About Logic and Logicians

Total Page:16

File Type:pdf, Size:1020Kb

About Logic and Logicians About Logic and Logicians A palimpsest of essays by Georg Kreisel Selected and arranged by Piergiorgio Odifreddi Volume 2: Mathematics Lógica no Avião ABOUT LOGIC AND LOGICIANS A palimpsest of essays by Georg KREISEL Selected and arranged by Piergiorgio ODIFREDDI Volume II. Mathematics Editorial Board Fernando Ferreira Departamento de Matem´atica Universidade de Lisboa Francisco Miraglia Departamento de Matem´atica Universidade de S~aoPaulo Graham Priest Department of Philosophy The City University of New York Johan van Benthem Department of Philosophy Stanford University Tsinghua University University of Amsterdam Matteo Viale Dipartimento di Matematica \Giuseppe Peano" Universit`adi Torino Piergiorgio Odifreddi, About Logic and Logicians, Volume 2. Bras´ılia: L´ogicano Avi~ao,2019. S´erieA, Volume 2 I.S.B.N. 978-65-900390-1-9 Prefixo Editorial 900390 Obra publicada com o apoio do PPGFIL/UnB. Editor's Preface These books are a first version of Odifreddi's collection of Kreisel's expository papers, which together constitute an extensive, scholarly account of the philo- sophical and mathematical development of many of the most important figures of modern logic; some of those papers are published here for the first time. Odifreddi and Kreisel worked together on these books for several years, and they are the product of long discussions. They finally decided that they would collect those essays of a more expository nature, such as the biographical memoirs of the fellows of the Royal Society (of which Kreisel himself was a member) and other related works. Also included are lecture notes that Kreisel distributed in his classes, such as the first essay printed here, which is on the philosophy of mathematics and geometry. Kreisel himself wrote all the texts, but Odifreddi has made some substantial editorial interventions, rearranging some of the material, breaking the text into sections and paragraphs, inserting titles, moving or removing some notes, and eliminating some digressions. These interventions were made in order to give the essays some of their original freshness and linearity, qualities that were lost in later versions. Some other minor modifications were made here and there, consisting basi- cally in the correction of a small number of erroneous references in the original manuscripts. Kreisel's expository works are invaluable to logicians, and we hope that the reader may find the present edition to his advantage, even if there is still some editorial work to do. Rodrigo Freire. Bras´ılia,April 2019. Contents I ON BROUWER 1 1 BROUWER'S FOUNDATIONS 2 Intuitionistic notions . .3 Brouwer's foundational critique . .5 The famous dispute between Brouwer and Hilbert . .8 Mysticism . 10 2 LUITZEN BROUWER 11 2.1 General Development ....................... 11 Life, family, general interests . 11 Education and academic career . 12 Constructivity . 12 Topology . 13 Intuitionism and formalism . 14 Development of constructive mathematics . 14 Brouwer's controversy with Hilbert . 15 The half-century mark . 16 Solipsism . 17 2.2 Foundations of Mathematics ................... 18 Constructivity on an elementary level . 19 Constructive logic . 21 Infinite proofs . 23 Hilbert's formalist foundations . 25 Ideal mathematician . 26 Looking back . 28 Is mathematics about our own constructions or is it about an ex- ternal reality? . 28 3 BROUWER'S `CAMBRIDGE LECTURES ON INTUITION- ISM' 30 CONTENTS 4 SOME CORRESPONDING HIGH SPOTS OF EARLY CLAS- SICAL AND INTUITIONISTIC LOGIC 33 Completeness with respect to intended meanings . 33 Some early concocted meanings . 35 Philosophical assessment of intended and concocted meanings . 37 Warnings against uses for history or methodology . 40 II ON GODEL¨ 43 5 GODEL'S¨ ELECTION TO THE ROYAL SOCIETY 44 Statement for the Royal Society . 44 G¨odel'sreply . 46 Further developments . 47 Warnings . 47 6 KURT GODEL¨ 49 Sources . 51 6.1 Life and Career ........................... 52 Family background . 52 Growing up in Br¨unnand Brno (1906{1923) . 52 Vienna, with two interludes at Princeton (1923{1938) . 53 Breaking the Austrian connection (1938{39) . 56 The New World: the first 30 years (1939{69) . 57 The final years (1969{1978) . 60 6.2 G¨odel'sFirst Results in Focus ................. 61 Historical perspective . 61 Philosophical perspective . 62 Accentuating the positive: purity of methods . 64 6.3 Background to [1931]: Axiomatization and Formalization 65 From non-elementary axiomatizations to formalizations . 67 Methodenreinheit: how to test philosophical ideals . 68 6.4 The Incompleteness Theorems ................. 