Current Status of Equation of State in Nuclear Matter and Neutron Stars

Total Page:16

File Type:pdf, Size:1020Kb

Current Status of Equation of State in Nuclear Matter and Neutron Stars Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ??? (β−equilibrium) + leptons Ground state: Symmetric (SNM) - saturation density n0 0.16 fm-3 np = nn = 1/2 energy per particle E/A (n0) - 16 MeV symmetry energy as E/A(SNM)-E/A(PNM) 28-32 MeV Incompressibility K(n0) 210 – 240 MeV Pressure P(n0) 0 Excited states: Asymmetric matter – n+p+e+µ (in β-equilibrium) density dependence of : - proton fraction yp = np/n - symmetry energy S (coefficient as) - chemical potentials µn, µp, µe, µµ Pure neutron (PNM) - does not saturate (E/A > 0) To construct the energy functional we need nuclear and particle physics models: Expectation value of the total energy: ET=<+φ,( V)φ > T kinetic energy, V total potential energy of the system Φ is a Slater determinant of single particle states φi Theories Relativistic Non-relativistic Potentials Realistic Phenomenological Reid 93 } Local non-rel Skyrme Nijmegen II } Gogny } Argon v18 (A18) Nijmegen I Non-local non-rel SMO } CD Bonn Local rel NL + Realistic Phenomenological bare nucleon (OBE) density dependence Hjorth-Jensen, Phys.Rep,261,125(1995) ~20-60 adjustable parameters 10-15 adjustable parameters Several thousand data points Several hundred data points Free nucleon-nucleon scattering Finite nuclei (g.s.) and properties and properties of deuteron of nuclear matter at saturation Renormalization needed density for use in dense medium ------------ Brueckner-Hartree-Fock Hartree-Fock, Dirac-Hartree, Dirac-Brueckner-Hartree-Fock Dirac-Hartree-Fock etc to Variational methods, etc to calculate selfconsistently calculate G-matrix equilibrium potential energy EOS for SNM and PNM (usually) EOS for SNM, PNM and + inhomogeneous NM Further parameterization needed to obtain inhomogeneous NM ------------ Examples Non-relativistic Hartree method - phenomenological Skyrme potential Vautherin and Brink, PRC 5, 626 (1972) (2) (3) Vv=+∑∑ij,,vij,k ij<<ij<k p2 11 E =<∑∑i ||i >+ <ij |v12 |ij >ASA+∑<ijk ||v123| ijk >S ii22m ,,j6ij,k V12 (v123) parameterized two (three)-body potential Relativistic Dirac-Brueckner method – realistic Bonn potential Li et al., PRC 45, 2782 (1992) 2 2 mm%%+ pi 1 m% Ei=+∑∑<j|(G% z%)|ij−ji>−m ik≤<ffEE%%ii2 i, jk E%j For notation see the above reference G-matrix Equation of State of Akmal et al. PRC 58, 1804 (1998) thought of as the most complete study to date of HDNM Potentials: A18 (two-body): UIX (three-body) static, long range one-pion exchange static, long-range two-pion exchange + + PHENOMENOLOGICAL medium and PHENOMENOLOGICAL medium short range part dependent on 18 range repulsive term two-body operators + Relativistic boost correction to the two body N-N interaction + 2 -γ ρ Ad hoc density dependent term γ2ρ e 3 which provides 25% (~4 MeV) correction to the E/A of symmetric nuclear matter to reach the empirical value 16 MeV For densities <0.1 fm-3 EOS by Lorenz et al., PRL 70,379 (1993) is used. Akmal et al., E/A as a function of baryon number density At saturation density 0.16 fm-3 the expected value of E/A=16 MeV Akmal et al., Sensitivity of density dependence of E/A to the form of a realistic potential Symmetric nuclear matter Pure neutron matter Density dependence of E/A in nuclear matter for phenomenological Skyrme interactions (87 tested) 80 SkO (I) PNM BEM MSk7 (III) 60 SNM 40 SkX (II) 20 Energy per partlicle [MeV] 0 −20 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 n [fm−3] n [fm−3] n [fm−3] 27 33 27 J.R.Stone et al., PRC 68, 034324 (2003) LATTIMER-SWESTY EOS Current standard in supernova modelling Nucl.Phys. A535, 331 (1991) and http://sbast.ess.sunysb.edu/dswesty/lseos.ftm Matter consisting from electrons, positrons, photons, Free nucleons, alpha particles (representing light nuclei) and single species for heavy nuclei. Compressible liquid drop model non-relativistic fermion kinetic energies, schematic two-body density dependent interaction (based on the Skyrme