Aspects of the Many-Body Problem in Nuclear Physics

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Many-Body Problem in Nuclear Physics Aspects of the Many-Body Problem in Nuclear Physics DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alexander Signatur Dyhdalo, MSc, BSc Graduate Program in Physics The Ohio State University 2018 Dissertation Committee: Prof. Richard Furnstahl, Advisor Prof. Robert Perry Prof. Michael Lisa Prof. Junko Shigemitsu c Copyright by Alexander Signatur Dyhdalo 2018 Abstract Low-energy nuclear physics has seen a renaissance of activity recently with the advent of the nuclear effective field theory (EFT) approach, the power of renormalization group techniques, and advances in the computational cost-effectiveness and sophistication of quan- tum many-body methods. Nevertheless challenges remain in part from ambiguities of the nuclear Hamiltonian via regulator artifacts and the scaling of the many-body methods to heavier systems. Regulator artifacts arise due to a renormalization inconsistency in the nuclear EFT as currently formulated in Weinberg power counting, though their ultimate impact on nuclear observables is unknown at present. This results in a residual cutoff dependence in the EFT to all orders. We undertake an examination of these regulator artifacts using perturba- tive energy calculations of uniform matter as a testbed. Our methodology has found that the choice of regulator determines the shape of the energy phase space and that different regulators weight distinct phase space regions differently. Concerning many-body calculations, at present only phenomenological energy density functionals are able to solve for the full table of nuclides. However these functionals are currently unconnected to QCD and have no existing method for systematic improvement. A technique, the density matrix expansion (DME), is one way to add microscopic chiral physics into these energy functionals. We develop a new formulation of the DME using local coordinate space regulators and allow for explicit Delta isobars in the chiral potentials. The resulting functionals show systematic improvement order-by-order in the chiral expansion and have non-trivial improvements in nuclear binding energy residuals over the previous Skyrme state of the art. ii Furthermore, renormalization group methods have also proved quite successful at tam- ing certain nonperturbative aspects of nuclear potentials. However at present a robust many-body power counting scheme for these softened interactions is lacking. We take ten- tative first steps in this direction by creating quantitative estimates for perturbative energy diagrams in nuclear matter for the particle-particle and hole-hole channel. Our estimates are validated to, in some cases, the few percent level and confirm that nuclear potentials are perturbative in these channels given a certain amount of renormalization group evolution. We also examine the widely used normal-ordered two-body approximation and set rigorous bounds for its validity in the case of a pure three-nucleon contact. Finally, we also implement a new many-body method for calculating nuclear systems. The method, termed reduced density matrix mechanics, originates from quantum chemistry where it has undergone a rebirth in the past few decades. The method parameterizes the many-body system via so-called reduced density matrices and solves the system with an algorithm termed semidefinite programming. We explore this method's formalism and implementation in a testbed system of neutron drops. We rigorously validate the method for the case of a one-body interaction and achieve accurate results for a two-body Minnesota potential. iii The self shines in space through knowing. iv Acknowledgments I would like to thank a few of my friends who made graduate school so much more enjoyable: Michael \Big Mike" Chilcote, Dave \Double D" Dawson, Evan Jasper, Tim McCormick, Greg Smith, and Kevin Wong. Whether chatting over colloquium donuts, playing Dungeons and Dragons, or procrastinating while doing homework late at night, our interactions and conversations have always been thought-provoking and enjoyable. I'd also like to thank my peers on the PRB mezzanine floor, Dennis Bazow and Russell \Rooster" Colburn. Both of you provided great companionship and intellectual stimulation throughout our classes and trials in the first few years of graduate school. Our late nights spent doing quantum field theory and particle physics homework in particular stand out in my mind (we'll get that 1-loop calculation down yet!). The mezzanine was also home to my research group and the associated colorful characters who have passed through it: Ryan Caulfield, Jordan Melendez, Sushant More, Sarah Wesolowski, Matthias Heinz, Heiko Hergert, Sebastian Koenig, along