Ten Essential Skills for Electrical Engineers / Barry L

Total Page:16

File Type:pdf, Size:1020Kb

Ten Essential Skills for Electrical Engineers / Barry L Contents Cover Title Page Copyright Dedication Preface Acknowledgments About the Author About the Reviewers Note to Instructors ONE SEMESTER COURSE ONE-QUARTER COURSE 1: How to Design Resistive Circuits 1.1 DESIGN OF A RESISTIVE THEVENIN SOURCE 1.2 DESIGN OF A COUPLING CIRCUIT 1.3 DESIGN OF A PI ATTENUATOR PROBLEMS 2 REFERENCES 2: How to Prevent a Power Transistor From Overheating 2.1 ELECTRICAL MODEL FOR HEAT TRANSFER 2.2 USING MANUFACTURER’S DATA FOR THERMAL ANALYSIS 2.3 FORCED-AIR COOLING 2.4 DYNAMIC RESPONSE OF A THERMAL SYSTEM PROBLEMS REFERENCE 3: How to Analyze a Circuit 3.1 FREQUENCY RESPONSE OF A TRANSFER FUNCTION 3.2 FREQUENCY RESPONSE AND IMPEDANCE OF SIMPLE CIRCUITS 3.3 FREQUENCY RESPONSE FOR LADDER NETWORKS 3.4 GENERALIZED TECHNIQUE FOR DETERMINING FREQUENCY RESPONSE PROBLEMS 3 REFERENCES 4: How to Use Statistics to Ensure a Manufacturable Design 4.1 INDEPENDENT COMPONENT FAILURES 4.2 USING THE GAUSSIAN DISTRIBUTION 4.3 SETTING A MANUFACTURING TEST LIMIT 4.4 PROCURING A CUSTOM COMPONENT PROBLEMS REFERENCES 5: How to Design a Feedback Control System 5.1 INTUITIVE DESCRIPTION OF A CONTROL SYSTEM 5.2 REVIEW OF CONTROL SYSTEM OPERATION 5.3 PERFORMANCE OF CONTROL SYSTEMS 5.4 FIRST-ORDER CONTROL SYSTEM DESIGN 5.5 SECOND-ORDER CONTROL SYSTEM DESIGN 5.6 CIRCUIT REALIZATION OF A SECOND-ORDER CONTROL SYSTEM 5.7 FIRST-ORDER DISCRETE CONTROL SYSTEM PROBLEMS 4 REFERENCES 6: How to Work with OP-AMP Circuits 6.1 THE IDEAL OP-AMP 6.2 PRACTICAL OP-AMPS PROBLEMS REFERENCES 7: How to Design Analog Filters 7.1 PASSIVE VERSUS ACTIVE FILTERS 7.2 THE LOWPASS RC FILTER 7.3 FILTER RESPONSE CHARACTERISTICS 7.4 SPECIFICATION OF FILTER TYPE 7.5 GENERALIZED FILTER DESIGN PROCEDURE 7.6 DESIGN OF ACTIVE LOWPASS FILTERS 7.7 DESIGN OF PASSIVE RF FILTERS PROBLEMS REFERENCES 8: How to Design Digital Filters 5 8.1 REVIEW OF SAMPLING 8.2 USING THE Z-TRANSFORM TO DETERMINE THE TRANSFER FUNCTION AND FREQUENCY RESPONSE OF DIGITAL FILTERS 8.3 FIR AND IIR DIGITAL FILTERS 8.4 DESIGN OF SIMPLE AND PRACTICAL DIGITAL FILTERS PROBLEMS REFERENCES 9: How to Work with RF Signals 9.1 ENERGY TRANSFER 9.2 SIGNAL REFLECTIONS 9.3 EFFECT OF SIGNAL REFLECTIONS ON DIGITAL SIGNALS 9.4 EFFECT OF SIGNAL REFLECTIONS ON NARROWBAND SIGNALS 9.5 THE SMITH CHART 9.6 USING THE SMITH CHART TO DISPLAY IMPEDANCE VERSUS FREQUENCY 6 9.7 FINAL COMMENTS REGARDING THE SMITH CHART PROBLEMS REFERENCES 10: Getting a Job—Keeping a Job—Enjoying Your Work 10.1 GETTING A JOB 10.2 KEEPING A JOB 10.3 ENJOYING YOUR WORK Afterword Answers to Problems Index 7 8 Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or 9 any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Dorr, Barry L., 1958- Ten essential skills for electrical engineers / Barry L. Dorr. pages cm Includes bibliographical references and index. ISBN 978-1-118-52742-9 (pbk.) 1. Electrical engineering–Problems, exercises, etc. 2. Electrical engineering–Vocational guidance. I. Title. TK169.D67 2014 621.38–dc23 2013026573 10 This book is dedicated to my father, Roger Dorr, who shared with me his love of all things mechanical, electrical, and musical. It is dedicated to my wife, Judy, who brings joy to me and all whom she touches. 