Abstracts for 18 Category Theory; Homological 62 Statistics Algebra 65 Numerical Analysis Syracuse, October 2–3, 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infinitely Many Star Products to Play With
DSF{40{01 BiBoS 01-12-068 ESI 1109 hep{th/0112092 December 2001 Infinitely many star products to play with J.M. Gracia-Bond´ıa a;b, F. Lizzi b, G. Marmo b and P. Vitale c a BiBoS, Fakult¨atder Physik, Universit¨atBielefeld, 33615 Bielefeld, Germany b Dipartimento di Scienze Fisiche, Universit`adi Napoli Federico II and INFN, Sezione di Napoli, Monte S. Angelo Via Cintia, 80126 Napoli, Italy [email protected], [email protected] c Dipartimento di Fisica, Universit`adi Salerno and INFN Gruppo Collegato di Salerno, Via S. Allende 84081 Baronissi (SA), Italy [email protected] Abstract While there has been growing interest for noncommutative spaces in recent times, most examples have been based on the simplest noncommutative algebra: [xi; xj] = iθij. Here we present new classes of (non-formal) deformed products k associated to linear Lie algebras of the kind [xi; xj] = icijxk. For all possible three- dimensional cases, we define a new star product and discuss its properties. To complete the analysis of these novel noncommutative spaces, we introduce noncom- pact spectral triples, and the concept of star triple, a specialization of the spectral triple to deformations of the algebra of functions on a noncompact manifold. We examine the generalization to the noncompact case of Connes' conditions for non- commutative spin geometries, and, in the framework of the new star products, we exhibit some candidates for a Dirac operator. On the technical level, properties of 2n the Moyal multiplier algebra M(Rθ ) are elucidated. 1 Introduction Over five years ago, Connes gave the first axiomatics for first-quantized fermion fields on (compact) noncommutative varieties, the so-called spectral triples [1]. -
Power Values of Divisor Sums Author(S): Frits Beukers, Florian Luca, Frans Oort Reviewed Work(S): Source: the American Mathematical Monthly, Vol
Power Values of Divisor Sums Author(s): Frits Beukers, Florian Luca, Frans Oort Reviewed work(s): Source: The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.119.05.373 . Accessed: 15/02/2013 04:05 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded on Fri, 15 Feb 2013 04:05:44 AM All use subject to JSTOR Terms and Conditions Power Values of Divisor Sums Frits Beukers, Florian Luca, and Frans Oort Abstract. We consider positive integers whose sum of divisors is a perfect power. This prob- lem had already caught the interest of mathematicians from the 17th century like Fermat, Wallis, and Frenicle. In this article we study this problem and some variations. We also give an example of a cube, larger than one, whose sum of divisors is again a cube. 1. INTRODUCTION. Recently, one of the current authors gave a mathematics course for an audience with a general background and age over 50. -
Moufang Loops and Alternative Algebras
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 2, Pages 313{316 S 0002-9939(03)07260-5 Article electronically published on August 28, 2003 MOUFANG LOOPS AND ALTERNATIVE ALGEBRAS IVAN P. SHESTAKOV (Communicated by Lance W. Small) Abstract. Let O be the algebra O of classical real octonions or the (split) algebra of octonions over the finite field GF (p2);p>2. Then the quotient loop O∗=Z ∗ of the Moufang loop O∗ of all invertible elements of the algebra O modulo its center Z∗ is not embedded into a loop of invertible elements of any alternative algebra. It is well known that for an alternative algebra A with the unit 1 the set U(A) of all invertible elements of A forms a Moufang loop with respect to multiplication [3]. But, as far as the author knows, the following question remains open (see, for example, [1]). Question 1. Is it true that any Moufang loop can be imbedded into a loop of type U(A) for a suitable unital alternative algebra A? A positive answer to this question was announced in [5]. Here we show that, in fact, the answer to this question is negative: the Moufang loop U(O)=R∗ for the algebra O of classical octonions over the real field R andthesimilarloopforthe algebra of octonions over the finite field GF (p2);p>2; are not imbeddable into the loops of type U(A). Below O denotes an algebra of octonions (or Cayley{Dickson algebra) over a field F of characteristic =2,6 O∗ = U(O) is the Moufang loop of all the invertible elements of O, L = O∗=F ∗. -
Phase Space Quantum Mechanics Is Such a Natural Formulation of Quantum Theory
