11 May 2012 −− Fritz Joseph Ursell. 28 April 1923
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
01 Freer.Pdf
John Henry Poynting First Prof Physics Birmingham 1880-1914 Rudolf Peierls 1907-1995 Birmingham 1937+ (holes in semiconductors) Marcus Laurence Elwin Oliphant 1901-2000 Birmingham 1937-1950 Otto Frisch (1904-1979) Bham 1939+ co-discover of 2H, 3H and 3He Role in first demonstration of nuclear fusion Got plans from Lawrence for Birmingham’s cyclotron John Bell 1928-1990 CPT 1951 Birmingham Luders-Pauli Thm Freeman-Dyson Tony Skyrme (1922-1987) Birmingham, 1949-51 Why are light nuclei so important – Understanding cutting edge theory ? [Otsuka et al., PRL 95 (05) 232502] Tensor correlations [Otsuka et al., PRL 97 (06) 162501] Neutron – proton interaction - - - + + + + - 8Be Ab initio type approaches (Greens Function Monte Carlo) 13 11 + 9 4 7 Ex [MeV] [MeV] Ex Ex 5 3 2+ 1 + -1 0 -1 4 9 14 19 24 Pieper and J(J+1) Wiringa, ANL 9 Ab initio no-core solutions for nuclear structure: Be P. Maris, C. Cockrell, M. Caprio and J.P. Vary Total density Proton - Neutron density Shows that one neutron provides a “ring ” cloud around two alpha clusters binding them together Chase Cockrell, ISU PhD student 12 C Chiral EFT on the lattice 32 S 24 Mg 9Be 9B PHYSICAL REVIEW C 86 , 057306 (2012), PHYSICAL REVIEW C 86 , 014312 (2012) 10 Be 12 C 10 C Characterization of 10 Be * Gas inlet LAMP array Window (2.5 um mylar) LAMP 6He LEDA LAMP LEDA Collimator M. Freer, et al. PRL 2006 Test of method- measure 10.36 MeV 4 + resonance In 16 O ( 12 C+ α) LAMP LEDA LAMP LEDA Resonances in 16 O E( 12 C)=16 MeV Singles Coincidence 10 10 4He Energy Energy (MeV) (MeV) 12 C 0 0 8 24 8 24 Angle Angle Gas pressure = 100 Torr LAMP LEDA LAMP 4 Energy ( 12 C) LEDA θcm ( He) 180 0 Energy ( 4He) 12 180 θcm ( C) Resonance analysis Counts 6000 - =121 mm detector 2000 - (E, θw) ddet window Distance/2+20 (mm) θw θlab dreaction 2 |P 4(cos( θcm )| θcm 6He+ 4He at 7.5 MeV – 7Li+ 7Li the 10.15 MeV state in 10 Be N. -
The Skyrme Model Fundamentals Methods Applications
springer.com Physics : Elementary Particles, Quantum Field Theory Makhankov, V.G., Rybakov, Y.P., Sanyuk, V.I. The Skyrme Model Fundamentals Methods Applications The December 1988 issue of the International Journal of Modern Physics A is dedicated to the memory of Tony Hilton Royle Skyrme. It contains an informative account of his life by Dalitz and Aitchison's reconstruction of a talk by Skyrme on the origin of the Skyrme model. From these pages, we learn that Tony Skyrme was born in England in December 1922. He grew up in that country during a period of increasing economic and political turbulence in Europe and elsewhere. In 1943, after Cambridge, he joined the British war effort in making the atomic bomb. He was associated with military projects throughout the war years and began his career as an academic theoretical physicist only in 1946. During 1946-61, he was associated with Cambridge, Birmingham and Harwell and was engaged in wide-ranging investigations in nuclear physics. It was this research which eventually culminated in his studies of nonlinear field theories and his remarkable proposals for the description of the nucleon as a chiral soliton. In his talk, Skyrme described the reasons behind his extraordinary sug• gestions, which Springer when first made must have seemed bizarre. According to him, ideas of this sort go back many Softcover reprint of the decades and occur in the work of Sir William Thomson, who later became Lord Kelvin. Skyrme 1st original 1st ed. 1993, XVIII, edition had heard of Kelvin in his youth. 265 p. Order online at springer.com/booksellers Springer Nature Customer Service Center LLC Printed book 233 Spring Street Softcover New York, NY 10013 Printed book USA Softcover T: +1-800-SPRINGER NATURE ISBN 978-3-642-84672-4 (777-4643) or 212-460-1500 [email protected] $ 109,99 Available Discount group Professional Books (2) Product category Monograph Series Springer Series in Nuclear and Particle Physics Other renditions Softcover ISBN 978-3-642-84671-7 Prices and other details are subject to change without notice. -
“Gödel's Modernism: on Set-Theoretic Incompleteness,” Revisited
