SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9

Total Page:16

File Type:pdf, Size:1020Kb

SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9 ISSN 1025-7497 South Pacific Commission TRADITIONAL Marine Resource Management and Knowledge Number 9 — February 1998 INFORMATION BULLETIN Group Co-ordinator and Bulletin Editor: Kenneth Ruddle, Matsugaoka-cho 11-20, Nishinomiya-shi, Hyogo-ken 662, Japan. [Tel: (81) 798 71 2904; Fax: (81) 798 71 2904 or (81) 798 71 4749; E-mail: [email protected]] Production: Information Section, Marine Resources Division, SPC, B.P. D5, 98848 Noumea Cedex, New Caledonia. [Fax: (687) 263818; E-mail: [email protected]]. Printed with financial assistance from the Government of France. Note from the coordinator The literature on traditional marine resource management and the local knowledge systems underpinning it is growing Inside rapidly for Solomon Islands. We are happy to add to that with a lead article by Simon Foale on West Nggela fish taxonomy. this issue Shankar Aswani, who recently completed his doctorate, is becoming a regular contributor. In this issue we include his What’s in a name? methodological contribution on the use of optimal foraging An analysis of the West Nggela theory. We hope that this might prove of value for fishery man- (Solomon Islands) fish taxonomy agers in the region. The third article is Julie LahnÕs update on the issues of indigenous rights and management strategies fac- by S. Foale p. 3 ing the Great Barrier Reef Marine Park Authority. Allison Perry briefly describes the ÔGlobal survey of marine and estuarine The use of optimal foraging species used for traditional medicines and/or tonic foodsÕ. We theory to assess the fishing would be grateful if you would assist her by providing the strategies of Pacific island information requested in the short questionnaire. Please also artisanal fishers: copy and circulate it among other knowledgeable persons. A methodological review We draw you attention to the newly available software by S. Aswani p. 21 ICONS (International Conservation Networking System). ICONS for Windows software is produced by a team of con- Native title recognition of CMT servation and information professionals supported by the and the implications for the Information Management Group of IUCN Ð The World GBRMPA and future Conservation Union, the International Development Research management of marine areas Center (IDRC) and the Norwegian Agency for Development by J. Lahn p. 26 Cooperation (NORAD). Finally, we have just received information on a World Bank Global survey of marine and call for case studies for an international workshop on commu- nity-based natural resource management (see p. 34). The call is estuarine species used for for practical papers based on actual projects, rather than for traditional medicines and/or academic studies. tonic foods Please note my new e-mail address (above). It would be by A. Perry p. 30 appreciated if contributions and information could be received by e-mail. Useful information in electronic media p. 32 Kenneth Ruddle MARINE RESOURCES DIVISION – INFORMATION SECTION 2 SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9 – February 1998 Map of the Solomon Islands showing West Nggela region Figure 1: Figure SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9 – February 1998 3 What’s in a name? An analysis of the West Nggela (Solomon Islands) fish taxonomy. by Simon Foale 1 Introduction Lobotidae, Gerreidae, Sparidae, Ephippidae, Chaetodontidae, Pomacentridae, Cirhitidae, Accurate knowledge about the behaviour, biol- Polynemidae, Labridae, Opistognathidae, ogy and ecology of organisms comprising marine Trichonotidae, Pinguipedidae, Blenniidae, fisheries is a vital prerequisite for their manage- Gobiidae, Microdesmidae, Zanclidae, Bothidae, ment. Before beginning any study on local knowl- Pleuronectidae, and Soleidae. edge of marine fauna, a working knowledge of The English names of many species of fish vary their local names must be obtained. Moreover, a quite a bit, even within one country such as great deal of local knowledge can often emerge in Australia. For most of the species listed in the very process of obtaining names (Ruddle, Appendix 1, I have used the English names given 1994). A detailed treatment of the local naming by Randall et al. (1990). For species not included in system of West Nggela marine fauna is given in Randall et al. (1990), names from Kailola (1987a, b, this paper. 