Phase space quantum mechanics Maciej B laszak, Ziemowit Doma´nski Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna´n, Poland Abstract The paper develope the alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise prod- uct of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket is the key element in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special cases all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental then the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. -
MOUFANG LOOPS THAT SHARE ASSOCIATOR and THREE QUARTERS of THEIR MULTIPLICATION TABLES 1. Introduction Moufang Loops, I.E., Loops
MOUFANG LOOPS THAT SHARE ASSOCIATOR AND THREE QUARTERS OF THEIR MULTIPLICATION TABLES ALES· DRAPAL¶ AND PETR VOJTECHOVSK· Y¶ Abstract. Two constructions due to Dr¶apalproduce a group by modifying exactly one quarter of the Cayley table of another group. We present these constructions in a compact way, and generalize them to Moufang loops, using loop extensions. Both constructions preserve associators, the associator subloop, and the nucleus. We con- jecture that two Moufang 2-loops of ¯nite order n with equivalent associator can be connected by a series of constructions similar to ours, and o®er empirical evidence that this is so for n = 16, 24, 32; the only interesting cases with n · 32. We further investigate the way the constructions a®ect code loops and loops of type M(G; 2). The paper closes with several conjectures and research questions concerning the distance of Moufang loops, classi¯cation of small Moufang loops, and generalizations of the two constructions. MSC2000: Primary: 20N05. Secondary: 20D60, 05B15. 1. Introduction Moufang loops, i.e., loops satisfying the Moufang identity ((xy)x)z = x(y(xz)), are surely the most extensively studied loops. Despite this fact, the classi¯cation of Moufang loops is ¯nished only for orders less than 64, and several ingenious constructions are needed to obtain all these loops. The purpose of this paper is to initiate a new approach to ¯nite Moufang 2-loops. Namely, we intend to decide whether all Moufang 2-loops of given order with equivalent associator can be obtained from just one of them, using only group-theoretical constructions. -
Split Octonions
Split Octonions Benjamin Prather Florida State University Department of Mathematics November 15, 2017 Group Algebras Split Octonions Let R be a ring (with unity). Prather Let G be a group. Loop Algebras Octonions Denition Moufang Loops An element of group algebra R[G] is the formal sum: Split-Octonions Analysis X Malcev Algebras rngn Summary gn2G Addition is component wise (as a free module). Multiplication follows from the products in R and G, distributivity and commutativity between R and G. Note: If G is innite only nitely many ri are non-zero. Group Algebras Split Octonions Prather Loop Algebras A group algebra is itself a ring. Octonions In particular, a group under multiplication. Moufang Loops Split-Octonions Analysis A set M with a binary operation is called a magma. Malcev Algebras Summary This process can be generalized to magmas. The resulting algebra often inherit the properties of M. Divisibility is a notable exception. Magmas Split Octonions Prather Loop Algebras Octonions Moufang Loops Split-Octonions Analysis Malcev Algebras Summary Loops Split Octonions Prather Loop Algebras In particular, loops are not associative. Octonions It is useful to dene some weaker properties. Moufang Loops power associative: the sub-algebra generated by Split-Octonions Analysis any one element is associative. Malcev Algebras diassociative: the sub-algebra generated by any Summary two elements is associative. associative: the sub-algebra generated by any three elements is associative. Loops Split Octonions Prather Loop Algebras Octonions Power associativity gives us (xx)x = x(xx). Moufang Loops This allows x n to be well dened. Split-Octonions Analysis −1 Malcev Algebras Diassociative loops have two sided inverses, x . -
A Guide to Self-Distributive Quasigroups, Or Latin Quandles
A GUIDE TO SELF-DISTRIBUTIVE QUASIGROUPS, OR LATIN QUANDLES DAVID STANOVSKY´ Abstract. We present an overview of the theory of self-distributive quasigroups, both in the two- sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-distributive quasigroups. 1. Introduction 1.1. The origins of self-distributivity. Self-distributivity is such a natural concept: given a binary operation on a set A, fix one parameter, say the left one, and consider the mappings ∗ La(x) = a x, called left translations. If all such mappings are endomorphisms of the algebraic structure (A,∗ ), the operation is called left self-distributive (the prefix self- is usually omitted). Equationally,∗ the property says a (x y) = (a x) (a y) ∗ ∗ ∗ ∗ ∗ for every a, x, y A, and we see that distributes over itself. Self-distributivity∈ was pinpointed already∗ in the late 19th century works of logicians Peirce and Schr¨oder [69, 76], and ever since, it keeps appearing in a natural way throughout mathematics, perhaps most notably in low dimensional topology (knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57] and in set theory (Laver’s groupoids of elementary embeddings) [15]. Recently, Moskovich expressed an interesting statement on his blog [60] that while associativity caters to the classical world of space and time, distributivity is, perhaps, the setting for the emerging world of information. -