“G¨odel'sModernism: on Set-Theoretic Incompleteness," revisited∗ Mark van Atten and Juliette Kennedy As to problems with the answer Yes or No, the con- viction that they are always decidable remains un- touched by these results. —G¨odel Contents 1 Introduction 1.1 Questions of incompleteness On Friday, November 15, 1940, Kurt G¨odelgave a talk on set theory at Brown University.1 The topic was his recent proof of the consistency of Cantor's Con- tinuum Hypothesis, henceforth CH,2 with the axiomatic system for set theory ZFC.3 His friend from their days in Vienna, Rudolf Carnap, was in the audience, and afterward wrote a note to himself in which he raised a number of questions on incompleteness:4 (Remarks I planned to make, but did not) Discussion on G¨odel'slecture on the Continuum Hypothesis, November 14,5 1940 There seems to be a difference: between the undecidable propo- sitions of the kind of his example [i.e., 1931] and propositions such as the Axiom of Choice, and the Axiom of the Continuum [CH ]. We used to ask: \When these two have been decided, is then everything decided?" (The Poles, Tarski I think, suspected that this would be the case.) Now we know that (on the basis of the usual finitary rules) there will always remain undecided propositions. ∗An earlier version of this paper appeared as ‘G¨odel'smodernism: on set-theoretic incom- pleteness', Graduate Faculty Philosophy Journal, 25(2), 2004, pp.289{349. Erratum facing page of contents in 26(1), 2005. 1 1. Can we nevertheless still ask an analogous question? I.e. -
Alwyn C. Scott
the frontiers collection the frontiers collection Series Editors: A.C. Elitzur M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles The Thermodynamic Machinery of Life By M. Kurzynski The Emerging Physics of Consciousness Edited by J. A. Tuszynski Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely Quantum Mechanics at the Crossroads New Perspectives from History, Philosophy and Physics Edited by J. Evans, A.S. Thorndike Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Asymmetry: The Foundation of Information By S.J. Muller Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-to-Classical Transition By M. Schlosshauer For a complete list of titles in The Frontiers Collection, see back of book Alwyn C. -
Georg Kreisel Papers SC0136
http://oac.cdlib.org/findaid/ark:/13030/kt4k403759 No online items Guide to the Georg Kreisel Papers SC0136 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0.This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel Papers SC0136 1 SC0136 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Georg Kreisel papers creator: Kreisel, Georg Identifier/Call Number: SC0136 Physical Description: 24.75 Linear Feet Date (inclusive): 1957-1984 Language of Material: English Language of Material: English Abstract: Correspondence with professional colleagues, collaborators, students, and others, primarily from 1962 to 1984, lecture notes, manuscripts and other writings. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/depts/spc/pubserv/permissions.html. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Biographical/Historical Sketch Professor of Logic and the Foundations of Mathematics at Stanford University. -
Kreisel and Wittgenstein
Kreisel and Wittgenstein Akihiro Kanamori September 17, 2018 Georg Kreisel (15 September 1923 { 1 March 2015) was a formidable math- ematical logician during a formative period when the subject was becoming a sophisticated field at the crossing of mathematics and logic. Both with his technical sophistication for his time and his dialectical engagement with man- dates, aspirations and goals, he inspired wide-ranging investigation in the meta- mathematics of constructivity, proof theory and generalized recursion theory. Kreisel's mathematics and interactions with colleagues and students have been memorably described in Kreiseliana ([Odifreddi, 1996]). At a different level of interpersonal conceptual interaction, Kreisel during his life time had extended engagement with two celebrated logicians, the mathematical Kurt G¨odeland the philosophical Ludwig Wittgenstein. About G¨odel,with modern mathemat- ical