69 Formalization and numerical computation: generalities . 69 Incompleteness of formal systems for number theory and beyond . 71 Some lessons from the first incompleteness theorem . 74 Consistency and consistency proofs . 75 Some lessons from the second incompleteness theorem . 78 6.5 Background to [1930]: Elementary Logic in the Twenties 79 Non-categoricity of elementary axioms . 80 Two formulations of completeness (for logical validity) . 81 Herbrand's Theorem . 82 6.6 The Completeness Theorem ................... 82 CONTENTS Enter G¨odel . 83 The Finiteness Theorem . 83 Some lessons from the completeness theorem . 84 6.7 Foundational Bearing of G¨odel'sFirst Results ....... 87 Russell's scheme . 87 Hilbert's scheme . 88 Brouwer's scheme . 90 From foundations to technology . 93 6.8 Background to [1938]: Zermelo's Set Theory ........ 93 Sets before the twenties . 94 Fat hierarchies of sets . 94 Non-elementary axiomatizations . 95 Digression on the passage to formalizations of set theory . 96 Consequences of the non-elementary axioms . 98 Bibliographical remarks . 99 6.9 Constructible Sets ......................... 101 First step: a restricted power set . 101 Second step: the number of iterations . 102 Constructible sets: reculer pour mieux sauter . 102 Bibliographical remarks . 104 GCH: a variant of the axiom of reducibility . 105 Other properties of L . 106 Formal independence results . 108 Some logical and foundational lessons . 109 6.10 G¨odel'sProgram: Axioms of Infinity ............. 112 Enriching the language of formal set theories . 112 Axioms of infinity . 113 Axioms of determinacy . 115 6.11 G¨odel'sfoundational views: balancing the account ..... 118 Successes: mixing the realist and idealist traditions . 118 Neglected problems: beyond na¨ıve idealism . 119 Bibliographical remarks . 121 6.12 Philosophy: Speculations and Reflection ........... 123 General Theory of Relativity . 124 Non-mechanical laws of nature . 125 Chemical evolution of living organisms on earth . 128 General interests (and a contrast) . 128 6.13 Foundations and the Common Understanding ....... 129 7 GODEL'S¨ EARLY WORKS 132 The Pythagorean thesis . 132 Summary . 133 7.1 Background: Doing Sums Formally .............. 134 CONTENTS Numerical equations . 134 Numerical inequalities . 136 Diophantine questions . 136 Thinking about sums: facts of experience . 137 7.2 Two Twists by G¨odelon Cantor's Results .......... 137 A formal counterpart to Cantor's coding arguments . 137 A formal counterpart to Cantor's diagonal arguments . 139 Interpretations . 141 Discussion . 143 Digression on representations (optional) . 144 Systems that prove their own consistency . 148 7.3 Back to the Two Questions ................... 149 Formal (or, equivalently, mechanical) aspects of mathematics: what are they, and what are they supposed to do? . 149 The incompleteness theorem: a literal refutation . 152 The completeness theorem: a Pyrrhic victory . 153 Sensationalism and utilitarianism . 154 Shifts of emphasis: what more do we know from formalization? . 154 What is so wonderful about formalization? . 155 Short answers to the initial questions . 157 Refutations: For a better quality of life . 158 8 GODEL'S¨ LATER WORKS 161 Metamathematics . 162 Logic chopping . 162 8.1 How Adequate Are Those Would-Be Fundamental Meta- mathematical Notions? ([1938], [1939], [1940]) ....... 163 Digression on the commerce of ideas (optional) . 164 8.2 Logic Chopping: Elementary Samples ([1944]) ....... 165 8.3 Absolutes: a Top Priority in the Logical Tradition ([1946]) 170 Autobiographical remarks: absoluteness scaled down . 172 8.4 Selected Thoughts About Sets ................. 173 G¨odel'sown perspective and our agenda . 174 Terminology . 175 Some home truths, half truths and untruths . 175 Axiom of choice . 176 Comprehension . 177 Replacement and (uncountable) strongly inaccessible cardinals . 178 Addendum on replacement (optional) . 179 8.5 Intuitionistic Logic: Hitting a (Little) Moon First, and Then Dreaming of the Stars ................... 181 Background . 181 G¨odel'sscheme . 182 CONTENTS A pyrrhic success . 183 8.6 Cosmology and Some (Even) More Ethereal Ologies ([1949], [1949a], [1950]) ........................... 184 Analysis of language . 185 Sundry tit-bits: old and new . 186 Other ethereal ologies . 187 Digression on logical aspects of theology (for intellectually cheerful readers) . 189 8.7 What Was Lacking (60, 40, or Even 20 Years Ago)? .... 191 8.8 Appendix. A View of Non-Standard Analysis ([1974]) .. 193 The tree (of knowledge) of numbers . 194 Ordering theorems by logical implication . 194 Concrete numerical problems . 195 Disclaimer . 196 A report on impressions of non-standard.