Quandles an Introduction to the Algebra of Knots
STUDENT MATHEMATICAL LIBRARY Volume 74 Quandles An Introduction to the Algebra of Knots Mohamed Elhamdadi Sam Nelson Quandles An Introduction to the Algebra of Knots http://dx.doi.org/10.1090/stml/074 STUDENT MATHEMATICAL LIBRARY Volume 74 Quandles An Introduction to the Algebra of Knots Mohamed Elhamdadi Sam Nelson American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 57M25, 55M25, 20N05, 20B05, 55N35, 57M05, 57M27, 20N02, 57Q45. For additional information and updates on this book, visit www.ams.org/bookpages/stml-74 Library of Congress Cataloging-in-Publication Data Elhamdadi, Mohamed, 1968– Quandles: an introduction to the algebra of knots / Mohamed Elhamdadi, Sam Nelson. pages cm. – (Student mathematical library ; volume 74) Includes bibliographical references and index. ISBN 978-1-4704-2213-4 (alk. paper) 1. Knot theory. 2. Low-dimensional topology. I. Nelson, Sam, 1974– II. Title. III. Title: Algebra of Knots. QA612.2.E44 2015 514.2242–dc23 2015012551 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. -
Weyl Quantization and Wigner Distributions on Phase Space
faculteit Wiskunde en Natuurwetenschappen Weyl quantization and Wigner distributions on phase space Bachelor thesis in Physics and Mathematics June 2014 Student: R.S. Wezeman Supervisor in Physics: Prof. dr. D. Boer Supervisor in Mathematics: Prof. dr H. Waalkens Abstract This thesis describes quantum mechanics in the phase space formulation. We introduce quantization and in particular the Weyl quantization. We study a general class of phase space distribution functions on phase space. The Wigner distribution function is one such distribution function. The Wigner distribution function in general attains negative values and thus can not be interpreted as a real probability density, as opposed to for example the Husimi distribution function. The Husimi distribution however does not yield the correct marginal distribution functions known from quantum mechanics. Properties of the Wigner and Husimi distribution function are studied to more extent. We calculate the Wigner and Husimi distribution function for the energy eigenstates of a particle trapped in a box. We then look at the semi classical limit for this example. The time evolution of Wigner functions are studied by making use of the Moyal bracket. The Moyal bracket and the Poisson bracket are compared in the classical limit. The phase space formulation of quantum mechanics has as advantage that classical concepts can be studied and compared to quantum mechanics. For certain quantum mechanical systems the time evolution of Wigner distribution functions becomes equivalent to the classical time evolution stated in the exact Egerov theorem. Another advantage of using Wigner functions is when one is interested in systems involving mixed states. A disadvantage of the phase space formulation is that for most problems it quickly loses its simplicity and becomes hard to calculate. -
MODERN MATHEMATICS 1900 to 1950
Free ebooks ==> www.Ebook777.com www.Ebook777.com Free ebooks ==> www.Ebook777.com MODERN MATHEMATICS 1900 to 1950 Michael J. Bradley, Ph.D. www.Ebook777.com Free ebooks ==> www.Ebook777.com Modern Mathematics: 1900 to 1950 Copyright © 2006 by Michael J. Bradley, Ph.D. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Chelsea House An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Bradley, Michael J. (Michael John), 1956– Modern mathematics : 1900 to 1950 / Michael J. Bradley. p. cm.—(Pioneers in mathematics) Includes bibliographical references and index. ISBN 0-8160-5426-6 (acid-free paper) 1. Mathematicians—Biography. 2. Mathematics—History—20th century. I. Title. QA28.B736 2006 510.92'2—dc22 2005036152 Chelsea House books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com Text design by Mary Susan Ryan-Flynn Cover design by Dorothy Preston Illustrations by Jeremy Eagle Printed in the United States of America MP FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper. -
Matrix Bases for Star Products: a Review?
