Keysight 11713B/C Attenuator/Switch Driver

Total Page:16

File Type:pdf, Size:1020Kb

Keysight 11713B/C Attenuator/Switch Driver Keysight 11713B/C Attenuator/Switch Driver Operating and Service Manual Notices U.S. Government Rights Warranty The Software is “commercial computer soft- THE MATERIAL CONTAINED IN THIS DOCU- Copyright Notice ware,” as defined by Federal Acquisition Regu- MENT IS PROVIDED “AS IS,” AND IS SUBJECT lation (“FAR”) 2.101. Pursuant to FAR 12.212 TO BEING CHANGED, WITHOUT NOTICE, IN © Keysight Technologies 2007-2020 and 27.405-3 and Department of Defense FAR FUTURE EDITIONS. FURTHER, TO THE MAXI- No part of this manual may be reproduced in Supplement (“DFARS”) 227.7202, the U.S. MUM EXTENT PERMITTED BY APPLICABLE any form or by any means (including electronic government acquires commercial computer LAW, KEYSIGHT DISCLAIMS ALL WARRAN- storage and retrieval or translation into a for- software under the same terms by which the TIES, EITHER EXPRESS OR IMPLIED, WITH eign language) without prior agreement and software is customarily provided to the public. REGARD TO THIS MANUAL AND ANY INFOR- written consent from Keysight Technologies as Accordingly, Keysight provides the Software to MATION CONTAINED HEREIN, INCLUDING governed by United States and international U.S. government customers under its standard BUT NOT LIMITED TO THE IMPLIED WARRAN- copyright laws. commercial license, which is embodied in its TIES OF MERCHANTABILITY AND FITNESS End User License Agreement (EULA), a copy of FOR A PARTICULAR PURPOSE. KEYSIGHT Manual Part Number which can be found at http://www.key- SHALL NOT BE LIABLE FOR ERRORS OR FOR 11713-90024 sight.com/find/sweula. The license set forth in INCIDENTAL OR CONSEQUENTIAL DAMAGES the EULA represents the exclusive authority by IN CONNECTION WITH THE FURNISHING, Edition which the U.S. government may use, modify, USE, OR PERFORMANCE OF THIS DOCU- Edition 4, December 4, 2020 distribute, or disclose the Software. The EULA MENT OR OF ANY INFORMATION CONTAINED and the license set forth therein, does not HEREIN. SHOULD KEYSIGHT AND THE USER Printed in: require or permit, among other things, that HAVE A SEPARATE WRITTEN AGREEMENT Keysight: (1) Furnish technical information WITH WARRANTY TERMS COVERING THE Printed in Malaysia related to commercial computer software or MATERIAL IN THIS DOCUMENT THAT CON- Published by: commercial computer software documenta- FLICT WITH THESE TERMS, THE WARRANTY tion that is not customarily provided to the TERMS IN THE SEPARATE AGREEMENT Keysight Technologies public; or (2) Relinquish to, or otherwise pro- SHALL CONTROL. Bayan Lepas Free Industrial Zone, vide, the government rights in excess of these 11900 Penang, Malaysia rights customarily provided to the public to Safety Information use, modify, reproduce, release, perform, dis- Technology Licenses play, or disclose commercial computer soft- CAUTION The hardware and/or software described in ware or commercial computer software this document are furnished under a license documentation. No additional government A CAUTION notice denotes a hazard. It calls and may be used or copied only in accordance requirements beyond those set forth in the attention to an operating procedure, practice, with the terms of such license. EULA shall apply, except to the extent that or the like that, if not correctly performed or those terms, rights, or licenses are explicitly Declaration of Conformity adhered to, could result in damage to the required from all providers of commercial product or loss of important data. Do not pro- computer software pursuant to the FAR and Declarations of Conformity for this product ceed beyond a CAUTION notice until the indi- the DFARS and are set forth specifically in and for other Keysight products may be down- cated conditions are fully understood and met. loaded from the Web. Go to http://www.key- writing elsewhere in the EULA. Keysight shall sight.com/go/conformity. You can then search be under no obligation to update, revise or by product number to find the latest Declara- otherwise modify the Software. With respect WARNING tion of Conformity. to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and A WARNING notice denotes a hazard. It calls DFARS 227.7102, the U.S. government attention to an operating procedure, practice, acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), or the like that, if not correctly performed or as applicable in any technical data. adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met. 2 Keysight 11713B/C Operating and Service Manual Certification Keysight Technologies certifies that this product met its published specifications at the time of shipment from the factory. Keysight Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (NIST, formerly NBS), to the extend allowed by the Institute’s calibration facility, and to the calibration facilities of the other International Standards Organization members. Keysight 11713B/C Operating and Service Manual 3 Safety Considerations The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Keysight Technologies assumes no liability for the customer's failure to comply with these requirements. WARNING BEFORE