with my officemate Chris Plumberg. If anything is worthy of a divine reward, it would be your collective patience in enduring my ceaseless questions, tangents, and presentations. The collective antics and great times we've had together are too lengthy to recount here but a few highlights are: celebrating Heiko's birthday in Santa Fe and going hiking the next day, leaving Columbus at 5 AM to catch an early flight to a DNP conference, and exploring the various cities we've been so lucky to visit (Santa Fe, Vancouver, Pittsburgh, and Chicago). I'd also particularly like to acknowledge the housemates I've had for the past 4 years: Thuc Mai, Steve \The Asian Sensation" Tjung, Matt Sheffield, Tim Gorman, and honorary housemate Stephen \Beard" Hageman. I cherish all the times we've spent together exploring v Columbus, brewing beer, relaxing on the deck, traveling places (New York, Mammoth Cave, DC), and going camping. All you guys are so special to me and a person couldn't ask for a greater group of friends. Graduate school would have been far poorer without all of you coming along for the ride. I'd also like to single out for special mention some of the teachers who were a critical part of molding me into my present self. In particular I'd like to mention Joanne Roschmann, my English & Humanities teacher from middle school, and Preston Hayes, my chemistry teacher from high school. Both of them impressed on me the virtue of critical thinking and pursuing a life of the mind. Without their formative guidance, I would not be who I am today. My advisor Dick Furnstahl also deserves special mention. I've been continually aston- ished at his wealth of knowledge (both within physics and outside it), sharp mind, patience with students, intellectual stamina, positive attitude, and passion for science. He is an exemplary scientist who has earned every superlative uttered of him. I would be remiss if I also didn't mention the support given to me by my girlfriend Richelle Romanchik. Her encouragement, understanding, and belief in me carried me through on some difficult days. She has enriched my life immeasurably and we've both grown so much in the last two years. I look forward to our next adventure together wher- ever that may be! Also, I would not be where I am today without the foundational support and motiva- tion given to me by my parents, Nestor Dyhdalo and Diane Signatur. They have always emphasized the transformative power of education though they were likely surprised when I said I wanted to go back to graduate school to pursue my PhD in physics. However they always encouraged me to follow my passion and were incredibly supportive. Their sacrifices and diligence allowed me to become the person I am today, something for which I will be forever grateful. Finally, I'd like to mention my sister who I love so much. I made it Kate! vi Vita September 17, 1987 . Born|Evanston, IL May, 2010 . BSc, University of Illinois Urbana- Champaign December, 2014 . MSc, The Ohio State University Publications R. Navarro Prez, N. Schunck, A. Dyhdalo, R. J. Furnstahl, S. K. Bogner , (2018) [in press] A. Dyhdalo, S. K. Bogner, and R. J. Furnstahl , Phys. Rev. C 96, 054005 (2017) A. Dyhdalo, S. K. Bogner, and R. J. Furnstahl , Phys. Rev. C 95, 054314 (2017) A. Dyhdalo, R. J. Furnstahl, K. Hebeler, and I. Tews , Phys. Rev. C 94, 034001 (2016) Fields of Study Major Field: Physics vii Table of Contents Page Abstract........................................... ii Dedication......................................... iv Acknowledgments.....................................v Vita............................................. vii List of Figures ...................................... xii List of Tables ....................................... xxi 1 Introduction ..................................... 1 1.1 Overview and Brief History........................... 1 1.2 QCD........................................ 4 1.2.1 Chiral Symmetry............................. 7 1.2.2 Chiral Symmetry Breaking ....................... 8 1.3 Effective Theories of QCD............................ 10 1.3.1 Chiral Perturbation Theory....................... 11 1.3.2 Chiral Effective Field Theory...................... 14 1.3.3 The NN Potential............................ 18 1.3.4 Similarity Renormalization Group ................... 21 1.4 Many-Body Problem............................... 25 1.4.1 Liquid Drop Model and Nuclear Matter................ 30 1.4.2 Hartree-Fock ............................... 35 1.4.3 Density Functional Theory ....................... 37 1.4.4 Reference States ............................. 45 1.5 Thesis Overview ................................. 46 Chapters 2 Regulator Artifacts in Uniform Matter ................................... 53 2.1 Motivation and Overview ...........................