11 PREFACE This book and the companion website* will do two things for you: First, it will help you excel in your technical interviews so you can secure a great first job. Second, it will help you succeed in that job by showing you how to solve real-world problems using what you already know from your engineering courses. There is often a disconnect between what you learned in school and the expectations of those interviewing you. On one hand, the engineering curriculum has taught you a tremendous amount of theoretical and practical material, but it is simply not possible to remember it all in an interview. On the other hand, the interviewing team will likely consist of your potential supervisor and coworkers, and they will be looking for someone with the skills to be an immediate contributor in their department. The interview will typically focus on what you can do instead of how much you know. This book bridges the gap by reviewing how to apply what you learned in school to practical engineering tasks. Each chapter reviews design skills by relating them to fundamental concepts. Consider the skill of designing an averaging FIR digital filter. This is a valuable skill, but the best designers understand the basics of digital filters—they understand the practical use of z-transforms and how to work with any discrete-time structure. As a result, they can work with a wide variety of digital filters thereby enabling them to design the best filter for a given requirement. This text reviews digital filter design and many more commonly required design skills covering a wide variety of areas and 12 relates them to the fundamentals. Chapters begin with the fundamentals and then present the skills. As a workplace reference, this book will give you information you need to succeed at basic design tasks. For more in-depth problems, it will help direct you to manufacturer’s literature or the appropriate sections of your college textbooks. I hope it will merit valuable space on your bookshelf for many years. Whether you are a recent graduate or an experienced engineer, your time is valuable. This book was written to help you—not challenge you. To this end, the mathematical derivations are kept simple, but not simplistic, and the examples presented show practical applications using practical skills that will help you in job interviews and during your first several years in the workplace. Each chapter in this book can be read in a matter of hours—not days. Finally, I hope that you enjoy working through the examples and problems in this book, and I hope they motivate you to tackle and solve hundreds or thousands of problems over what should be a satisfying and rewarding career. BARRY L. DORR, PE Carlsbad, CA May 2013 * www.blog.dorrengineering.com 13 ACKNOWLEDGMENTS Shortly after obtaining my BSEE and moving to San Diego, I attended several signal processing lectures by Professor fred harris (capitalization omitted at his insistence) at San Diego State University. Professor harris had an uncanny ability to explain difficult signal processing techniques using basic concepts and simple drawings. Wanting to learn more, I pursued an MSEE at San Diego State and was fortunate to have him as part of my thesis committee. Professor harris has been teaching and inspiring students and working engineers in San Diego for over 45 years. I’m sure I speak for all my colleagues in San Diego when I thank him. I was fortunate to have David Hull as a mentor at my first job. David guided me through many of my first design tasks with skill and patience. I would frequently take his lab books home to study at night and return in the morning with a list of questions which he would cheerfully answer despite his busy schedule. I would also like to thank James Crawford who has been a mentor, a source of technical inspiration, and a valued friend for many years. I would like to thank all of my current colleagues, especially my good friends Jeff Babb, John Huebner, Steven Chuwang, Leon Huynh, and Kim Do, who all provided excellent feedback and personal encouragement throughout the project. Working with this great group always left me with plenty of energy and enthusiasm to write late into the night.