Recommended publications
  • Power Values of Divisor Sums Author(S): Frits Beukers, Florian Luca, Frans Oort Reviewed Work(S): Source: the American Mathematical Monthly, Vol
    Power Values of Divisor Sums Author(s): Frits Beukers, Florian Luca, Frans Oort Reviewed work(s): Source: The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.119.05.373 . Accessed: 15/02/2013 04:05 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded on Fri, 15 Feb 2013 04:05:44 AM All use subject to JSTOR Terms and Conditions Power Values of Divisor Sums Frits Beukers, Florian Luca, and Frans Oort Abstract. We consider positive integers whose sum of divisors is a perfect power. This prob- lem had already caught the interest of mathematicians from the 17th century like Fermat, Wallis, and Frenicle. In this article we study this problem and some variations. We also give an example of a cube, larger than one, whose sum of divisors is again a cube. 1. INTRODUCTION. Recently, one of the current authors gave a mathematics course for an audience with a general background and age over 50.
    [Show full text]
  • “Gödel's Modernism: on Set-Theoretic Incompleteness,” Revisited
    “G¨odel'sModernism: on Set-Theoretic Incompleteness," revisited∗ Mark van Atten and Juliette Kennedy As to problems with the answer Yes or No, the con- viction that they are always decidable remains un- touched by these results. —G¨odel Contents 1 Introduction 1.1 Questions of incompleteness On Friday, November 15, 1940, Kurt G¨odelgave a talk on set theory at Brown University.1 The topic was his recent proof of the consistency of Cantor's Con- tinuum Hypothesis, henceforth CH,2 with the axiomatic system for set theory ZFC.3 His friend from their days in Vienna, Rudolf Carnap, was in the audience, and afterward wrote a note to himself in which he raised a number of questions on incompleteness:4 (Remarks I planned to make, but did not) Discussion on G¨odel'slecture on the Continuum Hypothesis, November 14,5 1940 There seems to be a difference: between the undecidable propo- sitions of the kind of his example [i.e., 1931] and propositions such as the Axiom of Choice, and the Axiom of the Continuum [CH ]. We used to ask: \When these two have been decided, is then everything decided?" (The Poles, Tarski I think, suspected that this would be the case.) Now we know that (on the basis of the usual finitary rules) there will always remain undecided propositions. ∗An earlier version of this paper appeared as ‘G¨odel'smodernism: on set-theoretic incom- pleteness', Graduate Faculty Philosophy Journal, 25(2), 2004, pp.289{349. Erratum facing page of contents in 26(1), 2005. 1 1. Can we nevertheless still ask an analogous question? I.e.
    [Show full text]
  • Georg Kreisel Papers SC0136
    http://oac.cdlib.org/findaid/ark:/13030/kt4k403759 No online items Guide to the Georg Kreisel Papers SC0136 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0.This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel Papers SC0136 1 SC0136 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Georg Kreisel papers creator: Kreisel, Georg Identifier/Call Number: SC0136 Physical Description: 24.75 Linear Feet Date (inclusive): 1957-1984 Language of Material: English Language of Material: English Abstract: Correspondence with professional colleagues, collaborators, students, and others, primarily from 1962 to 1984, lecture notes, manuscripts and other writings. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/depts/spc/pubserv/permissions.html. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Biographical/Historical Sketch Professor of Logic and the Foundations of Mathematics at Stanford University.