Recommended publications
  • 01 Freer.Pdf
    John Henry Poynting First Prof Physics Birmingham 1880-1914 Rudolf Peierls 1907-1995 Birmingham 1937+ (holes in semiconductors) Marcus Laurence Elwin Oliphant 1901-2000 Birmingham 1937-1950 Otto Frisch (1904-1979) Bham 1939+ co-discover of 2H, 3H and 3He Role in first demonstration of nuclear fusion Got plans from Lawrence for Birmingham’s cyclotron John Bell 1928-1990 CPT 1951 Birmingham Luders-Pauli Thm Freeman-Dyson Tony Skyrme (1922-1987) Birmingham, 1949-51 Why are light nuclei so important – Understanding cutting edge theory ? [Otsuka et al., PRL 95 (05) 232502] Tensor correlations [Otsuka et al., PRL 97 (06) 162501] Neutron – proton interaction - - - + + + + - 8Be Ab initio type approaches (Greens Function Monte Carlo) 13 11 + 9 4 7 Ex [MeV] [MeV] Ex Ex 5 3 2+ 1 + -1 0 -1 4 9 14 19 24 Pieper and J(J+1) Wiringa, ANL 9 Ab initio no-core solutions for nuclear structure: Be P. Maris, C. Cockrell, M. Caprio and J.P. Vary Total density Proton - Neutron density Shows that one neutron provides a “ring ” cloud around two alpha clusters binding them together Chase Cockrell, ISU PhD student 12 C Chiral EFT on the lattice 32 S 24 Mg 9Be 9B PHYSICAL REVIEW C 86 , 057306 (2012), PHYSICAL REVIEW C 86 , 014312 (2012) 10 Be 12 C 10 C Characterization of 10 Be * Gas inlet LAMP array Window (2.5 um mylar) LAMP 6He LEDA LAMP LEDA Collimator M. Freer, et al. PRL 2006 Test of method- measure 10.36 MeV 4 + resonance In 16 O ( 12 C+ α) LAMP LEDA LAMP LEDA Resonances in 16 O E( 12 C)=16 MeV Singles Coincidence 10 10 4He Energy Energy (MeV) (MeV) 12 C 0 0 8 24 8 24 Angle Angle Gas pressure = 100 Torr LAMP LEDA LAMP 4 Energy ( 12 C) LEDA θcm ( He) 180 0 Energy ( 4He) 12 180 θcm ( C) Resonance analysis Counts 6000 - =121 mm detector 2000 - (E, θw) ddet window Distance/2+20 (mm) θw θlab dreaction 2 |P 4(cos( θcm )| θcm 6He+ 4He at 7.5 MeV – 7Li+ 7Li the 10.15 MeV state in 10 Be N.
    [Show full text]
  • Computing ATOMIC NUCLEI
    UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes.
    [Show full text]
  • The Skyrme Model Fundamentals Methods Applications
    springer.com Physics : Elementary Particles, Quantum Field Theory Makhankov, V.G., Rybakov, Y.P., Sanyuk, V.I. The Skyrme Model Fundamentals Methods Applications The December 1988 issue of the International Journal of Modern Physics A is dedicated to the memory of Tony Hilton Royle Skyrme. It contains an informative account of his life by Dalitz and Aitchison's reconstruction of a talk by Skyrme on the origin of the Skyrme model. From these pages, we learn that Tony Skyrme was born in England in December 1922. He grew up in that country during a period of increasing economic and political turbulence in Europe and elsewhere. In 1943, after Cambridge, he joined the British war effort in making the atomic bomb. He was associated with military projects throughout the war years and began his career as an academic theoretical physicist only in 1946. During 1946-61, he was associated with Cambridge, Birmingham and Harwell and was engaged in wide-ranging investigations in nuclear physics. It was this research which eventually culminated in his studies of nonlinear field theories and his remarkable proposals for the description of the nucleon as a chiral soliton. In his talk, Skyrme described the reasons behind his extraordinary sug• gestions, which Springer when first made must have seemed bizarre. According to him, ideas of this sort go back many Softcover reprint of the decades and occur in the work of Sir William Thomson, who later became Lord Kelvin. Skyrme 1st original 1st ed. 1993, XVIII, edition had heard of Kelvin in his youth. 265 p. Order online at springer.com/booksellers Springer Nature Customer Service Center LLC Printed book 233 Spring Street Softcover New York, NY 10013 Printed book USA Softcover T: +1-800-SPRINGER NATURE ISBN 978-3-642-84672-4 (777-4643) or 212-460-1500 [email protected] $ 109,99 Available Discount group Professional Books (2) Product category Monograph Series Springer Series in Nuclear and Particle Physics Other renditions Softcover ISBN 978-3-642-84671-7 Prices and other details are subject to change without notice.