model) schematic model for multi-body interactions FINITE TEMPERATURE Temperature and effective mass: S = 1 , Yp = 0.3 m*/m ↓ T↑ Lattimer-Swesty: Three nuclear forces represented by K = 180, 220 and 375 MeV with m*/m = 1 Temperature is independent from the nuclear force for densities higher than ~0.1 fm-3, i.e for pure nuclear matter Onsi et al., PRC55,3139 (1997) Fully temperature dependent ETFSI with Skyrme interactions RATP (m*/m=0.67), SkSC6 (m*/m=1) Temperature is dependent on the force in the whole region of densities Lattimer-Swesty: Pressure/baryon as a function of ln n: Significant differences in nuclear matter phase in dependence on the nuclear force. Onsi et al: Pressure as a function of n n[fm-3] LS Onsi 0.1 13 16 0.15 16 23 Adiabatic index: ∂ ln P Γ= | ∂ ln n sY, p Very important in hydrodynamic calculations A measure of stiffness of the matter at phase boundaries Reflects nature and treatment of phase changes Examples I. Akmal et al : transition between normal low density matter (LDP) and high density matter with condensed pions (HDP) II. LS: transition from ‘pasta’ phase to pure nuclear matter phase ( proton rich nuclei in neutron vapor + α particles, + e neutron bubbles + α in dense proton rich matter) } III. Onsi et al: transition between droplet and bubble phase transition between bubble and homogeneous matter Adiabatic index as calculated by Akmal et al, PRC 58, 1804 (1998) Discontinuity at n~0.2 fm-3 represents a LDP -> HDP transition B - bag constant for quark admixtures Adiabatic index as a function of ln n (LS) and n (Onsi) for s=1 and Yp=0.3 LS Onsi et al. droplet-bubble bubble ↓ NM ‘pasta’ ↓ NM Note different x and y-axis scales Values of Γ differ from Akmal et al Bound nuclei in e + n gas beyond Wigner-Seitz model Magierski and Heenen, PRC 65, 045804 (2002) Shell effects in inhomogeneous asymmetric nuclear matter lead to a complicated pattern of density dependent phases and phase transitions not taken into account by previous models A STATE-OF-ART TREATMENT OF THE ‘PASTA’ PHASE "Core-Collapse Supernovae at the Threshold" H.-T. Janka, R. Buras, K. Kifonidis, A. Marek and M. Rampp (Proceedings IAU Coll.~192, Valencia, Spain, April 22--26, 2003, Eds. J.M.~Marcaide ad K.W.~Weiler, Springer Verlag) Shen et al, NP A637, 435 (1998) RMF Hillebrant and Wolff, 1985 – Skyrme T-dependent Hartree-Fock Shock radius Electron neutrino luminosity Sensitivity of predicted nuclear matter parameters to details of EOS Search for constraints to narrow down the variety of models. Example of an efficient constraint for a non-relativistic Skyrme potential in Hartree-Fock approximation Density dependence of the symmetry energy 1 n SE()nn==(,Y0)−E(n,Y=) where Y=p pp2 pn or 2 11d E 11/2 EE(,nYpp)==(nY, )+( 2 )(n)(Yp−) 22dYp 2 Bao-An Li, PRL 88, 192701 (2002) SNM ground state at all densities ρ //ρoo⇔ nn nn− δ = np nnnp+ PNM δ = 0 ground symmetric state δ = 1 at high pure neutron densities Density dependence of the symmetry energy is the main criterion for distinction between Skyrme parameterizations Group I Group II Group III 100 50 50 SkO (I) 80 25 25 60 0 0 [MeV] s a 40 SkX (II) MSk7 (III) −25 −25 20 0 −50 −50 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 n [fm−3] n [fm−3] n [fm−3] SkO, SkX, MSk7 J.R.Stone at al., PRC68, 034324 (2003) examples of Skyrme potentials Gravitational mass versus radius for T=0 non-rotating neutron stars calculated using Skyrme EOS based on parameterizations I, II and III 2 SIII(II) * SkM (II) 1.6 SkX(II) Skz4(II) No reasonable neutron stars 1.2 ] are produced by sun Skyrme M [M 0.8 SLy4(I) interactions SkO(I) of group III SkI3(I) 0.4 SkI1(I) 0 8 101214168 10121416 R [km] R[km] Constraint from maximum mass of a neutron star Nice et al., Pulsar+white dwarf binary – Arecibo telescope – timing analysis orbital period 0.26 days –> 1.6 – 2.8 Msolar with 95% confidence If this observation is confirmed, a large number of EOS would be eliminated Structure of HDM would be questioned as the presence of hyperons and quarks is known to lower the maximum mass of a neutron star.