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 086, 36 pages Matrix Bases for Star Products: a Review? Fedele LIZZI yzx and Patrizia VITALE yz y Dipartimento di Fisica, Universit`adi Napoli Federico II, Napoli, Italy E-mail: [email protected], [email protected] z INFN, Sezione di Napoli, Italy x Institut de Ci´enciesdel Cosmos, Universitat de Barcelona, Catalonia, Spain Received March 04, 2014, in final form August 11, 2014; Published online August 15, 2014 http://dx.doi.org/10.3842/SIGMA.2014.086 Abstract. We review the matrix bases for a family of noncommutative ? products based on a Weyl map. These products include the Moyal product, as well as the Wick{Voros products and other translation invariant ones. We also review the derivation of Lie algebra type star products, with adapted matrix bases. We discuss the uses of these matrix bases for field theory, fuzzy spaces and emergent gravity. Key words: noncommutative geometry; star products; matrix models 2010 Mathematics Subject Classification: 58Bxx; 40C05; 46L65 1 Introduction Star products were originally introduced [34, 62] in the context of point particle quantization, they were generalized in [9, 10] to comprise general cases, the physical motivations behind this was the quantization of phase space. Later star products became a tool to describe possible noncommutative geometries of spacetime itself (for a review see [4]). In this sense they have become a tool for the study of field theories on noncommutative spaces [77]. In this short review we want to concentrate on one particular aspect of the star product, the fact that any action involving fields which are multiplied with a star product can be seen as a matrix model. -
Scope of Various Random Number Generators in Ant System Approach for Tsp
AC 2007-458: SCOPE OF VARIOUS RANDOM NUMBER GENERATORS IN ANT SYSTEM APPROACH FOR TSP S.K. Sen, Florida Institute of Technology Syamal K Sen ([email protected]) is currently a professor in the Dept. of Mathematical Sciences, Florida Institute of Technology (FIT), Melbourne, Florida. He did his Ph.D. (Engg.) in Computational Science from the prestigious Indian Institute of Science (IISc), Bangalore, India in 1973 and then continued as a faculty of this institute for 33 years. He was a professor of Supercomputer Computer Education and Research Centre of IISc during 1996-2004 before joining FIT in January 2004. He held a Fulbright Fellowship for senior teachers in 1991 and worked in FIT. He also held faculty positions, on leave from IISc, in several universities around the globe including University of Mauritius (Professor, Maths., 1997-98), Mauritius, Florida Institute of Technology (Visiting Professor, Math. Sciences, 1995-96), Al-Fateh University (Associate Professor, Computer Engg, 1981-83.), Tripoli, Libya, University of the West Indies (Lecturer, Maths., 1975-76), Barbados.. He has published over 130 research articles in refereed international journals such as Nonlinear World, Appl. Maths. and Computation, J. of Math. Analysis and Application, Simulation, Int. J. of Computer Maths., Int. J Systems Sci., IEEE Trans. Computers, Internl. J. Control, Internat. J. Math. & Math. Sci., Matrix & Tensor Qrtly, Acta Applicande Mathematicae, J. Computational and Applied Mathematics, Advances in Modelling and Simulation, Int. J. Engineering Simulation, Neural, Parallel and Scientific Computations, Nonlinear Analysis, Computers and Mathematics with Applications, Mathematical and Computer Modelling, Int. J. Innovative Computing, Information and Control, J. Computational Methods in Sciences and Engineering, and Computers & Mathematics with Applications.