    [Show full text]
  • Kreisel and Wittgenstein
    Kreisel and Wittgenstein Akihiro Kanamori September 17, 2018 Georg Kreisel (15 September 1923 { 1 March 2015) was a formidable math- ematical logician during a formative period when the subject was becoming a sophisticated field at the crossing of mathematics and logic. Both with his technical sophistication for his time and his dialectical engagement with man- dates, aspirations and goals, he inspired wide-ranging investigation in the meta- mathematics of constructivity, proof theory and generalized recursion theory. Kreisel's mathematics and interactions with colleagues and students have been memorably described in Kreiseliana ([Odifreddi, 1996]). At a different level of interpersonal conceptual interaction, Kreisel during his life time had extended engagement with two celebrated logicians, the mathematical Kurt G¨odeland the philosophical Ludwig Wittgenstein. About G¨odel,with modern mathemat- ical logic palpably emanating from his work, Kreisel has reflected and written over a wide mathematical landscape. About Wittgenstein on the other hand, with an early personal connection established Kreisel would return as if with an anxiety of influence to their ways of thinking about logic and mathematics, ever in a sort of dialectic interplay. In what follows we draw this out through his published essays|and one letter|both to elicit aspects of influence in his own terms and to set out a picture of Kreisel's evolving thinking about logic and mathematics in comparative relief.1 As a conceit, we divide Kreisel's engagements with Wittgenstein into the \early", \middle", and \later" Kreisel, and account for each in successive sec- tions. x1 has the \early" Kreisel directly interacting with Wittgenstein in the 1940s and initial work on constructive content of proofs.
    [Show full text]
  • MODERN MATHEMATICS 1900 to 1950
    Free ebooks ==> www.Ebook777.com www.Ebook777.com Free ebooks ==> www.Ebook777.com MODERN MATHEMATICS 1900 to 1950 Michael J. Bradley, Ph.D. www.Ebook777.com Free ebooks ==> www.Ebook777.com Modern Mathematics: 1900 to 1950 Copyright © 2006 by Michael J. Bradley, Ph.D. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Chelsea House An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Bradley, Michael J. (Michael John), 1956– Modern mathematics : 1900 to 1950 / Michael J. Bradley. p. cm.—(Pioneers in mathematics) Includes bibliographical references and index. ISBN 0-8160-5426-6 (acid-free paper) 1. Mathematicians—Biography. 2. Mathematics—History—20th century. I. Title. QA28.B736 2006 510.92'2—dc22 2005036152 Chelsea House books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com Text design by Mary Susan Ryan-Flynn Cover design by Dorothy Preston Illustrations by Jeremy Eagle Printed in the United States of America MP FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper.
    [Show full text]
  • Scope of Various Random Number Generators in Ant System Approach for Tsp
    AC 2007-458: SCOPE OF VARIOUS RANDOM NUMBER GENERATORS IN ANT SYSTEM APPROACH FOR TSP S.K. Sen, Florida Institute of Technology Syamal K Sen ([email protected]) is currently a professor in the Dept. of Mathematical Sciences, Florida Institute of Technology (FIT), Melbourne, Florida. He did his Ph.D. (Engg.) in Computational Science from the prestigious Indian Institute of Science (IISc), Bangalore, India in 1973 and then continued as a faculty of this institute for 33 years. He was a professor of Supercomputer Computer Education and Research Centre of IISc during 1996-2004 before joining FIT in January 2004. He held a Fulbright Fellowship for senior teachers in 1991 and worked in FIT. He also held faculty positions, on leave from IISc, in several universities around the globe including University of Mauritius (Professor, Maths., 1997-98), Mauritius, Florida Institute of Technology (Visiting Professor, Math. Sciences, 1995-96), Al-Fateh University (Associate Professor, Computer Engg, 1981-83.), Tripoli, Libya, University of the West Indies (Lecturer, Maths., 1975-76), Barbados.. He has published over 130 research articles in refereed international journals such as Nonlinear World, Appl. Maths. and Computation, J. of Math. Analysis and Application, Simulation, Int. J. of Computer Maths., Int. J Systems Sci., IEEE Trans. Computers, Internl. J. Control, Internat. J. Math. & Math. Sci., Matrix & Tensor Qrtly, Acta Applicande Mathematicae, J. Computational and Applied Mathematics, Advances in Modelling and Simulation, Int. J. Engineering Simulation, Neural, Parallel and Scientific Computations, Nonlinear Analysis, Computers and Mathematics with Applications, Mathematical and Computer Modelling, Int. J. Innovative Computing, Information and Control, J. Computational Methods in Sciences and Engineering, and Computers & Mathematics with Applications.
