Checklist of the Red Sea Fishes with Delineation of the Gulf of Suez, Gulf of Aqaba, Endemism and Lessepsian Migrants

Total Page:16

File Type:pdf, Size:1020Kb

Checklist of the Red Sea Fishes with Delineation of the Gulf of Suez, Gulf of Aqaba, Endemism and Lessepsian Migrants Zootaxa 4509 (1): 001–215 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4509.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:9D80FE28-D378-4C7D-87D7-380F6B583BC1 ZOOTAXA 4509 Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants DANIEL GOLANI1 & RONALD FRICKE2 1National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. E-mail: [email protected] 2Im Ramstal 76, 97922 Lauda-Königshofen, Germany. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by W. Holleman: 3 Jul. 2018; published: 5 Nov. 2018 DANIEL GOLANI & RONALD FRICKE Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants (Zootaxa 4509) 215 pp.; 30 cm. 5 Nov. 2018 ISBN 978-1-77670-514-6 (paperback) ISBN 978-1-77670-515-3 (Online edition) FIRST PUBLISHED IN 2018 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2018 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4509 (1) © 2018 Magnolia Press GOLANI & FRICKE Table of contents Abstract . 5 Introduction . 6 Materials and methods . 7 Species accounts . 7 ODONTASPIDIDAE . 7 LAMNIDAE . 8 ALOPIIDAE . 8 GINGLYMOSTOMATIDAE . 8 STEGOSTOMATIDAE. 8 RHINCODONTIDAE . 10 CARCHARHINIDAE . 10 TRIAKIDAE . 12 HEMIGALEIDAE . 13 SPHYRNIDAE . 13 SOMNIOSIDAE . 13 PRISTIDAE . 13 NARCINIDAE . 14 TORPEDINIDAE . 14 RHINOBATIDAE . 14 DASYATIDAE . 15 RHINOPTERIDAE . 17 GYMNURIDAE . 17 AETOBATIDAE . 17 MYLIOBATIDAE . 17 MOBULIDAE . 18 ELOPIDAE . 18 MEGALOPIDAE . 19 ALBULIDAE . 19 HALOSAURIDAE . 19 CHLOPSIDAE . 19 MURAENIDAE . 19 MURAENESOCIDAE . 24 CONGRIDAE . 24 NETTASTOMATIDAE . 26 OPHICHTHIDAE . 27 SYNAPHOBRACHIDAE . 29 CLUPEIDAE. ..
Recommended publications
  • Assessing Trophic Relationships Between Shallow-Water Black Corals (Antipatharia) and Their Symbionts Using Stable Isotopes
    Belgian Journal of Zoology www.belgianjournalzoology.be This work is licensed under a Creative Commons Attribution License (CC BY 4.0). ISSN 2295-0451 Research article https://doi.org/10.26496/bjz.2019.33 Assessing trophic relationships between shallow-water black corals (Antipatharia) and their symbionts using stable isotopes Lucas Terrana 1,*, Gilles Lepoint 2 & Igor Eeckhaut 1 1 Biology of Marine Organisms and Biomimetics, University of Mons, 7000 Mons, Belgium. 2 Laboratory of Oceanology-MARE Centre, University of Liège, 4000 Liège, Belgium. * Corresponding author: [email protected] Abstract. Shallow-water antipatharians host many symbiotic species, which spend their adult life with their host and/or use them to have access to food. Here we determine the trophic relationships between four common macrosymbionts observed on/in Cirripathes anguina, Cirrhipathes densiflora and Stichopathes maldivensis in SW Madagascar. These include the myzostomid Eenymeenymyzostoma nigrocorallium, the gobiid fish Bryaninops yongei, and two palaemonid shrimps, Pontonides unciger and Periclimenes sp. The first is an endosymbiont living in the digestive tract, while the others are ectosymbionts. The analyses show that most likely (i) none of the symbionts uses the host as a main food source, (ii) nocturnal plankton represents a main part of the diet of antipatharians while the symbionts feed preferentially on diurnal plankton, (iii) the myzostomid has the narrowest trophic niche, (iv) the two shrimps have distinct trophic niches and feed at lower trophic level than do the other symbionts. Concerning the myzostomids, they had the same δ13C values but had significantly higher δ15N values than the hosts. TEFs (Trophic Enrichment Factors) recorded were Δ13C = 0.28 ± 0.25 ‰ and Δ15N = 0.51 ± 0.37 ‰, but these were not high enough to explain a predator-prey relationship.