APPLYING POWER – Verify that the correct fuse is installed. – Ensure the mains supply voltage fluctuation do not exceed ±10% of the nominal supply voltage. WARNING GROUND THE INSTRUMENT This product is a Safety Class I instrument (provided with a protective earth terminal). To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument must be connected to the AC power supply mains through a three-conductor power cable, with the third wire firmly connected to an electrical ground (safety ground) at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury. If the instrument is to be energized via an external autotransformer for voltage reduction, be certain that the autotransformer common terminal is connected to the neutral (earthed pole) of the AC power lines (supply mains). WARNING DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE OR WET ENVIRONMENTS Do not operate the device around flammable gases or fumes, vapor, or wet environments. WARNING DO NOT OPERATE DAMAGED OR DEFECTIVE INSTRUMENTS Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel. WARNING DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Keysight Technologies Sales and Service Office for service and repair to ensure that safety features are maintained. WARNING USE THE POWER CORD PROVIDED Use the device with the power cord provided with the shipment. 4 Keysight 11713B/C Operating and Service Manual WARNING USE THE DEVICE AS SPECIFIED If the device is used in a manner not specified by manufacturer, the device protection may be impaired. WARNING Keysight 11713B/C attenuator/switch drivers are designed for indoor use and in an area with low condensation. CAUTION CLEAN WITH SLIGHTLY DAMPENED CLOTH Clean the outside of the instrument with a soft, lint-free, slightly dampened cloth. Do not use detergent, volatile liquids, or chemical solvents. CAUTION The instrument is designed for use in Overvoltage Category II and Pollution Degree 2. Safety Symbols The following symbols on the instrument and in the documentation indicate precautions which must be taken to maintain safe operation of the instrument. When you see this symbol on your instrument, This symbol indicates that the instrument you should refer to the instrument’s instruction requires alternating current (ac) input. manual for important information. This symbol indicates the protective earth This symbol indicates the Fuse. (ground) terminal. Keysight 11713B/C Operating and Service Manual 5 Regulatory Markings The CE mark is a registered trademark of the The CSA mark is a registered trademark of the European Community. If it is accompanied by a Canadian Standards Association. year, it indicates the year the design was proven. ICES/NMB-001 indicates that this ISM device This text indicates that the instrument is an complies with the Canadian ICES-001. Industrial Scientific and Medical Group 1 Class A Cet appareil ISM est conforme a la norme product (CISPR 11, Clause 4). NMB-001 du Canada. This symbol indicates the time period during which no hazardous or toxic substance elements The RCM mark is a registered trademark of the are expected to leak or deteriorate during normal Australian Communications and Media Authority. use. Forty years is the expected useful life of the product. This symbol is a South Korean Class A EMC Declaration. This equipment is Class A suitable for professional use and is for use in electromagnetic environments outside of the home. KCC-REM-ATi- WN11713B South Korean Class A EMC Declaration Information to the user: This instrument has been conformity
Recommended publications
  • Cmos-Based Amplitude and Phase Control Circuits Designed for Multi
    CMOS-BASED AMPLITUDE AND PHASE CONTROL CIRCUITS DESIGNED FOR MULTI-STANDARD WIRELESS COMMUNICATION SYSTEMS A Dissertation Presented to The Academic Faculty by Yan-Yu Huang In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology August 2011 Copyright© Yan-Yu Huang 2011 CMOS-BASED AMPLITUDE AND PHASE CONTROL CIRCUITS DESIGNED FOR MULTI-STANDARD WIRELESS COMMUNICATION SYSTEMS Approved by: Dr. J. Stevenson Kenney, Advisor Dr. Thomas G. Habetler School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Kevin T. Kornegay Dr. Paul A. Kohl School of Electrical and Computer School of Chemical and Biomolecular Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Chang-Ho Lee Date Approved: June 29, 2011 School of Electrical and Computer Engineering Georgia Institute of Technology 1. ACKNOWLEDGEMENTS I would like to express my gratitude to my advisor, Professor James Stevenson Kenney, for his excellent guidance and all the suggestions that help me conduct the research, solve the problems, and improve my dissertation. I would also like to thank my committee members: Professor Kevin T. Kornegay, Professor Thomas G. Habetler, Professor Paul A. Kohl, and Dr. Chang-Ho Lee for their time in reviewing my dissertation and all the invaluable suggestions. I would also like to express my appreciation to the leaders in various projects I was involved during the past four years, Dr. Joy Laskar, Dr. Chang-Ho Lee, and Dr. Wangmyoong Woo. Their valuable comments on my work and relative knowledge about the project have been a tremendous help to me.
