Sublimation: a Two-Step Phase Transition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phase-Transition Phenomena in Colloidal Systems with Attractive and Repulsive Particle Interactions Agienus Vrij," Marcel H
Faraday Discuss. Chem. SOC.,1990,90, 31-40 Phase-transition Phenomena in Colloidal Systems with Attractive and Repulsive Particle Interactions Agienus Vrij," Marcel H. G. M. Penders, Piet W. ROUW,Cornelis G. de Kruif, Jan K. G. Dhont, Carla Smits and Henk N. W. Lekkerkerker Van't Hof laboratory, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands We discuss certain aspects of phase transitions in colloidal systems with attractive or repulsive particle interactions. The colloidal systems studied are dispersions of spherical particles consisting of an amorphous silica core, coated with a variety of stabilizing layers, in organic solvents. The interaction may be varied from (steeply) repulsive to (deeply) attractive, by an appropri- ate choice of the stabilizing coating, the temperature and the solvent. In systems with an attractive interaction potential, a separation into two liquid- like phases which differ in concentration is observed. The location of the spinodal associated with this demining process is measured with pulse- induced critical light scattering. If the interaction potential is repulsive, crystallization is observed. The rate of formation of crystallites as a function of the concentration of the colloidal particles is studied by means of time- resolved light scattering. Colloidal systems exhibit phase transitions which are also known for molecular/ atomic systems. In systems consisting of spherical Brownian particles, liquid-liquid phase separation and crystallization may occur. Also gel and glass transitions are found. Moreover, in systems containing rod-like Brownian particles, nematic, smectic and crystalline phases are observed. A major advantage for the experimental study of phase equilibria and phase-separation kinetics in colloidal systems over molecular systems is the length- and time-scales that are involved. -
Physical Model for Vaporization
Physical model for vaporization Jozsef Garai Department of Mechanical and Materials Engineering, Florida International University, University Park, VH 183, Miami, FL 33199 Abstract Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result. 1. Introduction The enthalpy of vaporization is an extremely important physical process with many applications to physics, chemistry, and biology. Thermodynamic defines the enthalpy of vaporization ()∆ v H as the energy that has to be supplied to the system in order to complete the liquid-vapor phase transformation. The energy is absorbed at constant pressure and temperature. The absorbed energy not only increases the internal energy of the system (U) but also used for the external work of the expansion (w). The enthalpy of vaporization is then ∆ v H = ∆ v U + ∆ v w (1) The work of the expansion at vaporization is ∆ vw = P ()VV − VL (2) where p is the pressure, VV is the volume of the vapor, and VL is the volume of the liquid. Several empirical and semi-empirical relationships are known for calculating the enthalpy of vaporization [1-16]. Even though there is no consensus on the exact physics, there is a general agreement that the surface energy must be an important part of the enthalpy of vaporization. The vaporization diminishes the surface energy of the liquid; thus this energy must be supplied to the system. -
Phase Transitions in Quantum Condensed Matter
Diss. ETH No. 15104 Phase Transitions in Quantum Condensed Matter A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH¨ (ETH Zuric¨ h) for the degree of Doctor of Natural Science presented by HANS PETER BUCHLER¨ Dipl. Phys. ETH born December 5, 1973 Swiss citizien accepted on the recommendation of Prof. Dr. J. W. Blatter, examiner Prof. Dr. W. Zwerger, co-examiner PD. Dr. V. B. Geshkenbein, co-examiner 2003 Abstract In this thesis, phase transitions in superconducting metals and ultra-cold atomic gases (Bose-Einstein condensates) are studied. Both systems are examples of quantum condensed matter, where quantum effects operate on a macroscopic level. Their main characteristics are the condensation of a macroscopic number of particles into the same quantum state and their ability to sustain a particle current at a constant velocity without any driving force. Pushing these materials to extreme conditions, such as reducing their dimensionality or enhancing the interactions between the particles, thermal and quantum fluctuations start to play a crucial role and entail a rich phase diagram. It is the subject of this thesis to study some of the most intriguing phase transitions in these systems. Reducing the dimensionality of a superconductor one finds that fluctuations and disorder strongly influence the superconducting transition temperature and eventually drive a superconductor to insulator quantum phase transition. In one-dimensional wires, the fluctuations of Cooper pairs appearing below the mean-field critical temperature Tc0 define a finite resistance via the nucleation of thermally activated phase slips, removing the finite temperature phase tran- sition. Superconductivity possibly survives only at zero temperature. -
The Superconductor-Metal Quantum Phase Transition in Ultra-Narrow Wires
