Fishery Resources

Total Page:16

File Type:pdf, Size:1020Kb

Fishery Resources SSESSMENT OF AASSESSMENT OF ONG ONG S HHONG KKONG’’S NSHORE IINSHORE FFIISSHHEERRYY RREESSOOUURRCCEESS bbyy TToonnyy JJ.. PPiittcchheerr RReegg WWaattssoonn AAnntthhoonnyy CCoouurrttnneeyy && DDaanniieell PPaauullyy Fisheries Centre University of British Columbia July 1997 ASSESSMENT OF HONG KONG’S INSHORE FISHERY RESOURCES by Tony J. Pitcher Reg Watson Anthony Courtney & Daniel Pauly FISHERIES CENTRE, UNIVERSITY OF BRITISH COLUMBIA JANUARY 1998 Assessment of Hong Kong Inshore Fishery Resources, Page 2 TABLE OF CONTENTS Executive Summary .......................................................................................................................3 Introduction ...................................................................................................................................4 Methods..........................................................................................................................................5 Biomass estimation methods ...........................................................................................5 Catch estimation methods................................................................................................7 Single species assessment methods .................................................................................8 Length weight relationship .................................................................................8 Growth rates ........................................................................................................9 Mortality rates ...................................................................................................10 Total mortality rate, Z ..........................................................................10 Natural mortality rate, M......................................................................11 Offshore migration rate, G....................................................................11 Fishing mortality rate, F ......................................................................11 Yield-per-recruit analysis.................................................................................. 12 Reference points for single species assessments .............................................. 12 Approximate methods for sustainable yields ................................................... 13 Multi-species bio-economic assessment method .......................................................... 14 Value-per-Recruit analysis................................................................................ 15 Spatial analysis and sustainability indices..................................................................... 15 Ecosystem analysis methods .......................................................................................... 16 Uncertainty in parameters.............................................................................................. 17 Results and Discussion ................................................................................................................18 Biomass estimates Benthic Species.................................................................................................. 19 Pelagic Species...................................................................................................27 Biomass of assessed species from Hong Kong fleet catches.............................29 Total aquatic resource biomass.........................................................................29 Catch estimates............................................................................................................... 31 Single species assessments Summary of Assessments..................................................................................35 Single species assessments................................................................................36 Multi-species bioeconomic assessment ......................................................................... 61 Ecosystem analysis .........................................................................................................64 Assembly of trophic groups...............................................................................64 Results ...............................................................................................................69 Scenario modelling............................................................................................70 References Cited...........................................................................................................................73 List of Symbols and their definitions...........................................................................................81 Figures (130) 81 pages text (39,500 words) set in Lucida Bright 10 point & Galliard fonts; 130 Figures, 26 tables. © UBC Fisheries Centre, 2204 Main Mall, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada Assessment of Hong Kong Inshore Fishery Resources, Page 3 EXECUTIVE SUMMARY This work aims to determine the exploitation status of Hong Kong's inshore fishery resources, and the likely impact of management measures on the coastal ecosystem. This report describes results of the assessment work performed by the Fisheries Centre, UBC, between April 1996 and December 1997. Biomass and catch have been estimated by season and sector with survey data: from regular monthly samples of benthic resources using a prawn trawl, from samples of pelagic resources using a purse seine, and from catch estimated from an interview survey of fishers. Benthic biomass is also estimated in 18 spatial sampling strata. Prawns are included but the work does not cover shellfish. Total inshore resource biomass is estimated as about 9000 tonnes annual average ( = 4.9 tonnes km-2), of which 85% is comprised of pelagic species. There is a strong seasonal pattern, seen most strongly in the pelagic species, but also present in benthic resources, with total biomass peaking at over 27,000 tonnes ( = 15 tonnes km-2) in August and dipping to 1700 tonnes ( = 0.9 tonnes km-2) in February. These results are subject to uncertainties in estimating swept areas