1991) were used. Methods Results Local names of fish were collected by asking Appendix 1 contains 350 unique Nggela folk people to provide the Nggela names for fishes taxa for cartilaginous and bony fishes, together from photographs in books featuring most of the with the scientific (Linnean) taxa they correspond common Indo-Pacific species (Randall et al., 1990 to and, where available, a brief note describing an and Myers, 1991). Most identifications were cross- aspect of local knowledge about the taxon. checked with at least five people before being Wherever possible, an etymology was provided for included in the list. This could still, however, the Nggela taxon (in many cases, the Nggela dictio- sometimes be an unreliable way of obtaining the nary compiled by Fox, 1955 was used). Similar data correct name (Bulmer, 1969; Diamond, 1989, 1991). are also presented for marine mammals, reptiles, Occasionally the photograph might have been commonly-used invertebrates, and some important of an individual whose colour variation did not plants. The list includes a small number of Nggela quite match that of the population that occurs at taxa that I was unable to identify. Nggela (even though it was still the same species), Some scientific species correspond to more or the colour balance of the photograph might than one folk taxon. In some cases these folk taxa have been a bit unnatural, or the fish was not easy could be regarded as sub-taxa, since they were to recognise for some other reason. Occasionally, usually acknowledged to simply be different people would create names for fishes, based on growth stages of the same Nggela ÔspeciesÕ. The their appearance in photographs, even if the fish most notable example of this is for the small did not occur in the Nggela region. With this in carangid, Selaroides leptolepis (Smooth-tailed treval- mind, I tried to obtain names of living, or freshly- ly), which is most usually referred to as Malaboro, caught specimens whenever possible. but which can also be referred to by four other For some groups of fish this was difficult, or names, depending on its size (see Appendix 1). In impossible. I depended heavily or entirely on pho- other cases, however, usually where species (such tographs for Nggela identifications of species in 22 as many scarids) show strong sexual dimorphism, of the 86 scientific families of cartilaginous and the Nggela taxa are not necessarily regarded as bony fishes listed in Appendix 1. They were: being related. In general, splitting of taxa was Pseudochromidae, Kuhlidae, Priacanthidae, more common for species that were commonly 1. Department of Zoology, The University of Melbourne, Australia. 4 SPC Traditional Marine Resource Management and Knowledge Information Bulletin #9 – February 1998 used, whereas fish that were of relatively little eco- the Nggela fish-naming system is predominantly nomic importance tended to be ÔlumpedÕ together. constructed around the linguistic representation Semantically speaking, the Nggela taxa can be of fish and their environment as they are divided into primary and secondary lexemes observed visually. Hence there must inevitably be (Berlin et al., 1973; Hooper, 1991). The former usu- some correspondence between the Nggela and ally comprise one word, such as Kara (ÔtrevallyÕ), Linnean systems, since the latter is usually based while the latter are typically binomials, such as on morphological criteria, which are often Kara mera (Blue-spot trevally, Caranx (though not always) betrayed by the animalÕs melampygus), comprising a primary, ÔgenericÕ term external appearance. and a descriptive qualifier (mera = blue). In a few Some taxa combine a term connoting cases this descriptive qualifier comprises two behaviour or appearance or habitat with another words, which in most cases can be treated as one term (e.g. Hangguvia ni horara {Rockmover lexeme (e.g. Bagea papala vohe {Scalloped ham- wrasse and various Razorfishes}: Hangguvia = to merhead shark}: Bagea = shark generic; papala = blow off, as a strong wind blows off a roofÑ handle; vohe = paddle; thus: Ôpaddle-handle refers to the mode of feeding of these fishes sharkÕ). However, several names do not fit well {behaviour}; ni horara = of the open sea {habi- with this model (e.g. Kuli tuguru ni tahi, Tauna tat}). A small number of taxa describe the smell na sori, Malole ngongora ruruguÑsee etymolo- or taste of the fish (e.g. Vurusinge {Black-banded gies in Appendix 1). While Nggela primary lex- seaperch}: Vuru = smells {like}; singe = emes sometimes roughly correspond to scientific Convolvulus {a plant}). The second-last category genera, and secondary lexemes to scientific in Table 1 includes names which describe some- species, this is certainly not the rule. Many prima- thing about the ecology of the fish (e.g. ry lexemes correspond directly to scientific Puhuduki {Archerfish}: puhu = to spout, gush; species (e.g. Kepo = Herklotsichthys quadrimacula- duki = a species of ant which the Archerfish tus). However, a larger number of West Nggela preys on by knocking it off mangrove roots with fish taxa correspond to more than one scientific jets of water), or its interaction with certain types species. Mostly these multiple correspondences of fishing gear. The etymologies of 13 taxa did are limited to similar looking fish within one sci- not appear to fit into any of these categories. entific family, but ten West Nggela taxa corre- Overall, most of the etymological categories list- spond to two or more species which belong to dif- ed in Table 1 portray fishes as they are experi- ferent scientific families. enced by fishers, so that local knowledge about Etymologies of Nggela folk taxa are cate- them, as reflected in their names, is constructed gorised in Table 1 according to the type of infor- principally in terms of human interaction with mation they reveal about the animal.