    [Show full text]
  • 1 PROF. CHHANDA SAMANTA, Phd PAPERS in PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, Bonding A
    PROF. CHHANDA SAMANTA, PhD PAPERS IN PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, bonding and charge symmetry breaking in Λ- hypernuclei”, arXiv:1710.08036v2 [nucl-th] (to be published) 2. T. A. Schmitt, C. Samanta, “A-dependence of -bond and charge symmetry energies”, EPJ Web Conf. 182, 03012 (2018) 3. Chhanda Samanta, Superheavy Nuclei to Hypernuclei: A Tribute to Walter Greiner, EPJ Web Conf. 182, 02107 (2018) 4. C. Samanta with X Qiu, L Tang, C Chen, et al., “Direct measurements of the lifetime of medium-heavy hypernuclei”, Nucl. Phys. A973, 116 (2018); arXiv:1212.1133 [nucl-ex] 5. C. Samanta with with S. Mukhopadhyay, D. Atta, K. Imam, D. N. Basu, “Static and rotating hadronic stars mixed with self-interacting fermionic Asymmetric Dark Matter”, The European Physical Journal C.77:440 (2017); arXiv:1612.07093v1 6. C. Samanta with R. Honda, M. Agnello, J. K. Ahn et al, “Missing-mass spectroscopy with 6 − + 6 the Li(π ,K )X reaction to search for ΛH”, Phys. Rev. C 96, 014005 (2017); arXiv:1703.00623v2 [nucl-ex] 7. C. Samanta with T. Gogami, C. Chen, D. Kawama et al., “Spectroscopy of the neutron-rich 7 hypernucleus He from electron scattering”, Phys. Rev. C94, 021302(R) (2016); arXiv:1606.09157 8. C. Samanta with T. Gogami, C. Chen, D. Kawama,et al., ”High Resolution Spectroscopic 10 Study of ΛBe”, Phys. Rev. C93, 034314(2016); arXiv:1511.04801v1[nucl-ex] 9. C. Samanta with L. Tang, C. Chen, T. Gogami et al., “The experiments with the High 12 Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ΛB hypernuclei, Phys.
    [Show full text]
  • Wolfhart Zimmermann: Life and Work
    JID:NUPHB AID:14268 /FLA [m1+; v1.280; Prn:28/02/2018; 9:46] P.1(1-11) Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B ••• (••••) •••–••• www.elsevier.com/locate/nuclphysb Wolfhart Zimmermann: Life and work Klaus Sibold Institut für Theoretische Physik, Universiät Leipzig, Postfach 100920, D-04009 Leipzig, Germany Received 19 December 2017; received in revised form 17 January 2018; accepted 22 January 2018 Editor: Hubert Saleur Abstract In this report, I briefly describe the life and work of Wolfhart Zimmermann. The highlights of his scien- tific achievements are sketched and some considerations are devoted to the man behind the scientist. The report is understood as being very personal: at various instances I shall illustrate facets of work and person by anecdotes. © 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction The present report is based on a colloquium talk given at the end of a memorial symposium to honour Wolfhart Zimmermann: Max Planck Institute for Physics, Munich (May 22–23, 2017) I borrowed freely from the following obituaries: Physik-Journal 15 (2016) Nr. 12 S.50 W. Hollik, E. Seiler, K. Sibold Nucl. Phys. B193 (2016) 877–878 W. Hollik, E. Seiler, K. Sibold IAMP News Bulletin, Jan. 2017 p. 26–30 M. Salmhofer, E. Seiler, K. Sibold 2. The beginning Wolfhart Zimmermann was born on February 17, 1928 in Freiburg im Breisgau (Germany) as the son of a medical doctor. He had an older sister with whom he liked to play theater and, when E-mail address: [email protected].
    [Show full text]
  • Current Status of Equation of State in Nuclear Matter and Neutron Stars
    Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ???
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Structure of Exotic Nuclei: a Theoretical Review
    Structure of Exotic Nuclei: A Theoretical Review Shan-Gui Zhou∗ CAS Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha, 410081, China E-mail: [email protected] The study of exotic nuclei—nuclei with the ratio of neutron number N to proton number Z de- viating much from that of those found in nature—is at the forefront of nuclear physics research because it can not only reveal novel nuclear properties and thus enrich our knowledge of atomic nuclei, but also help us to understand the origin of chemical elements in the nucleosynthesis. With the development of radioactive ion beam facilities around the world, more and more unstable nu- clei become experimentally accessible. Many exotic nuclear phenomena have been observed or predicted in nuclei far from the β-stability line, such as neutron or proton halos, the shell evo- lution and changes of nuclear magic numbers, the island of inversion, soft-dipole excitations, clustering effects, new radioactivities, giant neutron halos, the shape decoupling between core and valence nucleons in deformed halo nuclei, etc. In this contribution, I will present a review of theoretical study of exotic nuclear structure. I will first introduce characteristic features and new physics connected with exotic nuclear phenomena: the weakly-bound feature, the large-spatial extension in halo nuclei, deformation effects in halo nuclei, the shell evolution, new radioactiv- ities and clustering effects.