and in extrapolating from more detailed work on individual species. Based on estimating the probability distribution of the catch rates of individual vessels in seven gear sectors and by species, the total catch in Hong Kong waters is estimated as 14,700 tonnes (7.8 tonnes km-2). A detailed breakdown of this catch by gear sector and species is provided. Very wide confidence limits reflect a high variance in individual vessel catch rates, and the results are subject to considerable uncertainty deriving from the adoption of an interview protocol to estimate catch. Detailed assessments of exploitation status have been carried out for 17 individual species, four of which are crustaceans. Growth parameters and mortality parameters have been fitted to survey data, and age data derived from otolith readings. Growth is fitted by least squares techniques, length frequency analysis, and estimates take account of many published values from the literature. Mortality includes total mortality, estimated largely by cohort slicing, offshore migration with age for certain demersal species, estimated by a novel method, and present fishing mortality calculated by two alternative methods. Yield- and biomass-per- recruit analyses have been employed to evaluate exploitation status. Uncertainties have been explicitly defined and addressed through confidence limits placed on most estimates using Monte Carlo simulation techniques. Twelve of the 17 species are heavily overexploited, while the remainder, principally the small high-turnover species, fall into the fully exploited category. Very approximate sustainable yield estimations based on calculating unexploited biomass suggest that catches of larger and slower-growing species might be roughly doubled with optimal management. A major uncertainty is the equilibrium assumption made by all of these methods, that recruitment will not be greatly affected by increases in abundance. Multi-species bioeconomic analysis for the trawl fishery, based on parameters from the individual species, conflates the assessment optima for the individual species in terms of their relative value. The results suggest that long term yield for the 17 species might be roughly doubled by increasing mesh size, but are sensitive to assumptions made in estimating relative recruitment factors among the species. A trophic mass-balance model of the Hong Kong inshore ecosystem is constructed from information derived from the analysis and from the literature. The model includes shellfish, marine mammals, and all living components of the system. The model is used to predict the impact of six scenarios of changes in management on the relative abundance of sectors of the resource. Halving the current fishing mortality results in considerable benefits for all fishery sectors, and those with a conservation focus such as marine mammals. The full benefits of such a policy may, however, take a decade to be realised. Assessment of Hong Kong Inshore Fishery Resources, Page 4 INTRODUCTION This report describes the catch, biomass and exploitation status of fished stocks in the 1820 km2 of Hong Kong’s coastal waters, the trophic structure of Hong Kong's inshore marine ecosystem, and the predicted impact of specified changes to fisheries management on the ecosystem. Two complementary approaches to the assessment of these resources are provided:
Recommended publications
  • Huffmanela Huffmani: Life Cycle, Natural History, And
    HUFFMANELA HUFFMANI: LIFE CYCLE, NATURAL HISTORY, AND BIOGEOGRAPHY by McLean Worsham, B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Biology May 2015 Committee Members: David Huffman, Chair Chris Nice Randy Gibson COPYRIGHT by McLean Worsham 2015 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, McLean Worsham, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGEMENTS I would like to acknowledge Harlan Nicols, Stephen Harding, Eric Julius, Helen Wukasch, and Sungyoung Kim for invaluable help in the field and/or the lab. I would like to acknowledge Dr. David Huffman for incredible and dedicated mentorship. I would like to thank Randy Gibson for his invaluable help in trying to understand the taxonomy and ecology of aquatic invertebrates. I would like to acknowledge Drs. Chris Nice, Weston Nowlin, and Ben Schwartz for invaluable insight and mentorship throughout my research and the graduate student process. I would like to thank my good friend Alex Zalmat for always offering everything he has when a friend is in a time of need.
    [Show full text]
  • Chinese Red Swimming Crab (Portunus Haanii) Fishery Improvement Project (FIP) in Dongshan, China (August-December 2018)
    Chinese Red Swimming Crab (Portunus haanii) Fishery Improvement Project (FIP) in Dongshan, China (August-December 2018) Prepared by Min Liu & Bai-an Lin Fish Biology Laboratory College of Ocean and Earth Sciences, Xiamen University March 2019 Contents 1. Introduction........................................................................................................ 5 2. Materials and Methods ...................................................................................... 6 2.1. Study site and survey frequency .................................................................... 6 2.2. Sample collection .......................................................................................... 7 2.3. Species identification................................................................................... 10 2.4. Sample measurement ................................................................................... 11 2.5. Interviews.................................................................................................... 13 2.6. Estimation of annual capture volume of Portunus haanii ............................. 15 3. Results .............................................................................................................. 15 3.1. Species diversity.......................................................................................... 15 3.1.1. Species composition .............................................................................. 15 3.1.2. ETP species .........................................................................................