Recommended publications
  • Cmos-Based Amplitude and Phase Control Circuits Designed for Multi
    CMOS-BASED AMPLITUDE AND PHASE CONTROL CIRCUITS DESIGNED FOR MULTI-STANDARD WIRELESS COMMUNICATION SYSTEMS A Dissertation Presented to The Academic Faculty by Yan-Yu Huang In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology August 2011 Copyright© Yan-Yu Huang 2011 CMOS-BASED AMPLITUDE AND PHASE CONTROL CIRCUITS DESIGNED FOR MULTI-STANDARD WIRELESS COMMUNICATION SYSTEMS Approved by: Dr. J. Stevenson Kenney, Advisor Dr. Thomas G. Habetler School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Kevin T. Kornegay Dr. Paul A. Kohl School of Electrical and Computer School of Chemical and Biomolecular Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Chang-Ho Lee Date Approved: June 29, 2011 School of Electrical and Computer Engineering Georgia Institute of Technology 1. ACKNOWLEDGEMENTS I would like to express my gratitude to my advisor, Professor James Stevenson Kenney, for his excellent guidance and all the suggestions that help me conduct the research, solve the problems, and improve my dissertation. I would also like to thank my committee members: Professor Kevin T. Kornegay, Professor Thomas G. Habetler, Professor Paul A. Kohl, and Dr. Chang-Ho Lee for their time in reviewing my dissertation and all the invaluable suggestions. I would also like to express my appreciation to the leaders in various projects I was involved during the past four years, Dr. Joy Laskar, Dr. Chang-Ho Lee, and Dr. Wangmyoong Woo. Their valuable comments on my work and relative knowledge about the project have been a tremendous help to me.
    [Show full text]
  • 6. Attenuators and Switches the State of the Switch Is Controlled by Some
    9/29/2006 Attenuators and Switches notes 1/1 6. Attenuators and Switches The state of the switch is controlled by some digital logic, and there is a different scattering matrix for each state. HO: Microwave Switches HO: The Microwave Switch Spec Sheet We can combine fixed attenuators with microwave switches to create very important and useful devices—the variable (digital) attenuator. HO: Attenuators HO: The Digital Attenuator Spec Sheet We typically make switches and voltage controlled attenuators with PIN diodes. If you are interested, you might check out the handout below (no, this handout below will not be on any exam!). HO: PIN Diodes Jim Stiles The Univ. of Kansas Dept. of EECS 9/29/2006 Microwave Switches 1/4 Microwave Switches Consider an ideal microwave SPDT switch. 1 Z0 3 2 control Z0 The scattering matrix will have one of two forms: ⎡⎤001 ⎡⎤ 000 ==⎢⎥ ⎢⎥ SS13⎢⎥000 23 ⎢⎥ 001 ⎣⎦⎢⎥100 ⎣⎦⎢⎥ 010 where S13 describes the device when port 1 is connected to port 3: 1 Z0 3 2 control Z0 Jim Stiles The Univ. of Kansas Dept. of EECS 9/29/2006 Microwave Switches 2/4 and where S23 describes the device when port 2 is connected to port 3: 1 Z0 3 2 Z control 0 These ideal switches are called matched, or absorptive switches, as ports 1 and 2 remain matched, even when not connected. This is in contrast to a reflective switch, where the disconnected port will be perfectly reflective, i.e., ⎡⎤001⎡e jφ 00⎤ ⎢ ⎥ ==⎢⎥jφ SS13⎢⎥00e 23 ⎢ 001⎥ ⎣⎦⎢⎥100⎣⎢ 010⎦⎥ where of course e jφ = 1.