Recommended publications
  • Baseline Study of Metals in Selected Local Market Fishes and Invertebrates from the Western Huon Gulf, PNG
    Baseline Study of Metals in Selected Local Market Fishes and Invertebrates from the Western Huon Gulf, PNG Final Report Prepared for Wafi-Golpu Joint Venture (WGJV) Neira Marine Sciences Consulting (Marscco) December 2020 Baseline Study of Metals in Selected Local Market Fishes and Invertebrates from the Western Huon Gulf, PNG Final Report Prepared for Wafi-Golpu Joint Venture (WGJV) by Neira Marine Sciences Consulting (Marscco) ABN 63 611 453 621 Francis J. Neira, PhD Blackmans Bay, Tasmania Australia [email protected] December 2020 CONTENTS LIST OF TABLES .................................................................................................................................... 4 LIST OF FIGURES .................................................................................................................................. 5 EXECUTIVE SUMMARY ........................................................................................................................ 7 Background.................................................................................................................................. 7 Objectives .................................................................................................................................... 8 Methodology ............................................................................................................................... 8 Key findings ..............................................................................................................................
    [Show full text]
  • Morphology and Histology of the Testicles
    MORPHOLOGY AND HISTOLOGY OF THE TESTICLES OF QUEEN ANGELFISH Holacanthus ciliaris Arquivos de Ciências do Mar (LINNAEUS, 1758) (TELEOSTEI: PERCIFORMES: POMACANTHIDAE) Morfologia e histologia dos testículos do peixe-anjo Holacanthus ciliaris (Linnaeus, 1758) (Teleostei: Perciformes: Pomacanthidae) Mara C. Nottingham1 , José Roberto Feitosa Silva2 , Maria Elisabeth de Araújo1, 3 ABSTRACT Aspects of the morphology and histology of the testicles of Holacanthus ciliaris were studied in this research. Monthly collections of living fish, totaling 39 males, were carried out between December, 2000 and November, 2001 on the coast of Ceará State, Brazil. The total length of the fish varied between 63.4 mm and 334 mm, the standard length between 50.9 mm and 270 mm, and the total weight between 6,70 g and 590 g. The testicles were bilobed and ribbon-like in shape, with firm texture and coloration varying between transparent and amber. In the histological study, male gametes were found in all espermatogenesis stages along the months of the year. Key words: Holacanthus ciliaris, Pomacanthidae, reef fish, reproduction. RESUMO Aspectos da morfologia e histologia de testículos de Holacanthus ciliaris foram estudados nesta pesquisa. Coletas mensais de peixes vivos, totalizando 39 machos, foram realizadas entre os meses de dezembro de 2000 e novembro de 2001 na costa do Estado do Ceará. O comprimento total dos peixes variou entre 63,4 e 334mm, o comprimento padrão entre 50,9 e 270mm e o peso total entre 6,70 e 590g. Os testículos apresentavam-se bilobulados, em forma de fita, com textura firme e coloração variando entre transparente e âmbar. No estudo histológico foram encontrados gametas masculinos em todos os estágios da espermatogênese durante os meses do ano.
    [Show full text]
  • Biodiversity of Shallow Reef Fish Assemblages in Western Australia Using a Rapid Censusing Technique
    Records of the Western Australian Museum 20: 247-270 (2001). Biodiversity of shallow reef fish assemblages in Western Australia using a rapid censusing technique J. Harry Hutchins Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia email: [email protected] Abstract -A rapid assessment methodology was used to provide relative abundance data on selected families of Western Australian fishes. Twenty shallow water reef sites were surveyed covering the coastline between the Recherche Archipelago in the south east and the Kimberley in the north. Three groups of atolls located off the Kimberley coast were also included. Eighteen families that best represent the State's nearshore reef fish fauna were targeted. They are: Serranidae, Caesionidae, Lu~anidae, Haemulidae, Lethrinidae, Mullidae, Pempherididae, Kyphosidae, Girellidae, Scorpididae, Chaetodontidae, Pomacanthidae, Pomacentridae, Cheilodactylidae, Labridae, Odacidae, Acanthuridae, and Monacanthidae. Analysis of the dataset using a hierarchical classification technique indicates that four groups of reef fishes are present: a southwest assemblage, a northwest assemblage, an offshore atolls assemblage, and a Kimberley assemblage. The first assemblage is comprised mainly of temperate species, while the latter three are mostly tropical fishes; these two broader groupings narrowly overlap on the west coast between Kalbarri and the Houtman Abrolhos. Evidence of a wide zone of temperate/tropical overlap-as proposed by some previous studies-is not supported by this analysis, nor is the presence of a prominent subtropical fauna on the west coast. Ecological differences of the four assemblages are explored, as well as the impact by the Leeuwin Current on this arrangement. INTRODUCTION western and southern coasts of the State, but could Western Australia occupies about 23 degrees of only provide a brief comparison with other more latitude (12-35°5) covering a large and varied northern areas.