logic palpably emanating from his work, Kreisel has reflected and written over a wide mathematical landscape. About Wittgenstein on the other hand, with an early personal connection established Kreisel would return as if with an anxiety of influence to their ways of thinking about logic and mathematics, ever in a sort of dialectic interplay. In what follows we draw this out through his published essays|and one letter|both to elicit aspects of influence in his own terms and to set out a picture of Kreisel's evolving thinking about logic and mathematics in comparative relief.1 As a conceit, we divide Kreisel's engagements with Wittgenstein into the \early", \middle", and \later" Kreisel, and account for each in successive sec- tions. x1 has the \early" Kreisel directly interacting with Wittgenstein in the 1940s and initial work on constructive content of proofs. -
Topology in Physics-A Perspective
SU-4228-533 March 1993 TOPOLOGY IN PHYSICS - A PERSPECTIVE A.P. Balachandran Department of Physics, Syracuse University, Syracuse, NY 13244-1130 ABSTRACT This article, written in honour of Fritz Rohrlich, briefly surveys the role of topology in physics. arXiv:hep-th/9303177v1 31 Mar 1993 When I joined Syracuse University as a junior faculty member in September, 1964, Fritz Rohrlich was already there as a senior theoretician in the quantum field theory group. He was a very well-known physicist by that time, having made fundamental contributions to quantum field theory, and written his splendid book with Jauch. My generation of physicists grew up with Jauch and Rohrlich, and I was also familiar with Fritz’s research. It was therefore with a certain awe and a great deal of respect that I first made his acquaintance. Many years have passed since this first encounter. Our interests too have gradually evolved and changed in this intervening time. Starting from the late seventies or there- abouts, particle physicists have witnessed an increasing intrusion of topological ideas into their discipline. Our group at Syracuse has responded to this development by getting involved in soliton and monopole physics and in investigations on the role of topology in quantum physics. Meanwhile, especially during the last decade, there has been a per- ceptible shift in the direction of Fritz’s research to foundations and history of quantum physics. Later I will argue that topology affects the nature of wave functions (or more accurately of wave functions in the domains of observables) and has a profound meaning for the fundamentals of quantum theory. -
Quark•Gluon Plasma
news & views GRAPHENE The running of the constants To first approximation, the dispersion relation around the Fermi energy of single-layer graphene is linear, making its charge carriers behave like massless relativistic subatomic particles. More careful inspection of its low-energy band structure suggests the picture is more complex, extending the analogy even further. Maria A. H. Vozmediano he best times in Physics are those when a α–1 b physicists of different expertise meet around a problem of common interest. 3 T ) And this is now happening in the case of 120 3 –1 α–1 2 graphene. From the early days of the isolation QED ms of single sheets of graphene, the relativistic 6 100 (10 1 F nature of its charge carriers was clear . v These carriers, known as Dirac fermions, are 1 described by equations similar to those that 80 10 E (meV) 100 describe the quantum electrodynamic (QED) interactions of relativistic charged particles. 60 2 U(1) ѵ ~ α–1 A meticulous study performed by Elias and F G 2 co-workers of the electronic structure of 40 SU(2) graphene shows that at very low energies reaching a few meV of graphene’s Dirac point, 20 where its cone-like valence and conduction SU(3) bands touch, the shape of the conduction and valence bands diverge from a simple linear 1 0 2 4 6 8 10 12 14 16 1 2 relation. The result implies that the analogy log E (Gev) log E (10–12 Gev) between graphene and high-energy physics 10 10 is deeper than first expected. -
Bertlmann – a Nonlocal Quantum Engineer