    [Show full text]
  • ! ! ! 4.14 Impedance Transformation Equation
    IMPEDANCE TRANSFORMATION EQUATION 101 4.14 IMPEDANCE TRANSFORMATION EQUATION One of the most common tasks in microwave engineering is the determination of how a load impedance ZL is transformed to a new input impedance ZIN by a length of uniform transmission line of characteristic impedance Z0 and electri- cal length y (Fig. 4.14-1). To simplify this derivation, we assume that the line length is lossless. With the choice of x ¼ 0 at the load, the input to the line is at x ¼l, and the input impedance there is jbl Àjbl V ðx ¼lÞ e þ GLe Z Z x l Z 4:14-1 IN ¼ ð ¼Þ¼ ¼ 0 jbl Àjbl ð Þ I ðx ¼lÞ e À GLe jbl Now substitute GL ¼ðZL À Z0Þ=ðZL þ Z0Þ, bl ¼ y, the identities e ¼ cos bl þ j sin bl and eÀjbl ¼ cos bl À j sin bl into (4.14-1), and remove cancel- ing terms to get 2ZL cos y þ j2Z0 sin y ZIN ¼ Z0 2Z0 cos y þ j2ZL sin y ð4:14-2Þ ZL þ jZ0 tan y ZIN ¼ Z0 Z0 þ jZL tan y Similar reasoning can be used to evaluate the input impedance when the trans- mission line has finite losses. The result is ZL þ Z0 tanh gl ZIN ¼ Z0 ð4:14-3Þ Z0 þ ZL tanh gl This is one of the most important equations in microwave engineering and is called the impedance transformation equation. Remarkably, (4.14-2) and (4.14-3) have exactly the same format when derived in terms of admittance.
    [Show full text]
  • Attenuation & Attenuator
    ATTENUATION & ATTENUATOR Definitions Attenuation is the reduction in amplitude and intensity of a signal. An attenuator is an electronic device that reduces the amplitude or power of a signal without appreciably distorting its waveform. Basics Attenuation is the reduction in amplitude and intensity of a signal. Signals may be attenuated exponentially by transmission through a medium, in which case attenuation is usually reported in dB with respect to distance traveled through the medium. Attenuation can also be understood to be the opposite of amplification. Attenuation is an important property in telecommunications and ultrasound applications because of its importance in determining signal strength as a function of distance. Attenuation is usually measured in units of decibels per unit length of medium (dB/cm, dB/km, etc) and is represented by the attenuation coefficient of the medium in question. Ultrasound One area of research in which attenuation figures strongly is in ultrasound physics. Attenuation in ultrasound is the reduction in amplitude of the ultrasound beam as a function of distance through the imaging medium. Accounting for attenuation effects in ultrasound is important because a reduced signal amplitude can affect the quality of the image produced. By knowing the attenuation that an ultrasound beam experiences travelling through a medium, one can adjust the input signal amplitude to compensate for any loss of energy at the desired imaging depth. Ultrasound attenuation measurement in heterogeneous systems, like emulsions or colloids yields information on particle size distribution. There is ISO standard on this technique . Ultrasound attenuation can be used for extensional rheology measurement. There are acoustic rheometers that employ Stokes' law for measuring extensional viscosity and volume viscosity.
    [Show full text]
  • Chapter 7 Two-Port Network
    Chapter 7 Two-port network 7.1 Impedance parameters definition, examples 7.2 Admittance parameters definition, examples 7.3 Hybrid parameters definition, examples 7.4 Transmission parameters definition, examples 7.5 Conversion of the impedance, admittance, chain, and hybrid parameters 7.6 Scattering parameters definition, characteristics, examples 7.7 Conversion from impedance, admittance, chain, and hybrid parameters to scattering parameters or vice versa 7.8 Chain scattering parameters 7-1 微波工程講義 7.1 Impedance parameters I1 I2 Basics linear 1. V1 port 1 port 2 V2 network [V ]= [Z ][][]I , I : source, [V ]: response V Z Z I V = Z I + Z I reference reference 1 = 11 12 1 , 1 11 1 12 2 = + plane 1 plane 2 V2 Z 21 Z 22 I 2 V2 Z 21I1 Z 22 I 2 V = 1 Z11 : open - circuit input impedance at port 1 I1 = I2 0 V = 1 Z12 : open - circuit reverse transimpedance I 2 = I1 0 V = 2 Z 21 : open - circuit forward transimpedance I1 = I2 0 V = 2 Z 22 : open - circuit input impedance at port 2 I 2 = I1 0 7-2 微波工程講義 Lecture 4 How to Determine Z Parameters? =⋅+⋅ I = 0 VZIZI11111222 ==VV12 ZZ11 21 =⋅+⋅ II11== VZIZI2211222 II2200 = I1 0 ==VV21 ZZ22 12 II22== II1100 I1=0 I2 Z22 Two Port Reciprocity: O.C. V1 V Network 2 = Z12Z 21 1/9/2003 2 Lecture 4. ELG4105: Microwave Circuits © S. Loyka, Winter 2003 Discussion I1 I2 V 6I = = Ω = 1 = 2 = 1. Ex.7.1 Z11 Z 22 6 , Z12 6 I 2 = I 2 I1 0 6Ω V 6I 6 6 V1 V2 Z = 2 = 1 = 6,[]Z = 21 1 6 6 I1 I =0 I1 2.