    [Show full text]
  • 6. Attenuators and Switches the State of the Switch Is Controlled by Some
    9/29/2006 Attenuators and Switches notes 1/1 6. Attenuators and Switches The state of the switch is controlled by some digital logic, and there is a different scattering matrix for each state. HO: Microwave Switches HO: The Microwave Switch Spec Sheet We can combine fixed attenuators with microwave switches to create very important and useful devices—the variable (digital) attenuator. HO: Attenuators HO: The Digital Attenuator Spec Sheet We typically make switches and voltage controlled attenuators with PIN diodes. If you are interested, you might check out the handout below (no, this handout below will not be on any exam!). HO: PIN Diodes Jim Stiles The Univ. of Kansas Dept. of EECS 9/29/2006 Microwave Switches 1/4 Microwave Switches Consider an ideal microwave SPDT switch. 1 Z0 3 2 control Z0 The scattering matrix will have one of two forms: ⎡⎤001 ⎡⎤ 000 ==⎢⎥ ⎢⎥ SS13⎢⎥000 23 ⎢⎥ 001 ⎣⎦⎢⎥100 ⎣⎦⎢⎥ 010 where S13 describes the device when port 1 is connected to port 3: 1 Z0 3 2 control Z0 Jim Stiles The Univ. of Kansas Dept. of EECS 9/29/2006 Microwave Switches 2/4 and where S23 describes the device when port 2 is connected to port 3: 1 Z0 3 2 Z control 0 These ideal switches are called matched, or absorptive switches, as ports 1 and 2 remain matched, even when not connected. This is in contrast to a reflective switch, where the disconnected port will be perfectly reflective, i.e., ⎡⎤001⎡e jφ 00⎤ ⎢ ⎥ ==⎢⎥jφ SS13⎢⎥00e 23 ⎢ 001⎥ ⎣⎦⎢⎥100⎣⎢ 010⎦⎥ where of course e jφ = 1.
    [Show full text]
  • ! ! ! 4.14 Impedance Transformation Equation
    IMPEDANCE TRANSFORMATION EQUATION 101 4.14 IMPEDANCE TRANSFORMATION EQUATION One of the most common tasks in microwave engineering is the determination of how a load impedance ZL is transformed to a new input impedance ZIN by a length of uniform transmission line of characteristic impedance Z0 and electri- cal length y (Fig. 4.14-1). To simplify this derivation, we assume that the line length is lossless. With the choice of x ¼ 0 at the load, the input to the line is at x ¼l, and the input impedance there is jbl Àjbl V ðx ¼lÞ e þ GLe Z Z x l Z 4:14-1 IN ¼ ð ¼Þ¼ ¼ 0 jbl Àjbl ð Þ I ðx ¼lÞ e À GLe jbl Now substitute GL ¼ðZL À Z0Þ=ðZL þ Z0Þ, bl ¼ y, the identities e ¼ cos bl þ j sin bl and eÀjbl ¼ cos bl À j sin bl into (4.14-1), and remove cancel- ing terms to get 2ZL cos y þ j2Z0 sin y ZIN ¼ Z0 2Z0 cos y þ j2ZL sin y ð4:14-2Þ ZL þ jZ0 tan y ZIN ¼ Z0 Z0 þ jZL tan y Similar reasoning can be used to evaluate the input impedance when the trans- mission line has finite losses. The result is ZL þ Z0 tanh gl ZIN ¼ Z0 ð4:14-3Þ Z0 þ ZL tanh gl This is one of the most important equations in microwave engineering and is called the impedance transformation equation. Remarkably, (4.14-2) and (4.14-3) have exactly the same format when derived in terms of admittance.
