conservation of Fungi has proposed it for listing under the Bern Convention. Although additional surveys are warranted, its single known Minnesota location indicates that the assignment of Special Concern status is needed and reasonable. SELECTED REFERENCES: Dahlberg, A. and H. Croneborg (compilers). 2003. Thirty three (33) threatened fungi in Europe. Complementary and revised information on candidates for listing in Appendix 1 of the Bern Convention. ECCF 33_T-PVS (2001) 34 rev. p. 1-14. Hansen, K. and D. H. Pfister. Systematics of the Pezizomycetes – the operculate discomycetes. 2006. Mycologia 98: 1029-1040. Seaver, F. J. 1961(reprint). North American Cup-fungi (Operculates). Hafner Publ. Co., NY. (See Bulgaria globosa.) Smith, A. H., H. V. Smith and N. S. Weber. 1981. How to Know the Non-gilled Mushrooms. W. C. Brown Co., Dubuque, Iowa. EXTRACTED FROM Proposed Amendment of Minnesota Rules, Chapter 6134: Endangered and Threatened Species Statement of Need and Reasonableness: August 10, 2012 .
Recommended publications
  • Chorioactidaceae: a New Family in the Pezizales (Ascomycota) with Four Genera
    mycological research 112 (2008) 513–527 journal homepage: www.elsevier.com/locate/mycres Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera Donald H. PFISTER*, Caroline SLATER, Karen HANSENy Harvard University Herbaria – Farlow Herbarium of Cryptogamic Botany, Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA article info abstract Article history: Molecular phylogenetic and comparative morphological studies provide evidence for the Received 15 June 2007 recognition of a new family, Chorioactidaceae, in the Pezizales. Four genera are placed in Received in revised form the family: Chorioactis, Desmazierella, Neournula, and Wolfina. Based on parsimony, like- 1 November 2007 lihood, and Bayesian analyses of LSU, SSU, and RPB2 sequence data, Chorioactidaceae repre- Accepted 29 November 2007 sents a sister clade to the Sarcosomataceae, to which some of these taxa were previously Corresponding Editor: referred. Morphologically these genera are similar in pigmentation, excipular construction, H. Thorsten Lumbsch and asci, which mostly have terminal opercula and rounded, sometimes forked, bases without croziers. Ascospores have cyanophilic walls or cyanophilic surface ornamentation Keywords: in the form of ridges or warts. So far as is known the ascospores and the cells of the LSU paraphyses of all species are multinucleate. The six species recognized in these four genera RPB2 all have limited geographical distributions in the northern hemisphere. Sarcoscyphaceae ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Sarcosomataceae SSU Introduction indicated a relationship of these taxa to the Sarcosomataceae and discussed the group as the Chorioactis clade. Only six spe- The Pezizales, operculate cup-fungi, have been put on rela- cies are assigned to these genera, most of which are infre- tively stable phylogenetic footing as summarized by Hansen quently collected.
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Sarcosenones A–C, Highly Oxygenated Pimarane Diterpenoids from an Endolichenic Fungus Cite This: RSC Adv., 2020, 10,15622 Sarcosomataceae Sp.†