    [Show full text]
  • A Practical Guide to Decibels
    A Practical Guide to Decibels A Companion to The Art of Electronics Student Manual Lab 2 UCSD Physics 120A David Kleinfeld [email protected], Han Lin [email protected] Simply put, a decibel is a way to express a ratio. §1. Power Ratios We will first consider a ratio of powers. The formula to memorize and take to your deathbed is: Here, the square brackets mean “units of dB”. Notice that this formula is easy to remember because it has lots of tens, hence the “deci-” in “decibels”. Example 1-1: An attenuator is anything that takes in a signal and spits out a weaker one. Consider the attenuator below. How many dB’s of attenuation does this attenuator provide? Figure 1 In this problem, our power ratio is output power over input power, often simply known as power gain . We have learned something important (memorize this!) from the above example: A Practical Guide to Decibels 2 Question 1-1: An amplifier has a power gain of 2 (if you put in one watt, you will get out two watts). How many dB’s of power gain does this amp provide? ANSWER: +3 dB Question 1-2: You have a -10 dB attenuator. What is P out /P in ? ANSWER: 1/10 Figure 2 §2. Voltage Ratios In low frequency electronics, we are typically more concerned with voltages than power. However, the decibel is defined with respect to power. How can we use decibels for voltage ratios? Recalling that P = V 2/R, A Practical Guide to Decibels 3 Example 2-1: An RC filter provides -3 dB of voltage attenuation at a particular frequency.
    [Show full text]
  • Langevin Mixing Console
    An Olde School Langevin Mixer Rick Chinn – Uneeda Audio This is a classic mixer with fixed gain blocks, slidewire faders, passive mixing networks, passive equalizers, etc. EVERYTHING IS PATCHED. THERE ARE NO NORMALS. No patch cords, no audio. Call it job security. The patching, etc. IS the mixer's block diagram, engraved right into the front panel. If you’re not comfortable with signal flow concepts, then this might be quite daunting. The signal path is completely minimalist. The origins of the design are straight out of the Langevin catalog, but the notion of putting the one-line block diagram on the panel came from Paul Veneklasen, who was an olde-school acoustician down in Santa Monica CA. He designed several auditoriums with sound systems here in Seattle, and his systems always took the form of multiple panels, with the block diagram engraved on them, so that anyone (knowledgeable) stepping up could figure out how things were connected. Glenn White Jr. worked with Veneklasen on these projects and he did the acoustics for Kearney's new studio on 5th Avenue in Seattle, and designed and built this console to go with it. Revision A.2 8/9/2010 1 The faders are Langevins, as are the equalizers and rotary attenuators, and (of course) the 21 AM-16 amplifiers. Connections that would usually be wired/patched together are located next to each other, but they must be physically patched in order to be connected. EVERYTHING is 600- ohms input and output (sorta). Overview Originally the studio was 3-track, and that's the form that the mixer takes.