a nonlocal quantum engineer contemplate but don’t forget to calculate ! Reinhold A. Bertlmann Faculty of Physics, University of Vienna talk at symposium “ shut up and contemplate ! ” University of Vienna, March 3rd, 2017 engineer’s career at Harwell John Stewart Bell graduated at Queen’s University Belfast in experimental physics 1948 in mathematical physics 1949 high interest in quantum mechanics showing his dissatisfaction ! position at AERE Harwell from1949 on joined accelerator group of Walkinshaw (Malvern) William Walkinshaw: John on his new “Ariel” “ a young man of high caliber who showed his at Harwell 1952 independence … his mathematical talent was superb and elegant.” papers on electron and proton linear accelerators e.g. “basic algebra on strong focussing systems” “linear accelerator phase oscillations” “phase debunching by focussing foils in proton linear accelerator” Reinhold A. Bertlmann 2 turn to particle physics & Bohm’s qm in mid1950s Bell turned to nuclear and particle physics “time reversal in field theory …”, CPT theorem, PhD thesis fundamental ! “anomalous magnetic moments of nucleons”, collab. Tony Skyrme at that time paper of David Bohm appeared 1952 “interpretation of quantum theory in terms of hidden variable” Mary: for John a “revelation” “everything has definite properties” I remember John saying Bell’s talk about Bohm’s theory in TH division fierce debates with audience especially with Franz Mandl 1954 John married Mary Ross “mathematical engineer” accelerator physicist Reinhold A. Bertlmann 3 engineer’s job -
Georg Kreisel Correspondence with Jean Van Heijenoort
http://oac.cdlib.org/findaid/ark:/13030/c84q7wxh No online items Guide to the Georg Kreisel Correspondence with Jean van Heijenoort Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California October 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel SC0233 1 Correspondence with Jean van Heijenoort Overview Call Number: SC0233 Creator: Kreisel, Georg, 1923- Title: Georg Kreisel correspondence with Jean van Heijenoort Dates: 1949-1981 Physical Description: 6 Linear feet Summary: Correspondence, notes, memoranda, articles and other materials by Professor Georg Kreisel, sent to his colleague, Professor J. van Heijenoort of Harvard University. Includes some correspondence with other colleagues. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Gift of J. van Heijenoort, 1981. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. -
Aspects of the Many-Body Problem in Nuclear Physics
Aspects of the Many-Body Problem in Nuclear Physics DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alexander Signatur Dyhdalo, MSc, BSc Graduate Program in Physics The Ohio State University 2018 Dissertation Committee: Prof. Richard Furnstahl, Advisor Prof. Robert Perry Prof. Michael Lisa Prof. Junko Shigemitsu c Copyright by Alexander Signatur Dyhdalo 2018 Abstract Low-energy nuclear physics has seen a renaissance of activity recently with the advent of the nuclear effective field theory (EFT) approach, the power of renormalization group techniques, and advances in the computational cost-effectiveness and sophistication of quan- tum many-body methods. Nevertheless challenges remain in part from ambiguities of the nuclear Hamiltonian via regulator artifacts and the scaling of the many-body methods to heavier systems. Regulator artifacts arise due to a renormalization inconsistency in the nuclear EFT as currently formulated in Weinberg power counting, though their ultimate impact on nuclear observables is unknown at present. This results in a residual cutoff dependence in the EFT to all orders. We undertake an examination of these regulator artifacts using perturba- tive energy calculations of uniform matter as a testbed. Our methodology has found that the choice of regulator determines the shape of the energy phase space and that different regulators weight distinct phase space regions differently. Concerning many-body calculations, at present only phenomenological energy density functionals are able to solve for the full table of nuclides. However these functionals are currently unconnected to QCD and have no existing method for systematic improvement. -
An Interview with Martin Davis
Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.