The superconductor-metal quantum phase transition in ultra-narrow wires Adissertationpresented by Adrian Giuseppe Del Maestro to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts May 2008 c 2008 - Adrian Giuseppe Del Maestro ! All rights reserved. Thesis advisor Author Subir Sachdev Adrian Giuseppe Del Maestro The superconductor-metal quantum phase transition in ultra- narrow wires Abstract We present a complete description of a zero temperature phasetransitionbetween superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism originating from a number of possible sources. These include impurities localized to the surface of the wire, a magnetic field orientated parallel to the wire or, disorder in an unconventional superconductor. The order parameter describing pairing is strongly overdamped by its coupling toaneffectivelyinfinite bath of unpaired electrons imagined to reside in the transverse conduction channels of the wire. The dissipative critical theory thus contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex com- ponents of the superconducting order parameter (equal to oneinthephysicalcase). The fluctuation corrections to the electrical and thermal conductivities are deter- mined, and we find that the zero frequency electrical transport has a non-monotonic temperature dependence when moving from the quantum critical to low tempera- ture metallic phase, which may be consistent with recent experimental results on ultra-narrow MoGe wires. Near criticality, the ratio of the thermal to electrical con- ductivity displays a linear temperature dependence and thustheWiedemann-Franz law is obeyed. -
Dry Ice Blasting
Dry Ice Blasting The Dry Ice Blasting method can reduce the overall time spent on sanding, scraping or scrub- bing with solvents, acids and other cleaning agents. With no secondary waste generation there is no need for disposal of hazardous waste. This saves time and money while increasing worker safety. Online Cleaning of Fin Dry Ice Blasting can safely and effectively clean contaminants that plug and foul fin fan heat Fan Heat Exchangers exchangers. Dry Ice Blasting can be performed while the system is online so no costly downtime is required. Cleaning will increase airflow which will lower approach temperatures and increase efficiency. The dry nature of the process will mitigate the potential for harming motors, bearings or instrumentation. Other Applications May The demand to keep the equipment running often leads to deferred cleaning and maintenance, Also Benefit reduced efficiency and in some cases, outages caused by flashover. Dry ice blast cleaning can provide a non-conductive cleaning process that may allow equipment to be cleaned in-place without cool down or disassembly. This includes generators, turbines, stators, rotors, compressors and boilers. Industrial cleaning applications exist in markets as diverse as food & beverage equipment clean-up, pharmaceutical production, aerospace surfaces & components, and foundry core- making machinery. A Leading Supplier of Working with Linde Services offers you product reliability from an industry leader in carbon Carbon Dioxide dioxide applications. This includes: → A focus on safety -
Physics, Chapter 17: the Phases of Matter
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 17: The Phases of Matter Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 17: The Phases of Matter" (1958). Robert Katz Publications. 165. https://digitalcommons.unl.edu/physicskatz/165 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 17 The Phases of Matter 17-1 Phases of a Substance A substance which has a definite chemical composition can exist in one or more phases, such as the vapor phase, the liquid phase, or the solid phase. When two or more such phases are in equilibrium at any given temperature and pressure, there are always surfaces of separation between the two phases. In the solid phase a pure substance generally exhibits a well-defined crystal structure in which the atoms or molecules of the substance are arranged in a repetitive lattice. Many substances are known to exist in several different solid phases at different conditions of temperature and pressure. These solid phases differ in their crystal structure. Thus ice is known to have six different solid phases, while sulphur has four different solid phases. -
Guide to Understanding Condensation
Guide to Understanding Condensation The complete Andersen® Owner-To-Owner™ limited warranty is available at: www.andersenwindows.com. “Andersen” is a registered trademark of Andersen Corporation. All other marks where denoted are marks of Andersen Corporation. © 2007 Andersen Corporation. All rights reserved. 7/07 INTRODUCTION 2 The moisture that suddenly appears in cold weather on the interior We have created this brochure to answer questions you may have or exterior of window and patio door glass can block the view, drip about condensation, indoor humidity and exterior condensation. on the floor or freeze on the glass. It can be an annoying problem. We’ll start with the basics and offer solutions and alternatives While it may seem natural to blame the windows or doors, interior along the way. condensation is really an indication of excess humidity in the home. Exterior condensation, on the other hand, is a form of dew — the Should you run into problems or situations not covered in the glass simply provides a surface on which the moisture can condense. following pages, please contact your Andersen retailer. The important thing to realize is that if excessive humidity is Visit the Andersen website: www.andersenwindows.com causing window condensation, it may also be causing problems elsewhere in your home. Here are some other signs of excess The Andersen customer service toll-free number: 1-888-888-7020. humidity: • A “damp feeling” in the home. • Staining or discoloration of interior surfaces. • Mold or mildew on surfaces or a “musty smell.” • Warped wooden surfaces. • Cracking, peeling or blistering interior or exterior paint. -
Chapter 3 Equations of State
