Sodium Valproate in Treatment of Epilepsy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning. -
Therapeutic Class Overview Anticonvulsants
Therapeutic Class Overview Anticonvulsants INTRODUCTION Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): ○ At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; ○ 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control and Prevention [CDC] 2018, Epilepsy Foundation 2016). ○ Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. ○ Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” . -
(12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety. -
Treatment of Myoclonus with Pheneturide
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.41.7.598 on 1 July 1978. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1978, 41, 598-602 Treatment of myoclonus with pheneturide C. D. WARD From the Royal Hospital, Sheffield S U M M A R Y Twenty-one patients with various forms of myoclonus are presented. Phena- cemide was given to five patients with considerable benefit to three, but with serious toxic effects in two. Another acetylurea derivative, pheneturide, was given to 19 patients and was well tolerated. Myoclonus was completely or substantially controlled in 12 patients. The term "myoclonus" may be applied to very between 1965 and 1976. They had displayed myo- abrupt involuntary movements which are neur- clonic jerks and had been treated with phena- onally determined, asynergic, and arrhythmic. An cemide or pheneturide. Of these patients, 16 were assortment of involuntary movements share these seen personally for review and three responded to characteristics but differ in their relationship to a questionnaire. Records of outpatient follow-up movement, relaxation, posture, or sensory stimuli, were available for one patient who had died and Protected by copyright. and in their anatomical disposition (Gasaut, 1968); for one who could not be traced. All had given a they may involve parts of muscles, whole muscles, history of repeated, instantaneous involuntary or, more usually, muscle groups. Such movements, movements and had reported at least one of the collectively termed myoclonus, are seen in a wide following: sudden jerks of the arms causing ob- variety of pathological conditions (Halliday, 1967) jects to fly out of the hands; sudden interruption and may often be associated with epilepsy. -
Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis With
University of Rhode Island DigitalCommons@URI Pharmacy Practice Faculty Publications Pharmacy Practice 2018 Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Antiepileptic Drugs: An Analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) Eric P. Borrelli University of Rhode Island, [email protected] Erica Y. Lee University of Rhode Island SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://digitalcommons.uri.edu/php_facpubs The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits oy u. This is a pre-publication author manuscript of the final, published article. Terms of Use This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use. Citation/Publisher Attribution Borrelli EP, Lee EY, Descoteaux AM, Kogut SJ, Caffrey AR. Stevens‐Johnson syndrome and toxic epidermal necrolysis with antiepileptic drugs: An analysis of the US Food and Drug Administration Adverse Event Reporting System. Epilepsia. 2018;00:1–7. https://doi.org/10.1111/epi.14591 Available at: https://doi.org/10.1111/epi.14591 This Article is brought to you for free and open access by the Pharmacy Practice at DigitalCommons@URI. It has been accepted for inclusion in Pharmacy Practice Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Eric P. Borrelli, Erica Y. Lee, Andrew M. Descoteaux, Stephen Jon Kogut, and Aisling R. Caffrey This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/php_facpubs/124 Title: Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Antiepileptic Drugs: An Analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) Authors: Eric P. -
"2-Oxo-1-Pyrrolidine Derivative and Its Pharmaceutical Uses"
(19) & (11) EP 1 452 524 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 207/27 (2006.01) A61K 31/4015 (2006.01) 14.10.2009 Bulletin 2009/42 A61P 25/08 (2006.01) (21) Application number: 04007878.4 (22) Date of filing: 21.02.2001 (54) "2-oxo-1-pyrrolidine derivative and its pharmaceutical uses" "2-Oxo-1-Pyrrolidinderivate und ihre pharmazeutische Verwendung" "Dérivé de 2-oxo-1-pyrrolidine et ses applications pharmaceutique" (84) Designated Contracting States: • Talaga, Patrice AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 1170 Watermael-Boitsfort (BE) MC NL PT SE TR (74) Representative: UCB (30) Priority: 23.02.2000 GB 0004297 Intellectual Property c/o UCB S.A. (43) Date of publication of application: Intellectual Property Department 01.09.2004 Bulletin 2004/36 Allée de la Recherche 60 1070 Brussels (BE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (56) References cited: 01925354.1 / 1 265 862 WO-A-99/13911 GB-A- 1 309 692 (73) Proprietor: UCB Pharma, S.A. • PROUS: "LEVETIRACETAM" DRUGS OF THE 1170 Brussels (BE) FUTURE, BARCELONA, ES, vol. 19, no. 2, 1994, pages 111-113, XP000908882 ISSN: 0377-8282 (72) Inventors: • FISCHER W ET AL: "Die Wirksamkeit von • Differding, Edmond Piracetam, Meclofenoxat und Vinpocetin in 1348 Ottignies-Louvain-La-Neuve (BE) verschiedenen Krampfmodellen bei der Maus" • Kenda, Benoît PHARMAZIE, VEB VERLAG VOLK UND 5080 Emines (BE) GESUNDHEIT. BERLIN, DD, vol. 46, no. -