    [Show full text]
  • TESIS DE DOCTORADO Desarrollo De Herramientas Moleculares Para Su Aplicación En La Mejora De La Trazabilidad De Los Alimentos Fátima C
    TESIS DE DOCTORADO Desarrollo de herramientas moleculares para su aplicación en la mejora de la trazabilidad de los alimentos Fátima C. Lago Soriano 2017 Desarrollo de herramientas moleculares para para moleculares Desarrollo de herramientas : DO Fátima Soriano Lago C. TESIS DOCTORA DE la los trazabilidad de alimentos aplicaciónla su mejora de en 2017 Escuela Internacional de Doctorado Fátima C. Lago Soriano TESIS DE DOCTORADO DESARROLLO DE HERRAMIENTAS MOLECULARES PARA SU APLICACIÓN EN LA MEJORA DE LA TRAZABILIDAD DE LOS ALIMENTOS Dirigida por los Doctores: Montserrat Espiñeira Fernández Juan Manuel Vieites Baptista de Sousa Página 1 de 153 AGRADECIMIENTOS Cuando una etapa llega a su fin, es cuando por fin puedes mirar a atrás, respirar profundamente, y acordarte de aquellos que te acompañaron. Del mismo modo, es difícil entender los agradecimientos de una tesis hasta que pones el punto y final. Es en este momento cuando se puede percibir la gratitud que sientes a todas las personas que han estado presentes durante esa etapa, ya bien sea codo a codo o simplemente trayéndote un café calentito en el momento preciso. Pero también es cierto que, entre toda esa gente que ha estado ahí, hay pocas caras que se dibujan clara e intensamente en mi cabeza. En primerísimo lugar, me gustaría dar las gracias de una manera muy especial a Montse por muchos, muchísimos motivos: por darme cariño y amistad desde el día en que nos conocimos; porque a lo largo de esta década hemos compartido muchísimos momentos alegres, acompañados de risas y carcajadas, pero también los más tristes de mi vida, inundados de lágrimas y angustia; por estar ahí para lo que sea, para todo, y tener siempre tendida su mano amiga; por escucharme una y otra vez, sin cansarse, y aconsejarme sabiamente; por confiar en mí y guiarme, no solo durante el desarrollo de esta tesis, sino también en mi formación y día a día; por su eterna paciencia;… y, sobre todo, por poner en mi vida al “morenocho”, ese pequeño loquito tímido que me comería a besos.
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued H^?(Vv4 O^MI ^H the SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM ^o\. 107 Washington : 1957 No. 3383 THE FROGFISHES OF THE FAMILY ANTENNARIIDAE By Leonard P. Schultz In my attempt to identify fishes for inclusion in the report on "The Fishes of the Marshall and Marianas Islands," I find it impossible to place confidence in the literature describing marine reef fishes of the tropical Indo-Pacific regions unless the genus or the family in which bhey belong has been revised. Ichthyologists or fishery biologists svho have not attempted a revision of a genus of widely ranging marine ishes cannot possibly assess the untrustworthiness of most current faunal lists. To correctly identify as to genus and to species, tropical [ndo-Pacific fishes must be considered on a world-wide basis. Those tew individuals who have attempted revisions of genera have found a disturbing percentage of the scientific names currently applied to be imreliable. Even a serious attempt at revision of a genus may not clarify the nomenclatorial status of more than 95 percent of the species. The doubtfully identified 5 percent results mostly from the inaccessibility to the author of those types of species preserved in the scattered museums of the world. The problems of classification and analysis of species and genera sncountered in one family are the same as found in many other fami- ies that I have studied. In general, there are three such problems. (1) The characters used in distinguishing species or genera in each family must be carefully evaluated.