    [Show full text]
  • POMACANTHIDAE Ángeles POMACANTHIDAE Angels
    POMACANTHIDAE POMACANTHIDAE ángeles angels Todos los pomacantos tienen una espina fuerte en el ángulo All pomacanthids have a strong spine at the angle of the del preopérculo. preopercle. Pomacanthus arcuatus, ángel café – Cuerpo gris, escamas Pomacanthus arcuatus, grey angelfish – Body gray or brown, con borde oscuro; lado interno de las aletas pectoral amarillo. scales dark-edged; inside of pectoral fins yellow. Young black Individuos jóvenes color negro con barras amarillas; margen with yellow bars; caudal-fin margin clear; yellow stripe on de la aleta caudal claro; una franja amarilla en la frente que forehead crosses mouth, ending on chin. Caudal fin truncate in cruza la boca, terminando en el mentón. Aleta caudal truncada adults. Nine dorsal-fin spines. en adultos. Nueve espinas de la aleta dorsal (Evermann & Marsh 1900). Pomacanthus paru, French angelfish – Body black, scales yellow-edged; pectoral fin base yellow. Young black with yel- Pomacanthus paru, ángel negro – Cuerpo negro, escamas con low bars; caudal-fin margin bright yellow; yellow stripe on borde amarillo; base de la aleta pectoral amarillo. Individuos forehead ends at base of upper lip. jóvenes color negro con barras amarillas; margen de la aleta caudal amarillo brillante; una franja amarillo en la frente que Holacanthus tricolor, rock beauty – Body mostly black, fore- termina en la base del labio superior (Burgess 2002, UCR body and tail bright yellow. Young yellow with a large black, 1300-7). blue-ringed, ocellus below soft dorsal fin. Holacanthus tricolor, isabelita tricolor – Cuerpo mayormente Holacanthus ciliaris, queen angelfish – Body deep blue with negro, frente y cola amarillo brillante. Individuos jóvenes ama- an orange spot on each scale; entire caudal fin and pectoral rillo con un ocelo negro grande con un borde azul, debajo de fins yellow; a large black spot on nape outlined in blue; blue la aleta dorsal suave (Evermann & Marsh 1900).
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Field Report Fishing Grounds and Supply Lines in Indonesia Fishery Management Areas 573, 713, and 714 Part 1: Sumbawa
    Field Report Fishing Grounds and Supply Lines in Indonesia Fishery Management Areas 573, 713, and 714 Part 1: Sumbawa May 1, 2012 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International (www.chemonics.com) and People & Nature Consulting International (www.people-nature-consulting.com). Version 0.1 Authors: Dr. J.S. Pet1, Dr. Peter J. Mous2, and Chairul Sasongko3 1People & Nature Consulting International, Bali, Indonesia, [email protected] 2Chemonics International, IMACS office, Jakarta, Indonesia, [email protected] 3Chemonics International, IMACS office, Jakarta, Indonesia, [email protected] TNC contributed to these surveys and reports in the context of its fisheries program through financial contributions from its Indonesia and California programs. Contents 1 Introduction 03 2 Sumbawa Besar 04 3 Santong and other landing sites South Side Teluk Saleh 09 4 Sanggar / Kore 11 5 Jala and Huu 13 6 Rompo 18 7 Sape 22 8 Wera 26 9 Bima 27 10 Opportunities for sustainable supply line development 32 11 The issue of size in development of sustainable supply chains 34 Annex 1: Data gathering events 36 Annex 2: Contact details 37 2 INTRODUCTION This report covers a 10-day field survey to Sumbawa, conducted in December 2011 by consultants from IMACS and PNCI, together with Sumbawa and Bima Fisheries Service (DKP) staff. This survey aims to map fishing grounds, fisheries resources and infrastructure in Fisheries Management Areas in Central Indonesia. The focus for this mapping exercise is on three groups of exported species, the first one being export size and quality demersal fish from fishing grounds between 30 and 200 meter depth.
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]
  • MARKET FISHES of INDONESIA Market Fishes
    MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives.