FINAL STUDY PROTOCOL Utilisation of Antiepileptic Medicines in Girls
FINAL STUDY PROTOCOL Utilisation of antiepileptic medicines in girls and women of childbearing potential - a study in three European countries Prepared for the European Medicines Agency May 2017 Version 2.0 Approved 15th May 2017 EUROmediSAFE Consortium 1 TABLE OF CONTENTS Page 1. Background 3 2. Aims 4 3. Data sources 5 4. Methods 6 5. Statistical analyses 12 6. Sample size 15 7. Strengths and limitations 15 8. Study report and manuscript 17 9. Communication of study results 17 10. Ethical and data access approvals 17 11. Milestones 18 12. Quality control 18 13. Data access, storage and sharing 18 14. Protocol authors 20 15. Amendments and deviations from the protocol 20 Appendix I 21 2 1. BACKGROUND In October 2013, the Medicines and Healthcare Regulatory Authority issued a referral into the use of sodium valproate in girls and women of childbearing potential, following new evidence in the literature relating to an increased risk of neurodevelopmental disorders in children exposed to sodium valproate in-utero. The review was carried out by the Pharmacovigilance Risk Assessment Committee (PRAC) and in October 2014 the PRAC adopted its recommendation. Following completion of the review, a letter was sent to healthcare professionals in January 2015 informing them of the changes in the recommendations for valproate prescribing. The recommendations resulting from the review included that Valproate and related substances should not be used in female children, women of childbearing potential and pregnant women unless alternative treatments are ineffective or not tolerated. Valproate and related substances should be contraindicated in prophylaxis of migraine attacks in pregnancy and women of childbearing potential who are not using effective methods of contraception during treatment with valproate. -
Drugs Affecting the Central Nervous System
Drugs affecting the central nervous system 15. Antiepileptic drugs (AEDs) Epilepsy is caused by the disturbance of the functions of the CNS. Although epileptic seizures have different symptoms, all of them involve the enhanced electric charge of a certain group of central neurons which is spontaneously discharged during the seizure. The instability of the cell membrane potential is responsible for this spontaneous discharge. This instability may result from: increased concentration of stimulating neurotransmitters as compared to inhibiting neurotransmitters decreased membrane potential caused by the disturbance of the level of electrolytes in cells and/or the disturbance of the function of the Na+/K+ pump when energy is insufficient. 2 Mutations in sodium and potassium channels are most common, because they give rise to hyperexcitability and burst firing. Mutations in the sodium channel subunits gene have been associated with - in SCN2A1; benign familial neonatal epilepsy - in SCN1A; severe myoclonic epilepsy of infancy - in SCN1A and SCN1B; generalized epilepsy with febrile seizures The potassium channel genes KCNQ2 and KCNQ3 are implicated in some cases of benign familial neonatal epilepsy. Mutations of chloride channels CLCN2 gene have been found to be altered in several cases of classical idiopathic generalized epilepsy suptypes: child-epilepsy and epilepsy with grand mal on awakening. Mutations of calcium channel subunits have been identified in juvenile absence epilepsy (mutation in CACNB4; the B4 subunit of the L-type calcium channel) and idiopathic generalized epilepsy (CACN1A1). 3 Mutations of GABAA receptor subunits also have been detected. The gene encoding the 1 subunit, GABRG1, has been linked to juvenile myoclonic epilepsy; mutated GABRG2, encoding an abnormal subunit, has been associated with generalized epilepsy with febrile seizures and childhood absence epilepsy. -
The Risk of Specific Congenital Anomalies in Relation to Newer Antiepileptic Drugs
Drugs - Real World Outcomes (2016) 3:131–143 DOI 10.1007/s40801-016-0078-1 REVIEW ARTICLE The Risk of Specific Congenital Anomalies in Relation to Newer Antiepileptic Drugs: A Literature Review 1 2 1 Josta de Jong • Ester Garne • Lolkje T. W. de Jong-van den Berg • Hao Wang1 Published online: 24 May 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract found. The signals for associations between topiramate and Background More information is needed about possible cleft lip with/without cleft palate and hypospadias were associations between the newer anti-epileptic drugs considered strong. Associations between lamotrigine and (AEDs) in the first trimester of pregnancy and specific anencephaly and transposition of great vessels were found congenital anomalies of the fetus. within one study and were not supported by other studies. Objectives We performed a literature review to find sig- No signals were found for the other newer AEDs, or the nals for potential associations between newer AEDs information was too limited to provide such a signal. (lamotrigine, topiramate, levetiracetam, gabapentin, Conclusion In terms of associations between monotherapy oxcarbazepine, eslicarbazepine, felbamate, lacosamide, with a newer AED in the first trimester of pregnancy and a pregabalin, retigabine, rufinamide, stiripentol, tiagabine, specific congenital anomaly, the signals for topiramate and vigabatrin, and zonisamide) and specific congenital cleft lip with/without cleft palate and hypospadias should anomalies. be investigated further. Methods We searched PubMed and EMBASE to find observational studies with pregnancies exposed to newer AEDs and detailed information on congenital anomalies. Key Points The congenital anomalies in the studies were classified according to the congenital anomaly subgroups of Euro- Information was found on specific congenital pean Surveillance of Congenital Anomalies (EUROCAT). -