    [Show full text]
  • Diversité Ichtyologique En Méditerranée
    UNIVERSITE MONTPELLIER II UNIVERSITE DU 7 NOVEMBRE A CARTHAGE SCIENCES ET TECHNIQUES DU LANGUEDOC INSTITUT NATIONAL AGRONOMIQUE DE TUNISIE THESE EN COTUTELLE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE & DOCTEUR DE L’INSTITUT NATIONAL MONTPELLIER II AGRONOMIQUE DE TUNISIE Discipline : Ecosystèmes Discipline : Sciences Halieutiques Ecole Doctorale : Ecole Doctorale : Systèmes Intégrés en Biologie, Agronomie, Sciences Agronomiques Géosciences, Hydrosciences et Environnement présentée et soutenue publiquement par Frida BEN RAIS LASRAM A Montpellier, le 5 janvier 2009 Titre Diversité ichtyologique en Méditerranée : patrons, modélisation et projections dans un contexte de réchauffement global JURY Dr. Benjamin PLANQUE, Institute of Marine Research (Norvège) Rapporteur Dr. Ridha M’RABET, INSTM (Tunisie) Rapporteur Dr. Philippe CURY, IRD (France) Examinateur Pr. David MOUILLOT, Université Montpellier II (France) Examinateur Pr. Thang DO CHI, Université Montpellier II (France) Directeur de thèse Pr. Mohamed Salah ROMDHANE, INAT (Tunisie) Co-Directeur de thèse JURY Benjamin PLANQUE Senior Scientist, Institute of Marine Research (Norvège) Ridha M’RABET Directeur de recherche, Institut National des Sciences et Technologies de la Mer (Tunisie) Philippe CURY Directeur de recherche, Institut de Recherche pour le Développement (France) David MOUILLOT Professeur, Université Montpellier II (France) Thang DO CHI Professeur, Université Montpellier II (France) Mohamed Salah ROMDHANE Professeur, Institut National Agronomique de Tunisie (Tunisie) Résumé La mer Méditerranée est un écosystème particulier de par son isolement, sa grande richesse spécifique, son fort taux d’endémisme et les invasions exotiques qui y surviennent. Malgré l’intérêt qui a été porté à la Méditerranée depuis l’antiquité, aucune étude des patrons de diversité ichtyologique n’a été menée à grande échelle et sur l’ensemble des espèces et n’a proposé de simulations de scénarii face au changement global.
    [Show full text]
  • Pigface Breams, Lizardfishes and Eels
    Classification of Exploited Demersal Finfishes of India: Pigface breams, lizardfishes and eels 20 T.M. Najmudeen and P.U. Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Demersal fishes are those fishes which live and feed on or near (threadfin bream). Among percoids, sparoicis appear most the bottom (the demersal zone) of seas . They occupy the sea closely related to the Lutjanoidea (includes the snappers or floors, which usually consist of mud, sand, gravel or rocks. In Lutjanidae and, fusiliers or Caesionidae) and the Haemuloidea coastal waters they are found on or near the continental shelf, (includes the grunts or Haemulidae and Inermiidae). There and in deep waters they are found on or near the continental has been much confusion concerning the familial allocation of slope or along the continental rise. In India, demersal finfishes the genera and species amongst these groups. contribute about 26% to the total marine fish landings of the country, which is dominated by perches, croakers, catfishes, Lethrinids are mostly reef fishes but their preferred habitat silverbellies, elasmobranchs, lizardfishes, flat fishes, pomfrets is sandy or rubble substrate. The reefs which they frequent etc., in order of abundance. Most of the demersal finfishes in can be shallow, coralline reefs or deep, rocky reefs. One India are exploited by mechanised trawlers. species frequents the outer edges of the continental shelf and is caught to depths of 180 m. Lethrinids can be solitary or Taxonomic research on fishes in general and other taxa of schooling and do not appear to be territorial. They often form the animal kingdom was conducted extensively in the earlier large aggregations while spawning periods by various research and survey organisation of the country (James, 2010).
    [Show full text]
  • Research Article Annotated Checklist of the Fishes of the Persian Gulf
    Iran. J. Ichthyol. (October 2019), 6(Suppl. 1): 1-171 Received: January 17, 2019 © 2019 Iranian Society of Ichthyology Accepted: October 7, 2019 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v6i0.454 http://www.ijichthyol.org Research Article Annotated checklist of the fishes of the Persian Gulf: Diversity and conservation status Soheil EAGDERI*1, Ronald FRICKE2, Hamid Reza ESMAEILI3, Paria JALILI1 1Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran. 2Im Ramstal 76, 97922 Lauda-Königshofen, Germany. 3Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic researches on the Persian Gulf ichthyofauna that has been carried out for more than 200 years. Since the work of C. Niebuhr, a Danish biologist in the 18th century, the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of fishes of Persian Gulf based on literature and taxon occurrence data obtained from natural history and new fish collections. The total confirmed fish species of Persian Gulf comprise 744 species, 131 families, 445 genera and 27 orders. In the class Chondrichthyes, the most diverse family is Charcharhinidae with 23 species (41.89%), followed by Dasyatidae with 15 species (31.08%). Within the class Actinopterygii, Gobiidae with 65 species (9.70%), Carangidae with 45 species (6.27%), Serranidae with 25 species (3.73%), Apogonidae with 25 species (3.73%), Lutjanidae with 23 species (3.43%) and Blenniidae with 23 species (3.43%) are the most diverse families in the Persian Gulf.