    [Show full text]
  • Diverse Deep-Sea Anglerfishes Share a Genetically Reduced Luminous
    RESEARCH ARTICLE Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment Lydia J Baker1*, Lindsay L Freed2, Cole G Easson2,3, Jose V Lopez2, Dante´ Fenolio4, Tracey T Sutton2, Spencer V Nyholm5, Tory A Hendry1* 1Department of Microbiology, Cornell University, New York, United States; 2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States; 3Department of Biology, Middle Tennessee State University, Murfreesboro, United States; 4Center for Conservation and Research, San Antonio Zoo, San Antonio, United States; 5Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and *For correspondence: that these bacteria have undergone extreme genome reduction although they are not vertically [email protected] (LJB); transmitted.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
    ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Scientific Name Changed 2018
    Fishes of the Maldives Indian Ocean 2018. Scientific names of Fishes updated by Charlotte Moritz. Rays by Khadeeja Ali, Marine Research Centre, Maldives. Family Page Common Name in book: Scientific Name in 2014 book: Scientific Name Changed 2018: Sharks and Rays 42 Pink Whipray Himantura fai Pateobatis fai 42 Mangrove or White-spotted whipray Himantura granulata Urogymnus granulatus 43 Jenkins Whipray Himantura jenkinsi Pateobatis jenkinsi 44 Blotched Fantail Ray Taeniura meyeni Taeniurops meyeni 45 White-spotted Eagle Ray Aetobatus narinari Aetobatus oscellatus 45 Ornate Eagle Ray Aetobatus vespertilio Aetomylaeus vespertilio Moray Eels 56 Peppered Moray Siderea picta Gymnothorax pictus 56 White-eyed Moray Siderea thyrsoidea Gymnothorax thyrsoideus Anglerfishes 65 Giant Anglerfish Antennarius commersoni Antennarius commerson 66 Spotfin Anglerfish Antennarius nummifer Antennatus nummifer 66 Freckled Anglerfish Antennarius coccineus Antennatus coccineus Lizardfishes 70 Red-marbled Lizardfish Synodus rubromarginatus Synodus rubromarmoratus Squirrelfishes 74 Speckled Squirrelfish Sargocentron punctatissimus Sargocentron punctatissimum Gurnards 85 Flying Gurnard Dactylopus orientalis Dactylopterus orientalis Flatheads 92 Fringe-lip Flathead Thysanophrys otaitensis Sunagocia otaitensis Groupers 101 Small-spotted Grouper Epinephelus caeruleopunctatus Epinephelus coeruleopunctatus Basslets 108 Flame Basslet Pseudanthias ignitis Pseudanthias ignitus Triple Tails 111 Triple Tail Lobotus surinamensis Lobotes surinamensis Emperors 136 Blue-line
    [Show full text]
  • SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9
    ISSN 1025-7497 South Pacific Commission TRADITIONAL Marine Resource Management and Knowledge Number 9 — February 1998 INFORMATION BULLETIN Group Co-ordinator and Bulletin Editor: Kenneth Ruddle, Matsugaoka-cho 11-20, Nishinomiya-shi, Hyogo-ken 662, Japan. [Tel: (81) 798 71 2904; Fax: (81) 798 71 2904 or (81) 798 71 4749; E-mail: [email protected]] Production: Information Section, Marine Resources Division, SPC, B.P. D5, 98848 Noumea Cedex, New Caledonia. [Fax: (687) 263818; E-mail: [email protected]]. Printed with financial assistance from the Government of France. Note from the coordinator The literature on traditional marine resource management and the local knowledge systems underpinning it is growing Inside rapidly for Solomon Islands. We are happy to add to that with a lead article by Simon Foale on West Nggela fish taxonomy. this issue Shankar Aswani, who recently completed his doctorate, is becoming a regular contributor. In this issue we include his What’s in a name? methodological contribution on the use of optimal foraging An analysis of the West Nggela theory. We hope that this might prove of value for fishery man- (Solomon Islands) fish taxonomy agers in the region. The third article is Julie LahnÕs update on the issues of indigenous rights and management strategies fac- by S. Foale p. 3 ing the Great Barrier Reef Marine Park Authority. Allison Perry briefly describes the ÔGlobal survey of marine and estuarine The use of optimal foraging species used for traditional medicines and/or tonic foodsÕ. We theory to assess the fishing would be grateful if you would assist her by providing the strategies of Pacific island information requested in the short questionnaire.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Are You Suprised ?