Recommended publications
  • Computing ATOMIC NUCLEI
    UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes.
    [Show full text]
  • Sounds of a Supersolid A
    NEWS & VIEWS RESEARCH hypothesis came from extensive population humans, implying possible mosquito exposure long-distance spread of insecticide-resistant time-series analysis from that earlier study5, to malaria parasites and the potential to spread mosquitoes, worsening an already dire situ- which showed beyond reasonable doubt that infection over great distances. ation, given the current spread of insecticide a mosquito vector species called Anopheles However, the authors failed to detect resistance in mosquito populations. This would coluzzii persists locally in the dry season in parasite infections in their aerially sampled be a matter of great concern because insecticides as-yet-undiscovered places. However, the malaria vectors, a result that they assert is to be are the best means of malaria control currently data were not consistent with this outcome for expected given the small sample size and the low available8. However, long-distance migration other malaria vectors in the study area — the parasite-infection rates typical of populations of could facilitate the desirable spread of mosqui- species Anopheles gambiae and Anopheles ara- malaria vectors. A problem with this argument toes for gene-based methods of malaria-vector biensis — leaving wind-powered long-distance is that the typical infection rates they mention control. One thing is certain, Huestis and col- migration as the only remaining possibility to are based on one specific mosquito body part leagues have permanently transformed our explain the data5. (salivary glands), rather than the unknown but understanding of African malaria vectors and Both modelling6 and genetic studies7 undoubtedly much higher infection rates that what it will take to conquer malaria.
    [Show full text]
  • 1 PROF. CHHANDA SAMANTA, Phd PAPERS in PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, Bonding A
    PROF. CHHANDA SAMANTA, PhD PAPERS IN PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, bonding and charge symmetry breaking in Λ- hypernuclei”, arXiv:1710.08036v2 [nucl-th] (to be published) 2. T. A. Schmitt, C. Samanta, “A-dependence of -bond and charge symmetry energies”, EPJ Web Conf. 182, 03012 (2018) 3. Chhanda Samanta, Superheavy Nuclei to Hypernuclei: A Tribute to Walter Greiner, EPJ Web Conf. 182, 02107 (2018) 4. C. Samanta with X Qiu, L Tang, C Chen, et al., “Direct measurements of the lifetime of medium-heavy hypernuclei”, Nucl. Phys. A973, 116 (2018); arXiv:1212.1133 [nucl-ex] 5. C. Samanta with with S. Mukhopadhyay, D. Atta, K. Imam, D. N. Basu, “Static and rotating hadronic stars mixed with self-interacting fermionic Asymmetric Dark Matter”, The European Physical Journal C.77:440 (2017); arXiv:1612.07093v1 6. C. Samanta with R. Honda, M. Agnello, J. K. Ahn et al, “Missing-mass spectroscopy with 6 − + 6 the Li(π ,K )X reaction to search for ΛH”, Phys. Rev. C 96, 014005 (2017); arXiv:1703.00623v2 [nucl-ex] 7. C. Samanta with T. Gogami, C. Chen, D. Kawama et al., “Spectroscopy of the neutron-rich 7 hypernucleus He from electron scattering”, Phys. Rev. C94, 021302(R) (2016); arXiv:1606.09157 8. C. Samanta with T. Gogami, C. Chen, D. Kawama,et al., ”High Resolution Spectroscopic 10 Study of ΛBe”, Phys. Rev. C93, 034314(2016); arXiv:1511.04801v1[nucl-ex] 9. C. Samanta with L. Tang, C. Chen, T. Gogami et al., “The experiments with the High 12 Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ΛB hypernuclei, Phys.
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Structure of Exotic Nuclei: a Theoretical Review
    Structure of Exotic Nuclei: A Theoretical Review Shan-Gui Zhou∗ CAS Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha, 410081, China E-mail: [email protected] The study of exotic nuclei—nuclei with the ratio of neutron number N to proton number Z de- viating much from that of those found in nature—is at the forefront of nuclear physics research because it can not only reveal novel nuclear properties and thus enrich our knowledge of atomic nuclei, but also help us to understand the origin of chemical elements in the nucleosynthesis. With the development of radioactive ion beam facilities around the world, more and more unstable nu- clei become experimentally accessible. Many exotic nuclear phenomena have been observed or predicted in nuclei far from the β-stability line, such as neutron or proton halos, the shell evo- lution and changes of nuclear magic numbers, the island of inversion, soft-dipole excitations, clustering effects, new radioactivities, giant neutron halos, the shape decoupling between core and valence nucleons in deformed halo nuclei, etc. In this contribution, I will present a review of theoretical study of exotic nuclear structure. I will first introduce characteristic features and new physics connected with exotic nuclear phenomena: the weakly-bound feature, the large-spatial extension in halo nuclei, deformation effects in halo nuclei, the shell evolution, new radioactiv- ities and clustering effects.