    [Show full text]
  • Building the Amplifier Measuring Attenuator Background You Can Use a Sound Card to Measure Amplifier Distortion
    Building the Amplifier Measuring Attenuator Background You can use a sound card to measure amplifier distortion. A standard sound card only accepts about 1 volt RMS before it overloads. If you put a much more than 1 volt RMS into the sound card’s A2D, you can damage it. This article describes how to build a combination of a switchable attenuator and protection circuit. The switchable attenuator drops the signal level enough to keep from overloading the A2D. The protection circuit keeps the amp from damaging the A2D no matter which attenuator setting you select. Circuit Description Figure 1 shows the circuit of the switchable attenuator and protector. The amplifier under test connects to the RCA jack on the left side of the schematic. From there, the signal connects to a 6-position selector switch. The attenuation of the switch increases as the selector turns counter-clockwise. Consider what happens when the switch is fully clock-wise. The input signal from the amp under test connects through the (-6) labeled position of the switch, R2 and R1. R2 and R1 form a voltage divider that cuts the signal level in half, an attenuation of -6 dB. The two green LEDs look like open circuits so long as the voltage across them is less than about 1.4 volt. Thus the -6 position can accommodate amplifier outputs of up to about 1 or two volts RMS. If you’ve adjusted the amplifier for more output than 1 or 2 volts RMS, you’ll have to move the switch counter clockwise. In the (-12) position, the signal is applier to R4.
    [Show full text]
  • Highly Linear Attenuator and Mixer for Wide-Band TOR in CMOS
    Hind Dafallah Highly Linear Attenuator and Mixer for Wide-Band for Mixer and Attenuator Linear Highly Master’s Thesis Highly Linear Attenuator and Mixer for Wide-Band TOR in CMOS Hind Dafallah TOR in CMOSTOR in Series of Master’s theses Department of Electrical and Information Technology LU/LTH-EIT 2016-507 Department of Electrical and Information Technology, http://www.eit.lth.se Faculty of Engineering, LTH, Lund University, 2016. Printed in Sweden E-huset, Lund, 2016 Abstract In this thesis work, a highly linear passive attenuator and mixer were designed to be used in a wide-band Transmission Observation Receiver (TOR). The TOR is a low IF receiver that accepts RF frequencies from 2GHz to 7GHz, and produces corresponding IF bandwidths of 280MHz to 990MHz respectively, using low side LO injection. The dynamic range is maximized by using passive topologies for both the attenuator and the mixer. The system is dealing with different power levels ranging from -30dBm to +1dBm, and hence, a programmable digital step attenuator is used to attenuate large signals. It provides a maximum of 31dB of attenuation in 1dB steps. Different mixer architectures were compared, including CMOS mixer, mixer with dummy switches and quadrature mixer. Also, the performance of the mixer in both voltage mode and current mode was investigated. A double balanced passive mixer in voltage mode, with dummy switches was adopted in the final system since it proved to be the best in terms of meeting the requirements. The work was carried out in Ericsson in Lund, using Cadence, 65nm process. The circuit is true differential and it uses a supply voltage of 1.2V.
    [Show full text]
  • A/Tee Pretision Attenuators and Networks
    ATTENUATORS AND A/teePretision Attenuators and Networks NETWORKS VU Extenders Bridging Pads Rotary Atte nuators Gi- Typical 9200 Seri es A/tee Con sole Utilizing Components from this Catalog Mixing Networks Loss Pad s Straight Line Attenuators ALTEC prec1s,on Attenuators and Networks ar e e ngin ee red in accordance with classic design techniques. The finest materials , combined with exper ienced craftsmanship, give extreme re liabili ty . ALTEC Attenuators and Networks ar e made in three basic cla ssificat ions: ( 1) Fixed (2) Rotary (3) Straight lin e. This catalo g lists 14 differ e nt categori es . Every " Passive Loss" de vice required in the construct ion of professiona l speech input equ ipm ent is now avai labl e from a single source. TABLEOF CONTENTS Pa ge Page Page General I nformoti on 2 Calibrated Grid Cont ro l Pote ntiometers: Rotar y Differential Attenuators: RA8811 Series . 8 Or der ing Information 3 RP8600 -8606, RP8621-8627, RP8640-8643 Series 6 VU Met e r Range Extend e rs: Imp edance Cod e 3 9 Precis ion Deco de Attenua tors: VUS0l0-80 11, VU8700-87 12 Ser ies Straight l ine Atte nuators (Primarily use d in DA8735-8746 Series 7 Mixer Networks: MN8000 Series ........... ............. 10 Mixing Circuit s): SM8272-8281 and SM8324-8327 Series 4 Precision Variable Imp edanc e Matching Fixed l oss Pa ds: LP8000 Series .... 11 7 Rotary Attenuators ( Primari ly used in Network s: PN8747-8754 Ser ies Bridging Pads: BP8000 Series ............. ........... 11 Mixing Circuit s): RM8200-8223 and Motion Pictur e Proj ecti on and Turntable Minimum Loss Matching Pads :.