Antiepileptic Drugs: Evolution of Our Knowledge and Changes in Drug Trials
ILAE 110th anniversary review paper* Epileptic Disord 2019; 21 (4): 319-29 Antiepileptic drugs: evolution of our knowledge and changes in drug trials Emilio Perucca Past President of the International League Against Epilepsy Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation, Pavia, Italy Received April 30, 2019; Accepted June 01, 2019 ABSTRACT – Clinical trials provide the evidence needed for rational use of medicines. The evolution of drug trials follows largely the evolution of regulatory requirements. This article summarizes methodological changes in antiepileptic drug trials and associated advances in knowledge starting from 1938, the year phenytoin was introduced and also the year when evi- dence of safety was made a requirement for the marketing of medicines in the United States. The first period (1938-1969) saw the introduction of over 20 new drugs for epilepsy, many of which did not withstand the test of time. Only few well controlled trials were completed in that period and trial designs were generally suboptimal due to methodological constraints. The intermediate period (1970-1988) did not see the introduction of any major new medication, but important therapeutic advances took place due to improved understanding of the properties of available drugs. The value of therapeutic drug monitoring and monotherapy were recognized dur- ing the intermediate period, which also saw major improvements in trial methodology. The last period (1989-2019) was dominated by the introduc- tion of second-generation drugs, and further evolution in the design of monotherapy and adjunctive-therapy trials. The expansion of the pharma- cological armamentarium has improved opportunities for tailoring drug treatment to the characteristics of the individual. -
Report Update 2
Drug Class Review Antiepileptic Drugs for indications other than Epilepsy Final Report Update 2 October 2008 Original Report Date: December 2004 Update 1 Report Date: May 2006 A literature scan of this topic is done periodically The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Update 2 Marian Mcdonagh, PharmD. Kim Peterson, MS. Nancy Lee, PharmD. Sujata Thakurta, MPA:HA Oregon Evidence-based Practice Center Oregon Health & Science University Mark Helfand, MD, MPH, Director Original Report and Update 1 Southern California Evidence-based Practice Center RAND Paul Shekelle, MD, PhD, Director Copyright © 2008 by Oregon Health & Science University Portland, Oregon 97201. All rights reserved Note: A scan of the medical literature relating to the topic is done periodically (see http://www.ohsu.edu/ohsuedu/research/policycenter/DERP/about/methods.cfm for scanning process description). The Drug Effectiveness Review Project governance group elected to proceed with another update of this report based on the information contained in the scan. Please see timeline on the DERP website for details on the date of its release. Prior versions of this report can be -
Folavit 5 Mg Tablets
1. NAME OF THE MEDICINAL PRODUCT Folavit 1 mg tablets Folavit 5 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Folavit 1 mg tablets Each tablet contains 1 mg folic acid. Excipients with known effect: each tablet contains 72,2 mg lactose (as monohydrate) and 8,3 mg sucrose. For the full list of excipients, see section 6.1. Folavit 5 mg tablets Each tablet contains 5 mg folic acid. Excipients with known effect: each tablet contains 68,4 mg lactose (as monohydrate) and 8,3 mg sucrose. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Tablet Folavit 1 mg tablets Light yellow or light yellow orange speckled, round, biconvex tablet of 7 mm with a score-line on one side. The tablet can be divided into two equal doses. Folavit 5 mg tablets Yellow or yellow orange speckled, round, biconvex tablet of 7 mm with a score-line on one side. The tablet can be divided into two equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Folavit is indicated in adults and children. - Reduction of side effects in patients receiving low-dose methotrexate therapy for rheumatoid arthritis, psoriasis and inflammatory bowel disease. - Prevention or treatment of folate deficiency, which may cause macrocytic anemia. Folate deficiency is associated with elevated homocysteine levels. Various conditions can cause folate deficiency: - Inadequate dietary intake (e.g. malnutrition in the elderly) - Malabsorption (e.g. coeliac disease, bariatric surgery, inflammatory bowel disease, alcoholism) - Increased utilization (e.g. pregnancy, lactation, hemolytic anemia) - Increased loss (e.g. hemodialysis) 1 - Intake of medications (e.g.