    [Show full text]
  • Topology in Physics-A Perspective
    SU-4228-533 March 1993 TOPOLOGY IN PHYSICS - A PERSPECTIVE A.P. Balachandran Department of Physics, Syracuse University, Syracuse, NY 13244-1130 ABSTRACT This article, written in honour of Fritz Rohrlich, briefly surveys the role of topology in physics. arXiv:hep-th/9303177v1 31 Mar 1993 When I joined Syracuse University as a junior faculty member in September, 1964, Fritz Rohrlich was already there as a senior theoretician in the quantum field theory group. He was a very well-known physicist by that time, having made fundamental contributions to quantum field theory, and written his splendid book with Jauch. My generation of physicists grew up with Jauch and Rohrlich, and I was also familiar with Fritz’s research. It was therefore with a certain awe and a great deal of respect that I first made his acquaintance. Many years have passed since this first encounter. Our interests too have gradually evolved and changed in this intervening time. Starting from the late seventies or there- abouts, particle physicists have witnessed an increasing intrusion of topological ideas into their discipline. Our group at Syracuse has responded to this development by getting involved in soliton and monopole physics and in investigations on the role of topology in quantum physics. Meanwhile, especially during the last decade, there has been a per- ceptible shift in the direction of Fritz’s research to foundations and history of quantum physics. Later I will argue that topology affects the nature of wave functions (or more accurately of wave functions in the domains of observables) and has a profound meaning for the fundamentals of quantum theory.
    [Show full text]
  • A Modern View of the Equation of State in Nuclear and Neutron Star Matter
    S S symmetry Article A Modern View of the Equation of State in Nuclear and Neutron Star Matter G. Fiorella Burgio * , Hans-Josef Schulze , Isaac Vidaña and Jin-Biao Wei INFN Sezione di Catania, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] (H.-J.S.); [email protected] (I.V.); [email protected] (J.-B.W.) * Correspondence: fi[email protected] Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur- rently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the +0.10 largest NS mass observed up to now, 2.14−0.09 M for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5 M deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility.
    [Show full text]
  • Nuclear Matter from Chiral Effective Field Theory
    Nuclear matter from chiral effective field theory Kernmaterie basierend auf chiraler effektiver Feldtheorie Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Christian Drischler Tag der Einreichung: 17.10.2017, Tag der Prüfung: 15.11.2017 Darmstadt 2017 — D 17 1. Gutachten: Prof. Ph.D. Achim Schwenk 2. Gutachten: Prof. Dr. Jens Braun Fachbereich Physik Institut für Kernphysik Theoriezentrum Nuclear matter from chiral effective field theory Kernmaterie basierend auf chiraler effektiver Feldtheorie Genehmigte Dissertation von Christian Drischler 1. Gutachten: Prof. Ph.D. Achim Schwenk 2. Gutachten: Prof. Dr. Jens Braun Tag der Einreichung: 17.10.2017 Tag der Prüfung: 15.11.2017 Darmstadt 2017 — D 17 Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-69845 URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6984 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 international https://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fun- damental theory of strong interactions.
    [Show full text]
  • Quark•Gluon Plasma
    news & views GRAPHENE The running of the constants To first approximation, the dispersion relation around the Fermi energy of single-layer graphene is linear, making its charge carriers behave like massless relativistic subatomic particles. More careful inspection of its low-energy band structure suggests the picture is more complex, extending the analogy even further. Maria A. H. Vozmediano he best times in Physics are those when a α–1 b physicists of different expertise meet around a problem of common interest. 3 T ) And this is now happening in the case of 120 3 –1 α–1 2 graphene. From the early days of the isolation QED ms of single sheets of graphene, the relativistic 6 100 (10 1 F nature of its charge carriers was clear . v These carriers, known as Dirac fermions, are 1 described by equations similar to those that 80 10 E (meV) 100 describe the quantum electrodynamic (QED) interactions of relativistic charged particles. 60 2 U(1) ѵ ~ α–1 A meticulous study performed by Elias and F G 2 co-workers of the electronic structure of 40 SU(2) graphene shows that at very low energies reaching a few meV of graphene’s Dirac point, 20 where its cone-like valence and conduction SU(3) bands touch, the shape of the conduction and valence bands diverge from a simple linear 1 0 2 4 6 8 10 12 14 16 1 2 relation. The result implies that the analogy log E (Gev) log E (10–12 Gev) between graphene and high-energy physics 10 10 is deeper than first expected.
    [Show full text]