    [Show full text]
  • RF Diode Design Guide Skyworks Solutions
    RF Diode Design Guide Skyworks Solutions Skyworks Solutions, Inc. is an innovator of high reliability analog and mixed signal semiconductors. Leveraging core technologies, Skyworks offers diverse standard and custom linear products supporting automotive, broadband, cellular infrastructure, energy management, industrial, medical, military and mobile handset applications. The Company’s portfolio includes amplifiers, attenuators, detectors, diodes, directional couplers, front-end modules, hybrids, infrastructure RF subsystems, mixers/demodulators, phase shifters, PLLs/synthesizers/VCOs, power dividers/combiners, receivers, switches and technical ceramics. Headquartered in Woburn, Massachusetts, USA, Skyworks is worldwide with engineering, manufacturing, sales and service facilities throughout Asia, Europe and North America. New products are continually being introduced at Skyworks. For the latest information, visit our Web site at www.skyworksinc.com. For additional information, please contact your local sales office or email us [email protected] . The Skyworks Advantage ■ Broad front-end module and precision analog product portfolio ■ Market leadership in key product segments ■ Solutions for all air interface standards, including CDMA2000, GSM/GPRS/EDGE, LTE, WCDMA and WLAN ■ Engagements with a diverse set of top-tier customers ■ Analog, RF and mixed-signal design capabilities ■ Access to all key process technologies: GaAs HBT, PHEMT, BiCMOS, SiGe, CMOS, RF CMOS and Silicon ■ World-class manufacturing capabilities and scale ■ Unparalleled level of customer service and technical support ■ Commitment to technology innovation 2 WWW.SKYWORKSINC.COM Table of Contents About This Guide Proven Performance and Leadership Diode Product Portfolio Overview . 4 As a world-class supplier of RF microwave components for The Radio Transceiver . 5 today’s wireless communication systems, Skyworks continues to deliver the highest performance silicon and GaAs discrete Receiver Protector .
    [Show full text]
  • Introduction to Control Systems
    ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 – CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES INTRODUCTION TO CONTROL SYSTEMS The purpose of this laboratory experience is to provide an introduction to control systems and explore some of the parameters that will be further analyzed in detail in the upcoming lectures. By investigating the characteristics of a basic control system, students will have an overall view of the main components of the system. SECTION 1.1: THE COMPONENTS OF THE CONTROL SYSTEM The basic goal of a control system is to produce an output as a response to an input signal or command and keep it this way in the presence of external interference, disturbances, etc. Control systems can be basically classified as open-loop systems or closed-loop systems depending on how they are built. This introductory lab experience will explore both types of systems. The laboratory equipment This lab uses the Feedback MS150 Modular Servo System kit. This system has been explicitly developed for studies of control systems and tries to break solutions into different modules following the accepted and used "block model" when describing a physical system. Note that in real-life solutions, some of the modules will be integrated in order to maximize efficiency. However, because it would be difficult to visualize and measure the different signals involved in this process, for academic purposes we will use different blocks, having access to intermediate signals. Each one of the blocks is fitted with a magnetic base that will be used to attach and secure them to the baseboard, providing a strong support for the whole system.
    [Show full text]