    [Show full text]
  • Download From
    Designation date: 13/12/12 Ramsar Site no. 2088 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Dr. Tran Ngoc Cuong DD MM Y Y Biodiversity Conservation Agency Vietnam’s Environment Protection Administration Ministry of Natural Resources and Environment Designation dateSite Reference Number Address: 5th floor, #99 Le Duan Building, Hanoi Tel: +84 4 39412025 Fax: +84 4 39412028 Email:[email protected], [email protected] 2.
    [Show full text]
  • Fish Nematode Huffmanela Spp. (Enoplea: Trichinellida: Trichosomoididae)1 Fauve Wilson and Jennifer L
    EENY-744 Fish Nematode Huffmanela spp. (Enoplea: Trichinellida: Trichosomoididae)1 Fauve Wilson and Jennifer L. Gillett-Kaufman2 Introduction Huffmanela huffmani, which is found in the swimbladder of the freshwater species Amblopites rupestris, Micropterus Huffmanela (Figure 1) is a genus of parasitic nematodes in salmoides, and Lepomis spp. from an upper spring run in the family Trichosomoididae. central Texas (Moravec 1987). Records of Huffmanela spe- cies have been from the south west Pacific Ocean near New Huffmanela species infest only one freshwater fish species Caledonia (Justine 2007), the Sea of Japan (Moravec et al. and a small number of saltwater fishes. They commonly 1998), the Pacific coast of Mexico (Moravec and Fajer-Avila affect many tissues, in particular the swim bladder, gut 2000), the Ligurian Sea in northern Italy (Moravec and mucosa, skin, and musculature (Carballo and Navone Garibaldi 2000), the North Patagonian Gulfs in Argentina 2007). (Carballo and Navone 2007), the Pacific Ocean near Vancouver (Moravec et a. 2005), and the northwest Gulf of Mexico off the coast of Texas (Ruiz and Bullard 2013). Life Cycle and Biology Eggs Huffmanela eggs are small, measuring approximately 48 to 113 µm in length, and 20 to 54 µm in width (Justine 2011, Ruiz and Bullard 2013). They are typically oval or spindle shaped (Figure 3) (Zd’árská et al. 2001, Ruiz and Bullard Figure 1. Egg stage of Huffmanela huffmani (Host unknown). 2013). While some eggs have a smooth surface (Ruiz and Credits: David Huffman Bullard 2013), others have a layer of filamentous hairs (Justine 2011). Nematode eggs in this genus can vary in Distribution color.
    [Show full text]
  • Fishes of Northern Gulf of Thailand Ii Iii
    2013/10/01 15:28:18 Tomohiro Yoshida·Hiroyuki Motomura· Prachya Musikasinthorn·Keiichi Matsuura 表紙.indd 1 i Fishes of northern Gulf of Thailand ii iii Edited by Tomohiro Yoshida, Hiroyuki Motomura, Prachya Musikasinthorn and Keiichi Matsuura Photographed by Mizuki Matsunuma and Tomohiro Yoshida iv Copy Right © 2013 by the National Museum of Nature and Science, Research Institute for Humanity and Nature, and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means with- out prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima University Museum. For bibliographic purposes this book should be cited as follow: Yoshida, T., H. Motomura, P. Musikasinthorn and K. Matsuura (eds.). 2013 (Sept.). Fishes of northern Gulf of Thai- land. National Museum of Nature and Science, Tsukuba, Research Institute for Humanity and Nature, Kyoto, and Kagoshima University Museum, Kagoshima. viii + 239 pages. ISBN 978-4-905464-03-7 Cover designed by Masatoshi Meguro Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface The Gulf of Thailand although relatively shallow with an average depth of 50 m, con- sists of a vast expanse of the Southeast Asian seas with approximately 350,000 km2. During the last ice age in the Pleistocene, about 12,000 years ago, sea levels have been estimated as being about 100–150 m lower than at present, and the current Gulf of Thailand was then a part of Sundaland. This suggests that fishes currently occurring in the Gulf of Thailand have only relatively recently settled themselves in the Gulf from outside Sundaland.