    [Show full text]
  • Attenuation & Attenuator
    ATTENUATION & ATTENUATOR Definitions Attenuation is the reduction in amplitude and intensity of a signal. An attenuator is an electronic device that reduces the amplitude or power of a signal without appreciably distorting its waveform. Basics Attenuation is the reduction in amplitude and intensity of a signal. Signals may be attenuated exponentially by transmission through a medium, in which case attenuation is usually reported in dB with respect to distance traveled through the medium. Attenuation can also be understood to be the opposite of amplification. Attenuation is an important property in telecommunications and ultrasound applications because of its importance in determining signal strength as a function of distance. Attenuation is usually measured in units of decibels per unit length of medium (dB/cm, dB/km, etc) and is represented by the attenuation coefficient of the medium in question. Ultrasound One area of research in which attenuation figures strongly is in ultrasound physics. Attenuation in ultrasound is the reduction in amplitude of the ultrasound beam as a function of distance through the imaging medium. Accounting for attenuation effects in ultrasound is important because a reduced signal amplitude can affect the quality of the image produced. By knowing the attenuation that an ultrasound beam experiences travelling through a medium, one can adjust the input signal amplitude to compensate for any loss of energy at the desired imaging depth. Ultrasound attenuation measurement in heterogeneous systems, like emulsions or colloids yields information on particle size distribution. There is ISO standard on this technique . Ultrasound attenuation can be used for extensional rheology measurement. There are acoustic rheometers that employ Stokes' law for measuring extensional viscosity and volume viscosity.
    [Show full text]
  • Chapter 7 Two-Port Network
    Chapter 7 Two-port network 7.1 Impedance parameters definition, examples 7.2 Admittance parameters definition, examples 7.3 Hybrid parameters definition, examples 7.4 Transmission parameters definition, examples 7.5 Conversion of the impedance, admittance, chain, and hybrid parameters 7.6 Scattering parameters definition, characteristics, examples 7.7 Conversion from impedance, admittance, chain, and hybrid parameters to scattering parameters or vice versa 7.8 Chain scattering parameters 7-1 微波工程講義 7.1 Impedance parameters I1 I2 Basics linear 1. V1 port 1 port 2 V2 network [V ]= [Z ][][]I , I : source, [V ]: response V Z Z I V = Z I + Z I reference reference 1 = 11 12 1 , 1 11 1 12 2 = + plane 1 plane 2 V2 Z 21 Z 22 I 2 V2 Z 21I1 Z 22 I 2 V = 1 Z11 : open - circuit input impedance at port 1 I1 = I2 0 V = 1 Z12 : open - circuit reverse transimpedance I 2 = I1 0 V = 2 Z 21 : open - circuit forward transimpedance I1 = I2 0 V = 2 Z 22 : open - circuit input impedance at port 2 I 2 = I1 0 7-2 微波工程講義 Lecture 4 How to Determine Z Parameters? =⋅+⋅ I = 0 VZIZI11111222 ==VV12 ZZ11 21 =⋅+⋅ II11== VZIZI2211222 II2200 = I1 0 ==VV21 ZZ22 12 II22== II1100 I1=0 I2 Z22 Two Port Reciprocity: O.C. V1 V Network 2 = Z12Z 21 1/9/2003 2 Lecture 4. ELG4105: Microwave Circuits © S. Loyka, Winter 2003 Discussion I1 I2 V 6I = = Ω = 1 = 2 = 1. Ex.7.1 Z11 Z 22 6 , Z12 6 I 2 = I 2 I1 0 6Ω V 6I 6 6 V1 V2 Z = 2 = 1 = 6,[]Z = 21 1 6 6 I1 I =0 I1 2.