    RSC Advances View Article Online PAPER View Journal | View Issue Sarcosenones A–C, highly oxygenated pimarane diterpenoids from an endolichenic fungus Cite this: RSC Adv., 2020, 10,15622 Sarcosomataceae sp.† Xintong Hou,ab Yang Xu,b Shuaiming Zhu,c Yang Zhang, *c Liangdong Guo,d Feng Qiu a and Yongsheng Che*ab Three new highly oxygenated pimarane diterpenoids, sarcosenones A–C(1–3), and the known 9a- Received 17th March 2020 hydroxy-1,8(14),15-isopimaratrien-3,7,11-trione (4), were isolated from cultures of an endolichenic Accepted 6th April 2020 fungus Sarcosomataceae sp. Their structures were elucidated based on NMR spectroscopic data and DOI: 10.1039/d0ra02485f electronic circular dichroism (ECD) calculations. Compound 1 showed moderate cytotoxicity against rsc.li/rsc-advances a small panel of four human tumor cell lines, with IC50 values of 7.5–26.4 mM. nematicidal effect, inhibitory activity of IL-6 signalling medi- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction ated by SATA3, and cytotoxic activity.15,19 Pimarane diterpenoids have been encountered as secondary Lichens are combinations of a fungus (the mycobiont) and metabolites of higher plants, fungi, and marine organisms.1 an algal partner (the photobiont or phycobiont). In addition to This class of diterpenes can be derived from the original core by fungal mycobionts, some nonobligate microfungi, endolichenic substitution, hydroxylation, acetylation, rearrangement, fungi, are also found to live asymptomatically in the bodies bromination, and ring expansion reactions.2 Since the isolation (thalli) of lichens.23 Endolichenic fungi have been demonstrated of pimaric acid, the rst example of this class, in 1839,3 to be a rich source of new bioactive natural products.24 During pimarane diterpenoids have attracted considerable interest due our continuous search for new cytotoxic metabolites from the 23,25–27 This article is licensed under a to their remarkable structural diversity and great antimalarial,4 endolichenic fungi, the fungus Sarcosomataceae sp.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Morchella Exuberans – Ny Murkla För Sverige
    Svensk Mykologisk Tidskrift Volym 36 · nummer 3 · 2015 Svensk Mykologisk Tidskrift 1J@C%RV`:` 1R1$:`7 www.svampar.se 0VJ@7@QCQ$1@/ Sveriges Mykologiska Förening /VJ]%GC1HV`:`Q`1$1J:C:` 1@C:`IVR0:I]R Föreningen verkar för :J@J7 J1J$QH.IVR0VJ@ QH.JQ`RV%`Q]V1@ R VJ G?`V @?JJVRQI QI 0V`1$V 0:I]:` QH. 1J `VV8/VJ% @QIIV`IVR`7`:J%IIV` 0:I]:``QCC1J: %`VJ ]V`B`QH.?$:00V`1$V7@QCQ$1@:DV`VJ1J$8 R@7RR:0J: %`VJQH.:0:I]]CQH@J1J$QH.- 9 `%@ 1QJV` 1CC`V``: :`V`1JJ]BD7.VI1R: J: %]] `?R:JRV1@Q$QH.I:`@@V`%JRV`1:@ - 11180:I]:`8V8/VJV`.BCC$VJQI- :$:JRV:0$?CC:JRVC:$:` CVI@:] 1 D8/VJ ``:I ?CC IVR G1R`:$ R : @QJ :@ V` IVCC:J CQ@:C: 0:I]`V`VJ1J$:` QH. ``BJ/Q`V<: .Q` I1JJV`QJR8 0:I]1J `VV`:RV1C:JRV %JRV`C?: R:@QJ :@ %]]`?.BCCIVRI7@QCQ$1@:`V`- $:`1$`:JJC?JRV` R VJ :I0V`@:J IVR I7@QCQ$1@ `Q`@J1J$ QH. Redaktion 0V VJ@:]8 JVR:@ V`QH.:J0:`1$% $10:`V 1@:VCKQJ VRCVI@:]V`.BCCV$VJQI1J?J1J$:0IVRCVIR LH=: :J :0 VJ]B`V`VJ1J$VJG:J@$1`Q /JNLLHO//;< 5388-7733 =0:I]:`8V VRCVI:0 VJ` 7 [ 7`V`IVRCVII:`GQ::10V`1$V H=AQJVGQ`$ [ 7`V`IVRCVII:`GQ::% :J`V`0V`1$V G:`J: :`0V [ 7 `V` %RV`:JRVIVRCVII:`GQ::1 6: .:II:`01@ 0V`1$^6 _ VC8 [ 7 `V``=^=/_ =8H`QJVGQ`QI %GH`1]``QI:G`Q:R:`V1VCHQIV82:7IVJ Jan Nilsson `Q` ^46 _H:JGVI:RVG7H`VR1 H:`RG7 IVGV`$ 01Q%`1VG.Q]: 11180:I]:`8VQ` QQ%` :LL;J4< G:J@:HHQ%J7 =$8V 9:;<74 :9AL9D/74E4 Äldre nummer :00VJ@7@QCQ$1@/^ KNJE/KOJ<;<_`1JJ]BVJAEQI@:JGV ?CC: Sveriges Mykologiska Förening ``BJD8 9=V VJ@:] Previous issues Q` 0VJ@ 7@QCQ$1@ / ^KNJE/KOJ<;<_:`V:0:1C:GCVQJ:AE1 GVGQ`$%J10V`1 V H:JGVQ`RV`VR``QID8 :6 GVGQ`$ 11180:I]:`8V Omslagsbild 2:]V$=:6^C1Q].Q`%]1:H1J%_DQ H_ 8 I detta nummer nr 3 2015 *_77`J`7 SMF 2 Kompakt taggsvamp (Hydnellum compac- B`0]%]IG$ tum_ŽJB$`: :J@:`QIRVV@.