    [Show full text]
  • Three Aspects of the Theory of Complex Multiplication
    Three Aspects of the Theory of Complex Multiplication Takase Masahito Introduction In the letter addressed to Dedekind dated March 15, 1880, Kronecker wrote: - the Abelian equations with square roots of rational numbers are ex­ hausted by the transformation equations of elliptic functions with sin­ gular modules, just as the Abelian equations with integral coefficients are exhausted by the cyclotomic equations. ([Kronecker 6] p. 455) This is a quite impressive conjecture as to the construction of Abelian equations over an imaginary quadratic number fields, which Kronecker called "my favorite youthful dream" (ibid.). The aim of the theory of complex multiplication is to solve Kronecker's youthful dream; however, it is not the history of formation of the theory of complex multiplication but Kronecker's youthful dream itself that I would like to consider in the present paper. I will consider Kronecker's youthful dream from three aspects: its history, its theoretical character, and its essential meaning in mathematics. First of all, I will refer to the history and theoretical character of the youthful dream (Part I). Abel modeled the division theory of elliptic functions after the division theory of a circle by Gauss and discovered the concept of an Abelian equation through the investigation of the algebraically solvable conditions of the division equations of elliptic functions. This discovery is the starting point of the path to Kronecker's youthful dream. If we follow the path from Abel to Kronecker, then it will soon become clear that Kronecker's youthful dream has the theoretical character to be called the inverse problem of Abel.
    [Show full text]
  • Georg Kreisel Correspondence with Jean Van Heijenoort
    http://oac.cdlib.org/findaid/ark:/13030/c84q7wxh No online items Guide to the Georg Kreisel Correspondence with Jean van Heijenoort Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California October 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel SC0233 1 Correspondence with Jean van Heijenoort Overview Call Number: SC0233 Creator: Kreisel, Georg, 1923- Title: Georg Kreisel correspondence with Jean van Heijenoort Dates: 1949-1981 Physical Description: 6 Linear feet Summary: Correspondence, notes, memoranda, articles and other materials by Professor Georg Kreisel, sent to his colleague, Professor J. van Heijenoort of Harvard University. Includes some correspondence with other colleagues. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Gift of J. van Heijenoort, 1981. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]
  • “YOU MUST REMEMBER THIS” Abraham (“Abe”) Edel
    MATERIAL FOR “YOU MUST REMEMBER THIS” Abraham (“Abe”) Edel (6 December 1908 – 22 June 2007) “Twenty-Seven Uses of Science in Ethics,” 7/2/67 Abraham Edel, In Memoriam, by Peter Hare and Guy Stroh Abraham Edel, 1908-2007 Abraham Edel was born in Pittsburgh, Pennsylvania on December 6, 1908. Raised in Yorkton, Canada with his older brother Leon who would become a biographer of Henry James, Edel studied Classics and Philosophy at McGill University, earning a BA in 1927 and an MA in 1928. He continued his education at Oxford where, as he recalled, “W.D. Ross and H.A. Prichard were lecturing in ethics, H.W.B. Joseph on Plato, and the influence of G. E. Moore and Bertrand Russell extended from Cambridge. Controversy on moral theory was high. The same was true of epistemology, where Prichard posed realistic epistemology against Harold Joachim who was defending Bradley and Bosanquet against the metaphysical realism of Cook Wilson.” He received a BA in Litterae Humaniores from Oxford in 1930. In that year he moved to New York City for doctoral studies at Columbia University, and in 1931 began teaching at City College, first as an assistant to Morris Raphael Cohen. F.J.E. Woodbridge directed his Columbia dissertation, Aristotle’s Theory of the Infinite (1934). This monograph and two subsequent books on Aristotle were influenced by Woodbridge’s interpretation of Aristotle as a philosophical naturalist. Although his dissertation concerned ancient Greek philosophy, he was much impressed by research in the social sciences at Columbia, and the teaching of Cohen at City College showed him how philosophical issues lay at the root of the disciplines of psychology, sociology, history, as well as the natural sciences.