    [Show full text]
  • A Practical Guide to Decibels
    A Practical Guide to Decibels A Companion to The Art of Electronics Student Manual Lab 2 UCSD Physics 120A David Kleinfeld [email protected], Han Lin [email protected] Simply put, a decibel is a way to express a ratio. §1. Power Ratios We will first consider a ratio of powers. The formula to memorize and take to your deathbed is: Here, the square brackets mean “units of dB”. Notice that this formula is easy to remember because it has lots of tens, hence the “deci-” in “decibels”. Example 1-1: An attenuator is anything that takes in a signal and spits out a weaker one. Consider the attenuator below. How many dB’s of attenuation does this attenuator provide? Figure 1 In this problem, our power ratio is output power over input power, often simply known as power gain . We have learned something important (memorize this!) from the above example: A Practical Guide to Decibels 2 Question 1-1: An amplifier has a power gain of 2 (if you put in one watt, you will get out two watts). How many dB’s of power gain does this amp provide? ANSWER: +3 dB Question 1-2: You have a -10 dB attenuator. What is P out /P in ? ANSWER: 1/10 Figure 2 §2. Voltage Ratios In low frequency electronics, we are typically more concerned with voltages than power. However, the decibel is defined with respect to power. How can we use decibels for voltage ratios? Recalling that P = V 2/R, A Practical Guide to Decibels 3 Example 2-1: An RC filter provides -3 dB of voltage attenuation at a particular frequency.
    [Show full text]
  • Langevin Mixing Console
    An Olde School Langevin Mixer Rick Chinn – Uneeda Audio This is a classic mixer with fixed gain blocks, slidewire faders, passive mixing networks, passive equalizers, etc. EVERYTHING IS PATCHED. THERE ARE NO NORMALS. No patch cords, no audio. Call it job security. The patching, etc. IS the mixer's block diagram, engraved right into the front panel. If you’re not comfortable with signal flow concepts, then this might be quite daunting. The signal path is completely minimalist. The origins of the design are straight out of the Langevin catalog, but the notion of putting the one-line block diagram on the panel came from Paul Veneklasen, who was an olde-school acoustician down in Santa Monica CA. He designed several auditoriums with sound systems here in Seattle, and his systems always took the form of multiple panels, with the block diagram engraved on them, so that anyone (knowledgeable) stepping up could figure out how things were connected. Glenn White Jr. worked with Veneklasen on these projects and he did the acoustics for Kearney's new studio on 5th Avenue in Seattle, and designed and built this console to go with it. Revision A.2 8/9/2010 1 The faders are Langevins, as are the equalizers and rotary attenuators, and (of course) the 21 AM-16 amplifiers. Connections that would usually be wired/patched together are located next to each other, but they must be physically patched in order to be connected. EVERYTHING is 600- ohms input and output (sorta). Overview Originally the studio was 3-track, and that's the form that the mixer takes.
    [Show full text]
  • Building the Amplifier Measuring Attenuator Background You Can Use a Sound Card to Measure Amplifier Distortion
    Building the Amplifier Measuring Attenuator Background You can use a sound card to measure amplifier distortion. A standard sound card only accepts about 1 volt RMS before it overloads. If you put a much more than 1 volt RMS into the sound card’s A2D, you can damage it. This article describes how to build a combination of a switchable attenuator and protection circuit. The switchable attenuator drops the signal level enough to keep from overloading the A2D. The protection circuit keeps the amp from damaging the A2D no matter which attenuator setting you select. Circuit Description Figure 1 shows the circuit of the switchable attenuator and protector. The amplifier under test connects to the RCA jack on the left side of the schematic. From there, the signal connects to a 6-position selector switch. The attenuation of the switch increases as the selector turns counter-clockwise. Consider what happens when the switch is fully clock-wise. The input signal from the amp under test connects through the (-6) labeled position of the switch, R2 and R1. R2 and R1 form a voltage divider that cuts the signal level in half, an attenuation of -6 dB. The two green LEDs look like open circuits so long as the voltage across them is less than about 1.4 volt. Thus the -6 position can accommodate amplifier outputs of up to about 1 or two volts RMS. If you’ve adjusted the amplifier for more output than 1 or 2 volts RMS, you’ll have to move the switch counter clockwise. In the (-12) position, the signal is applier to R4.