    [Show full text]
  • Distribution, Diversity and Taxonomy of Marine Angelfishes (Pomacanthidae) of Tamilnadu, Southeast Coast of India
    Vol. 6(2), pp. 20-31, February, 2014 International Journal of Fisheries and DOI: 10.5897/IJFA12.069 ISSN 1991-637X ©2014 Academic Journals Aquaculture http://www.academicjournals.org/IJFA Full Length Research Paper Distribution, diversity and taxonomy of marine angelfishes (Pomacanthidae) of Tamilnadu, Southeast coast of India Mayavan Veeramuthu Rajeswari* and Thangavel Balasubramanian Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, India. Accepted 22 January, 2014 In the present investigation, a total of 5 species belonging to three genera such as Pomacanthus, Centropyge and Apolemichthys were reported from the 10 selected stations of Tamilnadu, south east coast of India. The diversity studies revealed that the species diversity, richness and evenness were comparatively higher at Rameshwaram and Kanniyakumari due to the rocky shore and coral reef ecosystem. Species composition study revealed that the smoke angel (Apolemichthys xanthurus) was found to be dominant group which constituting 57% of total fishes. The results of the present study evidenced that the occurrence and distribution of marine angel fishes were higher in Gulf of Mannar than other region of Tamilnadu. The present findings clearly explained about distribution pattern of marine angel fishes which could be useful for better understanding of the status of its diversity along southeast coast of India and also highlights the need for effective conservation measures of these commercially important marine ornamental fish group. Key words: South east coast of India, distribution, diversity, taxonomy, marine angelfishes, pomacanthidae. INTRODUCTION The marine ornamental fishes are one of the most highly prized of the coral reef fishes which contains 8 popular attractions in worldwide due to their adaptability genera and 82 species worldwide (Debelius et al., 2003; to live in confinement.
    [Show full text]
  • Reproductive Biology of Pigmy Angelfishes of the Genus <I
    BULLETIN OF MARINE SCIENCE. 31(3): 495-513. 1981 REPRODUCTIVE BIOLOGY OF PIGMY ANGELFISHES OF THE GENUS CENTROPYGE (POMACANTHIDAE) J. A. Bauer Jr. and S. E. Bauer ABSTRACT Centropyge are long lived territorial coral reef inhabitants which adapt well to aquaria for extended periods (8+ years). They are well suited for reef and laboratory study of reproductive behavior and may also serve as a model for pomacanthids in general. The spawning behavior of six species of Centropyge. including two Atlantic and four Pacific species, was studied in the laboratory for periods of 4 to 7 years. Extensive coral reef observations were made of three species of Centropyge. Harem groups of the same fishes were observed on consec- utive days on their reef territory. The proposed "Continuous Spawning Strategy" is distinct and different from marine spawning strategies described previously and consists of a well-sustained, stress-free, daily gamete production and results in larval dispersal which is maximal and continuous. Based on reef and tank observations, Celltropyge spawning consists of: (I) a crepuscular spawning ritual, which is (2) a regular d:!qy activity of the harem group and (3) usually results in spawn- ing, but may have other functions as well. (4) Each female spawns a moderate number of eggs every day continuously throughout the year or during a season depending on latitude. (5) Territory has predominantly reproductive significance and is defined by the spawning ritual. (6) Each female spawns only once each day with the harem male. (7) The spawning ritual provides defense from predation. Embryogenesis of Celltropyge is presented.
    [Show full text]
  • Trade in Seahorses and Other Syngnathids in Countries Outside Asia (1998-2001)
    ISSN 1198-6727 Fisheries Centre Research Reports 2011 Volume 19 Number 1 Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) Fisheries Centre, University of British Columbia, Canada Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) 1 Edited by Amanda C.J. Vincent, Brian G. Giles, Christina A. Czembor and Sarah J. Foster Fisheries Centre Research Reports 19(1) 181 pages © published 2011 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 1 Cite as: Vincent, A.C.J., Giles, B.G., Czembor, C.A., and Foster, S.J. (eds). 2011. Trade in seahorses and other syngnathids in countries outside Asia (1998-2001). Fisheries Centre Research Reports 19(1). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. Fisheries Centre Research Reports 19(1) 2011 Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) edited by Amanda C.J. Vincent, Brian G. Giles, Christina A. Czembor and Sarah J. Foster CONTENTS DIRECTOR ’S FOREWORD ......................................................................................................................................... 1 EXECUTIVE SUMMARY ............................................................................................................................................. 2 Introduction ..................................................................................................................................................... 2 Methods ...........................................................................................................................................................
    [Show full text]