    [Show full text]
  • Free-Living Protozoa in Drinking Water Supplies: Community Composition and Role As Hosts for Legionella Pneumophila
    Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila Rinske Marleen Valster Thesis committee Thesis supervisor Prof. dr. ir. D. van der Kooij Professor of Environmental Microbiology Wageningen University Principal Microbiologist KWR Watercycle Institute, Nieuwegein Thesis co-supervisor Prof. dr. H. Smidt Personal chair at the Laboratory of Microbiology Wageningen University Other members Dr. J. F. Loret, CIRSEE-Suez Environnement, Le Pecq, France Prof. dr. T. A. Stenstrom,¨ SIIDC, Stockholm, Sweden Dr. W. Hoogenboezem, The Water Laboratory, Haarlem Prof. dr. ir. M. H. Zwietering, Wageningen University This research was conducted under the auspices of the Graduate School VLAG. Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila Rinske Marleen Valster Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 20 June 2011 at 11 a.m. in the Aula Rinske Marleen Valster Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila, viii+186 pages. Thesis, Wageningen University, Wageningen, NL (2011) With references, with summaries in Dutch and English ISBN 978-90-8585-884-3 Abstract Free-living protozoa, which feed on bacteria, play an important role in the communities of microor- ganisms and invertebrates in drinking water supplies and in (warm) tap water installations. Several bacteria, including opportunistic human pathogens such as Legionella pneumophila, are able to sur- vive and replicate within protozoan hosts, and certain free-living protozoa are opportunistic human pathogens as well.
    [Show full text]
  • JMI Jurnal Mikologi Indonesia Online ISSN: 2579-8766 Trichaleurina Javanica from West Java
    JuJurnrnalaMl MikiokolologigIinInddoonneseisaiaVVool 4l 2NNoo21(2(2002108):)1: 4795-51581 AvaAivlaabillaebolenloinelinaet:awt:wwww.jwm.im.mikiokoininaa.o.or.ri.did JMI Jurnal Mikologi Indonesia Online ISSN: 2579-8766 Trichaleurina javanica from West Java Rudy Hermawan1, Mega Putri Amelya1, Za'Aziza Ridha Julia1 1Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Dramaga Campus, Bogor 16680, Indonesia. Hermawan R, Amelya MP, Julia ZR. 2020 - Trichaleurina javanica from West Java. Jurnal Mikologi Indonesia 4(2), 175-181. doi:10.46638/jmi.v4i2.85 Abstract Trichaleurina is a fleshy mushroom with goblet-shaped within Pezizales. Many genera have a morphology similar to Trichaleurina, such as Bulgaria and Galiella. Some previous reports had been described fungi like Trichaleurina as Sarcosoma. Indonesia has been reported that has Trichaleurina specimen (the new name of Sarcosoma) by Boedijn. This research aimed to obtain, characterize, and determine the Trichaleurina around IPB University. Field exploration for fungal samples was used in the Landscape Arboretum of IPB University. Ascomata of Trichaleurina were collected, observed, and preserved using FAA. The specimen was deposited into Herbarium Bogoriense with collection code BO 24420. The molecular phylogenetic tree using RAxML was used to identify the species of the specimen. Morphological data were used to support the species name of the specimen. Specimen BO 24420 was identified as Tricahleurina javanica with 81% bootstrap value. Molecular identification was supported by the morphological data, such as the two oil globules and the size of mature ascospores. Keywords – goblet-shaped fungi – Herbarium Bogoriense – Pyronemataceae Introduction Trichaleurina is a genus built by Rehm (1903) and known by other researchers since a publication of a valid genus by Rehm (1914).