    [Show full text]
  • Highly Linear Attenuator and Mixer for Wide-Band TOR in CMOS
    Hind Dafallah Highly Linear Attenuator and Mixer for Wide-Band for Mixer and Attenuator Linear Highly Master’s Thesis Highly Linear Attenuator and Mixer for Wide-Band TOR in CMOS Hind Dafallah TOR in CMOSTOR in Series of Master’s theses Department of Electrical and Information Technology LU/LTH-EIT 2016-507 Department of Electrical and Information Technology, http://www.eit.lth.se Faculty of Engineering, LTH, Lund University, 2016. Printed in Sweden E-huset, Lund, 2016 Abstract In this thesis work, a highly linear passive attenuator and mixer were designed to be used in a wide-band Transmission Observation Receiver (TOR). The TOR is a low IF receiver that accepts RF frequencies from 2GHz to 7GHz, and produces corresponding IF bandwidths of 280MHz to 990MHz respectively, using low side LO injection. The dynamic range is maximized by using passive topologies for both the attenuator and the mixer. The system is dealing with different power levels ranging from -30dBm to +1dBm, and hence, a programmable digital step attenuator is used to attenuate large signals. It provides a maximum of 31dB of attenuation in 1dB steps. Different mixer architectures were compared, including CMOS mixer, mixer with dummy switches and quadrature mixer. Also, the performance of the mixer in both voltage mode and current mode was investigated. A double balanced passive mixer in voltage mode, with dummy switches was adopted in the final system since it proved to be the best in terms of meeting the requirements. The work was carried out in Ericsson in Lund, using Cadence, 65nm process. The circuit is true differential and it uses a supply voltage of 1.2V.
    [Show full text]
  • A/Tee Pretision Attenuators and Networks
    ATTENUATORS AND A/teePretision Attenuators and Networks NETWORKS VU Extenders Bridging Pads Rotary Atte nuators Gi- Typical 9200 Seri es A/tee Con sole Utilizing Components from this Catalog Mixing Networks Loss Pad s Straight Line Attenuators ALTEC prec1s,on Attenuators and Networks ar e e ngin ee red in accordance with classic design techniques. The finest materials , combined with exper ienced craftsmanship, give extreme re liabili ty . ALTEC Attenuators and Networks ar e made in three basic cla ssificat ions: ( 1) Fixed (2) Rotary (3) Straight lin e. This catalo g lists 14 differ e nt categori es . Every " Passive Loss" de vice required in the construct ion of professiona l speech input equ ipm ent is now avai labl e from a single source. TABLEOF CONTENTS Pa ge Page Page General I nformoti on 2 Calibrated Grid Cont ro l Pote ntiometers: Rotar y Differential Attenuators: RA8811 Series . 8 Or der ing Information 3 RP8600 -8606, RP8621-8627, RP8640-8643 Series 6 VU Met e r Range Extend e rs: Imp edance Cod e 3 9 Precis ion Deco de Attenua tors: VUS0l0-80 11, VU8700-87 12 Ser ies Straight l ine Atte nuators (Primarily use d in DA8735-8746 Series 7 Mixer Networks: MN8000 Series ........... ............. 10 Mixing Circuit s): SM8272-8281 and SM8324-8327 Series 4 Precision Variable Imp edanc e Matching Fixed l oss Pa ds: LP8000 Series .... 11 7 Rotary Attenuators ( Primari ly used in Network s: PN8747-8754 Ser ies Bridging Pads: BP8000 Series ............. ........... 11 Mixing Circuit s): RM8200-8223 and Motion Pictur e Proj ecti on and Turntable Minimum Loss Matching Pads :.