    CURRICULUM VITA Name: Prof. Dr. Sahar Fahmy Youssef Mehanna Birth date: 15.4.1964 - Port Said, Egypt Occupation: Professor of Fish Population Dynamics and fish stock assessment, National Institute of Oceanography and Fisheries NIOF, P. O. Box 182, Suez, Egypt. E-mail: [email protected] [email protected] Work phone: +2 - 062 - 3360015 Mobile: +201063770701 URL: http://livedna.org/20.257 Education 1997 Ph.D. (The study of biology and population dynamics of Lethrinus mahsena in the Gulf of Suez), Faculty of Science, Zoology Department, Zagazig University. 1993 M.Sc., (Rational exploitation of kuruma shrimp Penaeus japonicus Bate, 1888 in the Gulf of Suez), Faculty of Science, Zoology Department, Zagazig University. 1985 B.Sc., (Excellent) Zoology Department - Faculty of Science, Suez Canal University. Career history March 2020 – November 2020: Supervisor of the NIOF research station for aquaculture January 2018 – Present: Consultant for the National company for aquaculture and fisheries, Defense Ministry November 2017 – April 2018: Director of Red Sea Branch, NIOF March 2015 – October 2015: Director of Suez and Aqaba Gulfs Branch, NIOF December 2014 -March 2015: Head of Fisheries Division, NIOF March 2013- December 2013: Stock Assessment Program advisor in TCP/SNG/3402 Capacity building in fisheries stock assessment in GCC Project, FAO, GCC and Yemen, FAO. 1 August 2013-November 2020: Head of Fish Population Dynamics Lab, NIOF, Egypt. Sep 2011- Sep 2013: Stock assessment and Fisheries management expert in Marine sciences and Fisheries Center, Ministry of Agriculture and Fisheries Wealth, Sultanate of Oman. 2005 – 2011: Head of Fish Population Dynamics Lab, National Institute of Oceanography and Fisheries NIOF, Egypt.
    [Show full text]
  • CARANGIDAE FISHING AREA 51 (W. Indian Ocean) Trachinotus Russeli
    click for previous page CARAN Trachin 12 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: CARANGIDAE FISHING AREA 51 (W. Indian Ocean) Trachinotus russelii Cuvier, 1832 OTHER SCIENTIFIC NAMES STILL IN USE: Trachinotus botla (Shaw, 1803) (= an invalid (nomen dubium) name) VERNACULAR NAMES: FAO : En - Largespotted dart Fr - Pompaneau pierrot Sp - Pámpano pastilla NATIONAL: DISTINCTIVE CHARACTERS: Body elongate to ovate and strongly compressed; dorsal and ventral profiles almost equally convex, snout blunt. Both jaws with bands of small villiform teeth; tongue without teeth; gillrakers (including rudiments) 6 to 9 upper and 11 to 15 lower on first gill arch; 2 separate dorsal fins, the first with 6 short spines, followed by 1 spine and 22 to 24 soft rays; anal fin with 2 detached spines, followed by 1 spine and 19 to 22 soft rays; dorsal fin lobe usually longer than anal fin lobe in specimens larger than about 25 cm fork lenqth; pelvic fin relatively long, its length contained 1.5 to 1.7 times in pectoral fin length in specimens larger than about 25 cm fork length. Lateral line only slightly irregular, weakly convex above pectoral fin, becoming straight posteriorly. No scutes or caudal peduncle grooves. Vertebrae 10+14. Colour: in life, adults bluish-black above, silvery below; sides with 1 to 5 relatively large plumbeous spots (spots absent on fish smaller than about 10 to 13 cm fork length, the number of spots generally increasing with age in a longitudinal row on or near lateral line; in adults, anterior 2 spots larger than eye diameter and at least two- thirds of spot above lateral line.
    [Show full text]