    [Show full text]
  • Bose-Einstein Condensation
    Physics monitor The oldest galaxy, as seen by the European Southern Observatory's NTT telescope. The left picture shows the target quasar, with right, the quasar image removed to make the galaxy, situated just to the north-west of the quasar, easier to see. superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several techniques. In both cases, the bosons have been atoms. In Colo­ just 2 arcsec away from the quasar. led to Einstein's prediction. Unlike rado, rubidium-87 was used, whilst at This tiny angular separation corre­ fermions, which obey the Pauli Rice University, the condensate was sponds to a distance 'on the ground' exclusion principle of only one formed from lithium-7. Both teams of 40,000 light-years. resident particle per allowed quantum started with the technique of laser There are strong indications that state, any number of bosons can cooling. This works by pointing finely this galaxy contains all the necessary pack into an identical quantum state. tuned laser beams at the sample nuclei to produce the observed This led Einstein to suggest that such that any atoms moving towards absorption effects. Only hydrogen under certain conditions, bosons a beam are struck by a photon, which and helium were produced in the Big would lose their individual identities, slows them down.
    [Show full text]
  • Solid State Insurrection
    INTRODUCTION WHAT IS SOLID STATE PHYSICS AND WHY DOES IT MATTER? Solid state physics sounds kind of funny. —GREGORY H. WANNIER, 1943 The Superconducting Super Collider (SSC), the largest scientific instrument ever proposed, was also one of the most controversial. The enormous parti- cle accelerator’s beam pipe would have encircled hundreds of square miles of Ellis County, Texas. It was designed to produce evidence for the last few elements of the standard model of particle physics, and many hoped it might generate unexpected discoveries that would lead beyond. Advocates billed the SSC as the logical apotheosis of physical research. Opponents raised their eyebrows at the facility’s astronomical price tag, which stood at $11.8 billion by the time Congress yanked its funding in 1993. Skeptics also objected to the reductionist rhetoric used to justify the project—which suggested that knowledge of the very small was the only knowledge that could be truly fun- damental—and grew exasperated when SSC boosters ascribed technological developments and medical advances to high energy physics that they thought more justly credited to other areas of science. To the chagrin of the SSC’s supporters, many such skeptics were fellow physicists. The most prominent among them was Philip W. Anderson, a No- bel Prize–winning theorist. Anderson had risen to prominence in the new field known as solid state physics after he joined the Bell Telephone Labora- tories in 1949, the ink on his Harvard University PhD still damp. In a House of Representatives committee hearing in July 1991, Anderson, by then at © 2018 University of Pittsburgh Press.
    [Show full text]
  • A Modern View of the Equation of State in Nuclear and Neutron Star Matter
    S S symmetry Article A Modern View of the Equation of State in Nuclear and Neutron Star Matter G. Fiorella Burgio * , Hans-Josef Schulze , Isaac Vidaña and Jin-Biao Wei INFN Sezione di Catania, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] (H.-J.S.); [email protected] (I.V.); [email protected] (J.-B.W.) * Correspondence: fi[email protected] Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur- rently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the +0.10 largest NS mass observed up to now, 2.14−0.09 M for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5 M deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility.
    [Show full text]
  • Nuclear Matter from Chiral Effective Field Theory
    Nuclear matter from chiral effective field theory Kernmaterie basierend auf chiraler effektiver Feldtheorie Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Christian Drischler Tag der Einreichung: 17.10.2017, Tag der Prüfung: 15.11.2017 Darmstadt 2017 — D 17 1. Gutachten: Prof. Ph.D. Achim Schwenk 2. Gutachten: Prof. Dr. Jens Braun Fachbereich Physik Institut für Kernphysik Theoriezentrum Nuclear matter from chiral effective field theory Kernmaterie basierend auf chiraler effektiver Feldtheorie Genehmigte Dissertation von Christian Drischler 1. Gutachten: Prof. Ph.D. Achim Schwenk 2. Gutachten: Prof. Dr. Jens Braun Tag der Einreichung: 17.10.2017 Tag der Prüfung: 15.11.2017 Darmstadt 2017 — D 17 Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-69845 URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6984 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 international https://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fun- damental theory of strong interactions.