    [Show full text]
  • RF Diode Design Guide Skyworks Solutions
    RF Diode Design Guide Skyworks Solutions Skyworks Solutions, Inc. is an innovator of high reliability analog and mixed signal semiconductors. Leveraging core technologies, Skyworks offers diverse standard and custom linear products supporting automotive, broadband, cellular infrastructure, energy management, industrial, medical, military and mobile handset applications. The Company’s portfolio includes amplifiers, attenuators, detectors, diodes, directional couplers, front-end modules, hybrids, infrastructure RF subsystems, mixers/demodulators, phase shifters, PLLs/synthesizers/VCOs, power dividers/combiners, receivers, switches and technical ceramics. Headquartered in Woburn, Massachusetts, USA, Skyworks is worldwide with engineering, manufacturing, sales and service facilities throughout Asia, Europe and North America. New products are continually being introduced at Skyworks. For the latest information, visit our Web site at www.skyworksinc.com. For additional information, please contact your local sales office or email us [email protected] . The Skyworks Advantage ■ Broad front-end module and precision analog product portfolio ■ Market leadership in key product segments ■ Solutions for all air interface standards, including CDMA2000, GSM/GPRS/EDGE, LTE, WCDMA and WLAN ■ Engagements with a diverse set of top-tier customers ■ Analog, RF and mixed-signal design capabilities ■ Access to all key process technologies: GaAs HBT, PHEMT, BiCMOS, SiGe, CMOS, RF CMOS and Silicon ■ World-class manufacturing capabilities and scale ■ Unparalleled level of customer service and technical support ■ Commitment to technology innovation 2 WWW.SKYWORKSINC.COM Table of Contents About This Guide Proven Performance and Leadership Diode Product Portfolio Overview . 4 As a world-class supplier of RF microwave components for The Radio Transceiver . 5 today’s wireless communication systems, Skyworks continues to deliver the highest performance silicon and GaAs discrete Receiver Protector .
    [Show full text]
  • Ten Essential Skills for Electrical Engineers / Barry L
    Contents Cover Title Page Copyright Dedication Preface Acknowledgments About the Author About the Reviewers Note to Instructors ONE SEMESTER COURSE ONE-QUARTER COURSE 1: How to Design Resistive Circuits 1.1 DESIGN OF A RESISTIVE THEVENIN SOURCE 1.2 DESIGN OF A COUPLING CIRCUIT 1.3 DESIGN OF A PI ATTENUATOR PROBLEMS 2 REFERENCES 2: How to Prevent a Power Transistor From Overheating 2.1 ELECTRICAL MODEL FOR HEAT TRANSFER 2.2 USING MANUFACTURER’S DATA FOR THERMAL ANALYSIS 2.3 FORCED-AIR COOLING 2.4 DYNAMIC RESPONSE OF A THERMAL SYSTEM PROBLEMS REFERENCE 3: How to Analyze a Circuit 3.1 FREQUENCY RESPONSE OF A TRANSFER FUNCTION 3.2 FREQUENCY RESPONSE AND IMPEDANCE OF SIMPLE CIRCUITS 3.3 FREQUENCY RESPONSE FOR LADDER NETWORKS 3.4 GENERALIZED TECHNIQUE FOR DETERMINING FREQUENCY RESPONSE PROBLEMS 3 REFERENCES 4: How to Use Statistics to Ensure a Manufacturable Design 4.1 INDEPENDENT COMPONENT FAILURES 4.2 USING THE GAUSSIAN DISTRIBUTION 4.3 SETTING A MANUFACTURING TEST LIMIT 4.4 PROCURING A CUSTOM COMPONENT PROBLEMS REFERENCES 5: How to Design a Feedback Control System 5.1 INTUITIVE DESCRIPTION OF A CONTROL SYSTEM 5.2 REVIEW OF CONTROL SYSTEM OPERATION 5.3 PERFORMANCE OF CONTROL SYSTEMS 5.4 FIRST-ORDER CONTROL SYSTEM DESIGN 5.5 SECOND-ORDER CONTROL SYSTEM DESIGN 5.6 CIRCUIT REALIZATION OF A SECOND-ORDER CONTROL SYSTEM 5.7 FIRST-ORDER DISCRETE CONTROL SYSTEM PROBLEMS 4 REFERENCES 6: How to Work with OP-AMP Circuits 6.1 THE IDEAL OP-AMP 6.2 PRACTICAL OP-AMPS PROBLEMS REFERENCES 7: How to Design Analog Filters 7.1 PASSIVE VERSUS ACTIVE FILTERS 7.2
    [Show full text]