    [Show full text]
  • AMS Newsletter March 2021
    Alabama Mushroom Society Newsletter March 2021 Written and Edited by Alisha Millican and Anthoni Goodman Greetings everyone! We are excited to be seeing some warm days and are greatly anticipating the Spring fungi flush! We are excited to announce that we are officially beginning our monthly forays! Access to these monthly forays are one of the perks we offer to Alabama Mushroom Society members and will therefore only be open to paid members. Our AMS North-Central foray will be the second Saturday every month in the Cullman County area and is weather dependent. If it is raining, it will be cancelled or potentially rescheduled. The location each month will be sent out to registered members via email the night before. Register at (https://alabamamushroomsociety.org/events). Not a member yet? It’s only $20 a year for your whole household Join up here.. We are hoping to get the details for the AMS South Foray here very soon. It will be held on Lake Martin on the first Saturday of each month. Keep an eye on our Events page for information on how to sign up. Trametes lactinea. Photo by Norman Anderson, used with permission. Mushroom of the Month Urnula craterium Early spring is the season of taxonomic order Pezizales, these ascomyces include everything from cup-fungi to morels and even truffles. While morels are on everyone's mind, the mushroom of the month is the far more common Urnula craterium. These are the harbingers of spring and a good indication that morels will be up soon. This species is common across North America (especially East of the Rockies) and certainly abundant here in Alabama.
    [Show full text]
  • Suomen Helttasienten Ja Tattien Ekologia, Levinneisyys Ja Uhanalaisuus
    Suomen ympäristö 769 LUONTO JA LUONNONVARAT Pertti Salo, Tuomo Niemelä, Ulla Nummela-Salo ja Esteri Ohenoja (toim.) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus .......................... SUOMEN YMPÄRISTÖKESKUS Suomen ympäristö 769 Pertti Salo, Tuomo Niemelä, Ulla Nummela-Salo ja Esteri Ohenoja (toim.) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus SUOMEN YMPÄRISTÖKESKUS Viittausohje Viitatessa tämän raportin lukuihin, käytetään lukujen otsikoita ja lukujen kirjoittajien nimiä: Esim. luku 5.2: Kytövuori, I., Nummela-Salo, U., Ohenoja, E., Salo, P. & Vauras, J. 2005: Helttasienten ja tattien levinneisyystaulukko. Julk.: Salo, P., Niemelä, T., Nummela-Salo, U. & Ohenoja, E. (toim.). Suomen helttasienten ja tattien ekologia, levin- neisyys ja uhanalaisuus. Suomen ympäristökeskus, Helsinki. Suomen ympäristö 769. Ss. 109-224. Recommended citation E.g. chapter 5.2: Kytövuori, I., Nummela-Salo, U., Ohenoja, E., Salo, P. & Vauras, J. 2005: Helttasienten ja tattien levinneisyystaulukko. Distribution table of agarics and boletes in Finland. Publ.: Salo, P., Niemelä, T., Nummela- Salo, U. & Ohenoja, E. (eds.). Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus. Suomen ympäristökeskus, Helsinki. Suomen ympäristö 769. Pp. 109-224. Julkaisu on saatavana myös Internetistä: www.ymparisto.fi/julkaisut ISBN 952-11-1996-9 (nid.) ISBN 952-11-1997-7 (PDF) ISSN 1238-7312 Kannen kuvat / Cover pictures Vasen ylä / Top left: Paljakkaa. Utsjoki. Treeless alpine tundra zone. Utsjoki. Kuva / Photo: Esteri Ohenoja Vasen ala / Down left: Jalopuulehtoa. Parainen, Lenholm. Quercus robur forest. Parainen, Lenholm. Kuva / Photo: Tuomo Niemelä Oikea ylä / Top right: Lehtolohisieni (Laccaria amethystina). Amethyst Deceiver (Laccaria amethystina). Kuva / Photo: Pertti Salo Oikea ala / Down right: Vanhaa metsää. Sodankylä, Luosto. Old virgin forest. Sodankylä, Luosto. Kuva / Photo: Tuomo Niemelä Takakansi / Back cover: Ukonsieni (Macrolepiota procera).