    [Show full text]
  • Abstracts for 18 Category Theory; Homological 62 Statistics Algebra 65 Numerical Analysis Syracuse, October 2–3, 2010
    A bstr bstrActs A A cts mailing offices MATHEMATICS and additional of Papers Presented to the Periodicals postage 2010 paid at Providence, RI American Mathematical Society SUBJECT CLASSIFICATION Volume 31, Number 4, Issue 162 Fall 2010 Compiled in the Editorial Offices of MATHEMATICAL REVIEWS and ZENTRALBLATT MATH 00 General 44 Integral transforms, operational calculus 01 History and biography 45 Integral equations Editorial Committee 03 Mathematical logic and foundations 46 Functional analysis 05 Combinatorics 47 Operator theory Robert J. Daverman, Chair Volume 31 • Number 4 Fall 2010 Volume 06 Order, lattices, ordered 49 Calculus of variations and optimal Georgia Benkart algebraic structures control; optimization 08 General algebraic systems 51 Geometry Michel L. Lapidus 11 Number theory 52 Convex and discrete geometry Matthew Miller 12 Field theory and polynomials 53 Differential geometry 13 Commutative rings and algebras 54 General topology Steven H. Weintraub 14 Algebraic geometry 55 Algebraic topology 15 Linear and multilinear algebra; 57 Manifolds and cell complexes matrix theory 58 Global analysis, analysis on manifolds 16 Associative rings and algebras 60 Probability theory and stochastic 17 Nonassociative rings and algebras processes Abstracts for 18 Category theory; homological 62 Statistics algebra 65 Numerical analysis Syracuse, October 2–3, 2010 ....................... 655 19 K-theory 68 Computer science 20 Group theory and generalizations 70 Mechanics of particles and systems Los Angeles, October 9–10, 2010 .................. 708 22 Topological groups, Lie groups 74 Mechanics of deformable solids 26 Real functions 76 Fluid mechanics 28 Measure and integration 78 Optics, electromagnetic theory Notre Dame, November 5–7, 2010 ................ 758 30 Functions of a complex variable 80 Classical thermodynamics, heat transfer 31 Potential theory 81 Quantum theory Richmond, November 6–7, 2010 ..................
    [Show full text]
  • Una Fundamentaci´On De La Historia De Las Matem´Aticas
    UNA FUNDAMENTACION´ DE LA HISTORIA DE LAS MATEMATICAS´ UNA FUNDAMENTACION´ DE LA HISTORIA DE LAS MATEMATICAS´ Jesus Hernando P´erezAlc´azar OSCAR´ ARMANDO IBARRA RUSSI Rector ALEJANDRO ALVAREZ´ GALLEGO Vicerrector Acad´emico MARIO BALLESTEROS MEJ´IA Vicerrector Administrativo y Financiero NOHORA PATRICIA MORENO GARC´IA Vicerrectora de Gesti´onUniversitaria c Universidad Pedag´ogicaNacional c Jes´us Hernando P´erez Alc´azar Profesor investigador Universidad Sergio Arboleda ISBN: Primera edici´on,2007 Preparaci´oneditorial Universidad Pedag´ogicaNacional Fondo Editorial LUIS EDUARDO VASQUEZ´ SALAMANCA Coordinador Impresi´on Bogot´a,Colombia, 2007 Dedicado a: La memoria de mi padre, el educador matem´atico Jos´e Ignacio P´erez, Mi madre Aura Mar´ıaAlc´azar. Contenido Agradecimientos IV Presentaci´on V Prefacio VIII 1. Principios orientadores para la fundamentaci´onde la historia de la matem´aticas 1 1.1. (P1) Principio de Durkheim o de la divisi´onsocial trabajo . 1 1.2. (P2) Principio ´eticoy legal o de las tensiones entre permitido versus prohibido y conveniente versus inconveniente . 2 1.3. (P3) Principio acad´emico o de la dial´ecticaimaginarios versus teor´ıas 4 1.4. (P4) Principio de historicidad . 8 1.5. (P5) Principio de Chomsky o de la tensi´onentre finito e infinito . 10 1.6. (P6) Principio anfibi´oticoo de la tensi´onentre ser y no ser . 14 2. Ejemplos iniciales de documentos historiogr´aficos 19 2.1. Un art´ıculode divulgaci´on. 19 2.2. Un trabajo hist´orico-filos´ofico . 24 2.3. Historia de la historia . 27 2.4. (P7) Principio de Struik o de la dignificaci´onde la especie humana 30 2.4.
    [Show full text]