John Henry Poynting First Prof 1880-1914 1907-1995 Birmingham 1937+ (holes in semiconductors)

Marcus Laurence Elwin Oliphant 1901-2000 Birmingham 1937-1950 Otto Frisch (1904-1979) Bham 1939+ co-discover of 2H, 3H and 3He Role in first demonstration of nuclear fusion Got plans from Lawrence for Birmingham’s cyclotron John Bell 1928-1990 CPT 1951 Birmingham Luders-Pauli Thm

Freeman-Dyson Tony Skyrme (1922-1987) Birmingham, 1949-51 Why are light nuclei so important – Understanding cutting edge theory ?

[Otsuka et al., PRL 95 (05) 232502] Tensor correlations [Otsuka et al., PRL 97 (06) 162501]

Neutron – interaction

- - - + + + + -

8Be Ab initio type approaches (Greens Function Monte Carlo)

13

11 + 9 4

7

Ex [MeV] [MeV] Ex Ex 5

3 2+

1 + -1 0 -1 4 9 14 19 24 Pieper and J(J+1) Wiringa, ANL 9 Ab initio no-core solutions for : Be P. Maris, C. Cockrell, M. Caprio and J.P. Vary

Total density Proton - density

Shows that one neutron provides a “ring ” cloud around two alpha clusters binding them together Chase Cockrell, ISU PhD student 12 C Chiral EFT on the lattice 32 S

24 Mg 9Be 9B PHYSICAL REVIEW C 86 , 057306 (2012), PHYSICAL REVIEW C 86 , 014312 (2012) 10 Be 12 C 10 C Characterization of 10 Be *

Gas inlet LAMP array Window (2.5 um mylar)

LAMP 6He

LEDA

LAMP LEDA

Collimator

M. Freer, et al. PRL 2006 Test of method- measure 10.36 MeV 4 + resonance In 16 O ( 12 C+ α) LAMP

LEDA

LAMP LEDA Resonances in 16 O E( 12 C)=16 MeV

Singles Coincidence

10 10 4He Energy Energy (MeV) (MeV)

12 C 0 0 8 24 8 24 Angle Angle Gas pressure = 100 Torr

LAMP

LEDA LAMP 4 Energy ( 12 C) LEDA θcm ( He)

180

0 Energy ( 4He) 12 180 θcm ( C) Resonance analysis

Counts 6000 - =121 mm detector

2000 - (E, θw)

ddet window Distance/2+20 (mm)

θw θlab

dreaction 2 |P 4(cos( θcm )|

θcm

6He+ 4He at 7.5 MeV – 7Li+ 7Li the 10.15 MeV state in 10 Be

N. Curtis et al FSU 6Li+ 7Li

E (MeV) E (MeV) Singles Coincidences

5- 5-

8 θ 8 w 24 θw 24 Singles Coincidence

(a)

0

Dist (mm)

22 0

0 theta_cm 160

Simulations Include elastic scattering from potentials derived from 4He+ 6Li Elastic scattering 4+

2+ 0+

AMD calculations Kanada En’yo 10 Be 12 C 10 C 14 C molecular states - from dimers to polymers

prolate

oblate

von Oertzen and Milin Resonant Scattering of 10 Be+ 4He at ORNL Beam energies: 25, 27, 29, 32, 34, 38, 40, 42, 44 and 46 MeV (I=10 6 pps) Pressure: 0.8 bar Helium-4 5 um Havar absorber (E-loss = ~5 MeV) Ex( 14 C) = 14-25 MeV

Zero degree telescope Path of 10 Be ions

window

Array of wedge detectors

Birmingham, Surrey, LPC, Tennessee Rutgers 20.6 18.7 19.6

Counts(Normalised) 240 keV 17.8 17.2 21.5 16.1 15.4

Excitation Energy [MeV] Oak Ridge Resolution ~ 50 keV 5-

3-

3- - 1- 5 6+

E [MeV]

Ecm [MeV]

Angle J(J+1) 11 C and 11 B a phase transition? 7Be+α → 11 C → 7Be+α LLN, ORNL

7Be+α → 11 C → 7Be+α

H. Yamaguchi, et al. Phys. Rev. C 83 034306 (2011). 7Li+α → 11 B → 7Li+α 11 11 sd B C

1p 1/2 1p 3/2

1s 1/2 12 C l=1 5-

l=1 4+ l=1 4+ 4-

+ 2 3- K + J 0 2+

0+ 12 C

4-

R. Bijker and F. Iachello, Phys. Rev. C 61, 067305 (2000). 35 deg

iThemba, ZA 11 B( 3He,d) 12 C K600 30 deg spectrometer Proton Inelastic Scattering iThemba and Yale 12 C(p,p’) 25 MeV

66 MeV K600 spectrometer iThemba Labs, SA 23 keV resolution

Moshe Gai et al. Phys. Rev. C Analysis of the 12 C( α, α’) data - RCNP

Thanks: Itoh-san Kawabata-san 12 12 1010 2 C(α,C(α’)α ,α ’) Eα= 388E α =MeV 388 MeV β = 0 1010 β = −1.9 (mb/str) (mb/str) Ω Ω 11 /d /d σ σ d d -1-1 β = 0 1010 β = − 1.9

00 5 5 10 10 15 15 20 25 20 30 θcm θ(deg)cm (deg) Background analysis Optical TPC measurements; Moshe Gai et al.

Why are light nuclei so important – Understanding cutting edge theory ?

ENSAR2 Networking activities Will help to catalyse the mutual coordination and the pooling of resources among the consortium of participants, with the aim of fostering a culture of cooperation between them. This should serve, e.g., to generate critical mass by coordinating research into new instrumentation, new methods, concepts and technologies. Networking activities will also aim at spreading good practice, promoting common protocols and interoperability, encouraging complementarity and, where appropriate, developing and maintaining common databases and stimulating the creation of distributed or virtual facilities. Activities in this context will include, where relevant, publicity concerning new opportunities for access, dissemination of knowledge, training courses for potential users and foresight studies. They will also cover the coordinated implementation and management of the whole activity. The internal consortium management will, where appropriate, monitor the impact of the various activities (e.g. through statistics on transnational users and related projects).

Deadline 15 April 2013