    [Show full text]
  • Supersolid State of Matter Nikolai Prokof 'Ev University of Massachusetts - Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2005 Supersolid State of Matter Nikolai Prokof 'ev University of Massachusetts - Amherst, [email protected] Boris Svistunov University of Massachusetts - Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty_pubs Part of the Physical Sciences and Mathematics Commons Recommended Citation Prokof'ev, Nikolai and Svistunov, Boris, "Supersolid State of Matter" (2005). Physics Review Letters. 1175. Retrieved from https://scholarworks.umass.edu/physics_faculty_pubs/1175 This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. On the Supersolid State of Matter Nikolay Prokof’ev and Boris Svistunov Department of Physics, University of Massachusetts, Amherst, MA 01003 and Russian Research Center “Kurchatov Institute”, 123182 Moscow We prove that the necessary condition for a solid to be also a superfluid is to have zero-point vacancies, or interstitial atoms, or both, as an integral part of the ground state. As a consequence, superfluidity is not possible in commensurate solids which break continuous translation symmetry. We discuss recent experiment by Kim and Chan [Nature, 427, 225 (2004)] in the context of this theorem, question its bulk supersolid interpretation, and offer an alternative explanation in terms of superfluid helium interfaces. PACS numbers: 67.40.-w, 67.80.-s, 05.30.-d Recent discovery by Kim and Chan [1, 2] that solid 4He theorem.
    [Show full text]
  • PHYS 6610: Graduate Nuclear and Particle Physics I
    PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2021 II. Phenomena 1. Shapes and Masses of Nuclei Or: Nuclear Phenomeology References: [PRSZR 5.4, 2.3, 3.1/3; HG 6.3/4, (14.5), 16.1; cursorily PRSZR 18, 19] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.1.0 (a) Getting Experimental Information 0 heavy, spinless, composite target =) M E ≈ E me ! 0 !2 0 2 ds Za 2 q E 2 = cos F(~q ) (I.7.3) dW 2 q 2 E lab 2E sin 2 | {z } 1 Mott: spin- 2 on spin-0, me = 0, MA 6= 0 when nuclear recoil negligible: M E ≈ E0 E0 1 A recoil: = 2 0 2 2 2 E E q = (k − k ) ! −~q = −2E (1 − cosq) 1 + M (1 − cosq) A translate q2 () q () E max. mom. transfer: q ! 180◦ min. mom. transfer: q ! 0◦ For E = 800 MeV (MAMI-B), 12C(A = 12): p 1 q −q2 = j~qj Dx = j~qj 180◦ 1500 MeV0 :15 fm 90◦ 1000 MeV0 :2 fm 30◦ 400 MeV0 :5 fm ◦ [PRSZR] 10 130 MeV1 :5 fm PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.1.1 “Typical” Example: 40;48Ca measured over 12 orders 12 orders of magnitude. q -dependence, multiplied by 10, 0:1!! [PRSZR] −1 -dependence [HG 6.3] 40Ca has less slope =) smaller size j~qj fm PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H.
    [Show full text]
  • Chapter 9 Phases of Nuclear Matter
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Chapter 9 Phases of Nuclear Matter As we know, water (H2O) can exist as ice, liquid, or steam. At atmospheric pressure and at temperatures below the 0˚C freezing point, water takes the form of ice. Between 0˚C and 100˚C at atmospheric pressure, water is a liquid. Above the boiling point of 100˚C at atmospheric pressure, water becomes the gas that we call steam. We also know that we can raise the temperature of water by heating it— that is to say by adding energy. However, when water reaches its melting or boiling points, additional heating does not immediately lead to a temperature increase. Instead, we must overcome water's latent heats of fusion (80 kcal/kg, at the melting point) or vaporization (540 kcal/kg, at the boiling point). During the boiling process, as we add more heat more of the liquid water turns into steam. Even though heat is being added, the temperature stays at 100˚C. As long as some liquid water remains, the gas and liquid phases coexist at 100˚C. The temperature cannot rise until all of the liquid is converted to steam. This type of transition between two phases with latent heat and phase coexistence is called a “first order phase transition.” As we raise the pressure, the boiling temperature of water increases until it reaches a critical point at a pressure 218 times atmospheric pressure (22.1 Mpa) and a temperature of 374˚C is reached.
    [Show full text]