Chapter 3 Equations of State The simplest way to derive the Helmholtz function of a fluid is to directly integrate the equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be applied to either vapour-liquid or supercritical phenomena without any conceptual difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is also possible to determine transitions between these phenomena from the same inputs. All of the physical properties of the fluid except ideal gas are also simultaneously calculated. Many equations of state have been proposed in the literature with either an empirical, semi- empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin (1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996), Wei and Sadus (2000) and Sengers et al. (2000). The van der Waals equation of state (1873) was the first equation to predict vapour-liquid coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) improved the accuracy of the van der Waals equation by proposing a temperature dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed additional modifications of the Redlich-Kwong equation to more accurately predict the vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and Starling (1969) modified the repulsive term of van der Waals equation of state and obtained more accurate expressions for hard sphere systems. Christoforakos and Franck (1986) modified both the attractive and repulsive terms of van der Waals equation of state. Boublik (1981) extended the Carnahan-Starling hard sphere term to obtain an accurate equation for hard convex geometries. -
Chapter 3 Bose-Einstein Condensation of an Ideal
Chapter 3 Bose-Einstein Condensation of An Ideal Gas An ideal gas consisting of non-interacting Bose particles is a ¯ctitious system since every realistic Bose gas shows some level of particle-particle interaction. Nevertheless, such a mathematical model provides the simplest example for the realization of Bose-Einstein condensation. This simple model, ¯rst studied by A. Einstein [1], correctly describes important basic properties of actual non-ideal (interacting) Bose gas. In particular, such basic concepts as BEC critical temperature Tc (or critical particle density nc), condensate fraction N0=N and the dimensionality issue will be obtained. 3.1 The ideal Bose gas in the canonical and grand canonical ensemble Suppose an ideal gas of non-interacting particles with ¯xed particle number N is trapped in a box with a volume V and at equilibrium temperature T . We assume a particle system somehow establishes an equilibrium temperature in spite of the absence of interaction. Such a system can be characterized by the thermodynamic partition function of canonical ensemble X Z = e¡¯ER ; (3.1) R where R stands for a macroscopic state of the gas and is uniquely speci¯ed by the occupa- tion number ni of each single particle state i: fn0; n1; ¢ ¢ ¢ ¢ ¢ ¢g. ¯ = 1=kBT is a temperature parameter. Then, the total energy of a macroscopic state R is given by only the kinetic energy: X ER = "ini; (3.2) i where "i is the eigen-energy of the single particle state i and the occupation number ni satis¯es the normalization condition X N = ni: (3.3) i 1 The probability -
Sounds of a Supersolid A
NEWS & VIEWS RESEARCH hypothesis came from extensive population humans, implying possible mosquito exposure long-distance spread of insecticide-resistant time-series analysis from that earlier study5, to malaria parasites and the potential to spread mosquitoes, worsening an already dire situ- which showed beyond reasonable doubt that infection over great distances. ation, given the current spread of insecticide a mosquito vector species called Anopheles However, the authors failed to detect resistance in mosquito populations. This would coluzzii persists locally in the dry season in parasite infections in their aerially sampled be a matter of great concern because insecticides as-yet-undiscovered places. However, the malaria vectors, a result that they assert is to be are the best means of malaria control currently data were not consistent with this outcome for expected given the small sample size and the low available8. However, long-distance migration other malaria vectors in the study area — the parasite-infection rates typical of populations of could facilitate the desirable spread of mosqui- species Anopheles gambiae and Anopheles ara- malaria vectors. A problem with this argument toes for gene-based methods of malaria-vector biensis — leaving wind-powered long-distance is that the typical infection rates they mention control. One thing is certain, Huestis and col- migration as the only remaining possibility to are based on one specific mosquito body part leagues have permanently transformed our explain the data5. (salivary glands), rather than the unknown but understanding of African malaria vectors and Both modelling6 and genetic studies7 undoubtedly much higher infection rates that what it will take to conquer malaria. -
Current Status of Equation of State in Nuclear Matter and Neutron Stars
Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ??? -
Liquid-Vapor Equilibrium in a Binary System
Liquid-Vapor Equilibria in Binary Systems1 Purpose The purpose of this experiment is to study a binary liquid-vapor equilibrium of chloroform and acetone. Measurements of liquid and vapor compositions will be made by refractometry. The data will be treated according to equilibrium thermodynamic considerations, which are developed in the theory section. Theory Consider a liquid-gas equilibrium involving more than one species. By definition, an ideal solution is one in which the vapor pressure of a particular component is proportional to the mole fraction of that component in the liquid phase over the entire range of mole fractions. Note that no distinction is made between solute and solvent. The proportionality constant is the vapor pressure of the pure material. Empirically it has been found that in very dilute solutions the vapor pressure of solvent (major component) is proportional to the mole fraction X of the solvent. The proportionality constant is the vapor pressure, po, of the pure solvent. This rule is called Raoult's law: o (1) psolvent = p solvent Xsolvent for Xsolvent = 1 For a truly ideal solution, this law should apply over the entire range of compositions. However, as Xsolvent decreases, a point will generally be reached where the vapor pressure no longer follows the ideal relationship. Similarly, if we consider the solute in an ideal solution, then Eq.(1) should be valid. Experimentally, it is generally found that for dilute real solutions the following relationship is obeyed: psolute=K Xsolute for Xsolute<< 1 (2) where K is a constant but not equal to the vapor pressure of pure solute.