    [Show full text]
  • National Report on the Fish Stocks and Habitats of Regional, Global
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” National Reports on the Fish Stocks and Habitats of Regional, Global and Transboundary Significance in the South China Sea First published in Thailand in 2007 by the United Nations Environment Programme. Copyright © 2007, United Nations Environment Programme This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose without prior permission in writing from the United Nations Environment Programme. UNEP/GEF Project Co-ordinating Unit, United Nations Environment Programme, UN Building, 2nd Floor Block B, Rajdamnern Avenue, Bangkok 10200, Thailand. Tel. +66 2 288 1886 Fax. +66 2 288 1094 http://www.unepscs.org DISCLAIMER: The contents of this report do not necessarily reflect the views and policies of UNEP or the GEF. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP, of the GEF, or of any cooperating organisation concerning the legal status of any country, territory, city or area, of its authorities, or of the delineation of its territories or boundaries. Cover Photo: Coastal fishing village of Phu Quoc Island, Viet Nam by Mr. Christopher Paterson.
    [Show full text]
  • Journal of Threatened Taxa
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication An overview of fishes of the Sundarbans, Bangladesh and their present conservation status Kazi Ahsan Habib, Amit Kumer Neogi, Najmun Nahar, Jina Oh, Youn-Ho Lee & Choong-Gon Kim 26 January 2020 | Vol. 12 | No. 1 | Pages: 15154–15172 DOI: 10.11609/jot.4893.12.1.15154-15172 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The
    [Show full text]
  • Status of Non-CITES Listed Anguillid Eels
    Status of non-CITES listed anguillid eels Matthew Gollock, Hiromi Shiraishi, Savrina Carrizo, Vicki Crook and Emma Levy Delivered by the Zoological Society of London 1 Acknowledgments This report was made possible with financial support from the CITES Secretariat. The authors would like to thank Karen Gaynor in the CITES Secretariat for support during the drafting of the report. We thank from TRAFFIC, Joyce Wu for supporting the study and James Compton and Richard Thomas for reviewing elements of the draft report. Camilla Beevor and Aaron Foy at ZSL are thanked for their legal and operational support, Kristen Steele for translation of documents, Joanna Barker for creating the range maps and David Curnick for editing a draft of the report. Kenzo Kaifu and Céline Hanzen are acknowledged for technical input. Parties are thanked for completing the questionnaires that informed this report and for reviewing a draft to ensure it is as accurate and up to date as possible. We also thank the individuals who responded to specific requests for information and clarification. Author affiliations Matthew Gollock and Emma Levy, Zoological Society of London, Regent’s Park, London, NW1 4RY, United Kingdom. Hiromi Shiraishi, TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, United Kingdom. Savrina Carrizo - Independent consultant. Vicki Crook – Independent consultant. 2 Table of Contents Executive summary ...............................................................................................................................
    [Show full text]
  • Reef Dependent Ichthyofauna of the Gulf of Kachchh, Gujarat, Western
    International Journal of Fisheries and Aquatic Studies 2015; 2(6): 33-37 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 Reef dependent ichthyofauna of the Gulf of Kachchh, (GIF) Impact Factor: 0.352 Gujarat, Western India IJFAS 2015; 2(6): 33-37 © 2015 IJFAS www.fisheriesjournal.com Heena Parmar, Dashrathsinh Barad, Dishant Parasharya Received: 02-05-2015 Accepted: 27-05-2015 Abstract Heena Parmar The coral reef environment are very productive of reef associated life comprising of algae, sponges, GEER Foundation, Indroda annelids, molluscs, crabs, prawns, echinoderms, fishes, sea turtles, birds and marine mammals with Nature Park, Gandhinagar – several other members of minor phyla. Out of total 34 phyla, 32 are reported from the marine ecosystem. Gujarat. The major representative of the chordate fauna is found from the class Pisces. The present study describes species diversity of reef fishes in some of the representative reef areas of the Gulf of Kachchh Dashrathsinh Barad GEER Foundation, Indroda (Dwarka, Okha, Poshitra, Narara and Goose). This study was carried out from 2008 to 2014 during Nature Park, Gandhinagar – various biodiversity studies through visual census method. Total 35 genus and 41 species belonging to 27 Gujarat. Families were found in the reef area of Gulf of Kachchh. Dishant Parasharya Keywords: Coral Reef, Reef Fishes, Gulf of Kachchh. GEER Foundation, Indroda Nature Park, Gandhinagar – 1. Introduction Gujarat. India is endowed with a wide diversity of water resources which sustain a large fisheries sector in the country having a coastline of 8,118 km in which Gujarat contributes of approximately1600 km [1]. The Gulf of Kachchh forms the north-western boundary of the Indian coast which extends to a length of 170 km covering an area of around 7300 km2.
    [Show full text]