    [Show full text]
  • 2 Pezizomycotina: Pezizomycetes, Orbiliomycetes
    2 Pezizomycotina: Pezizomycetes, Orbiliomycetes 1 DONALD H. PFISTER CONTENTS 5. Discinaceae . 47 6. Glaziellaceae. 47 I. Introduction ................................ 35 7. Helvellaceae . 47 II. Orbiliomycetes: An Overview.............. 37 8. Karstenellaceae. 47 III. Occurrence and Distribution .............. 37 9. Morchellaceae . 47 A. Species Trapping Nematodes 10. Pezizaceae . 48 and Other Invertebrates................. 38 11. Pyronemataceae. 48 B. Saprobic Species . ................. 38 12. Rhizinaceae . 49 IV. Morphological Features .................... 38 13. Sarcoscyphaceae . 49 A. Ascomata . ........................... 38 14. Sarcosomataceae. 49 B. Asci. ..................................... 39 15. Tuberaceae . 49 C. Ascospores . ........................... 39 XIII. Growth in Culture .......................... 50 D. Paraphyses. ........................... 39 XIV. Conclusion .................................. 50 E. Septal Structures . ................. 40 References. ............................. 50 F. Nuclear Division . ................. 40 G. Anamorphic States . ................. 40 V. Reproduction ............................... 41 VI. History of Classification and Current I. Introduction Hypotheses.................................. 41 VII. Growth in Culture .......................... 41 VIII. Pezizomycetes: An Overview............... 41 Members of two classes, Orbiliomycetes and IX. Occurrence and Distribution .............. 41 Pezizomycetes, of Pezizomycotina are consis- A. Parasitic Species . ................. 42 tently shown
    [Show full text]
  • Delivering Biodiversity Conservation an Initiative by SCA
    Delivering biodiversity conservation An initiative by SCA March 2021 Contents Summary .................................................................................................................... 2 Background ................................................................................................................ 3 Introduction to SCA ................................................................................................. 3 What are we achieving with this initiative? .............................................................. 4 Swedish forestry – the context ................................................................................ 5 SCA forest management and operations ................................................................ 6 Connecting the Red List to SCAs forest management ............................................... 7 About the Swedish Red List 2020 ........................................................................... 7 SCAs species commitment ..................................................................................... 8 Habitat requirements ............................................................................................ 11 Forest management implications .......................................................................... 11 Extent of habitats for redlisted species 2020 ............................................................ 12 Two roundtable discussions ..................................................................................... 13 The road
    [Show full text]
  • Urnula Hiemalis – a Rare and Interesting Species of the Pezizales from Estonia
    Folia Cryptog. Estonica, Fasc. 48: 149–152 (2011) Urnula hiemalis – a rare and interesting species of the Pezizales from Estonia Irma Zettur & Bellis Kullman Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 181 Riia St., 51014, Tartu, Estonia. E-mail: [email protected] Abstract: Urnula hiemalis of the Pezizales is reported for the first time from Estonia. Kokkuvõte: Liudikulaadsete seente haruldane ja huvitav liik tali-urnseen Urnula hiemalis. INTRODUCTION In early spring 2011, after an extremely snowy short, hardly noticeable stipe emerging from winter, we found a 5 cm large black fruit-body the soil. Flesh 1 mm thick, white. Outer surface in a spruce forest (Picea abies) on mossy ground felty, brownish black. Hymenium black, surface among needle litter. The fruit-body appeared velvety. Spores ellipsoid, (20.6–) 23.3 (–27.6) × immature but after growing for some days in a (9.3–) 12.0 (–14.5) μm (n = 25), rather thick- humidity box it developed mature spores, allow- walled, smooth, with several smaller droplets ing for the first time to identifyUrnula hiemalis towards each end (which disappear in lactic Nannf. from Estonia. acid). Spores developing very slowly, towards the ascus tip often obliquely arranged, slightly overlapping. Asci very long, (507–)549(–586) × MATERIALS AND METHODS (11–)12(–13) μm (n = 10), 8-spored, narrowly Freshly collected living material was mounted cylindrical above, ascus apex opening by an in tap water and examined using the Zeiss operculum, gradually tapering towards the base. Axioskop 40 FL microscope, AxioCam MRc Paraphyses long and hyaline, upwards slightly camera and the Axio Vison 1.6 program.
    [Show full text]