Olfactory Evaluation in Children: Application to the CHARGE Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Olfactory Evaluation in Children: Application to the CHARGE Syndrome Olfactory Evaluation in Children: Application to the CHARGE Syndrome Christel Chalouhi, MD*; Patrick Faulcon, MD‡; Christine Le Bihan, MD§; Lucie Hertz-Pannier, MD, PhD࿣; Pierre Bonfils, MD, PhD‡; and Ve´ronique Abadie, MD, PhD* ABSTRACT. Objective. To find an efficient tool for ABBREVIATIONS. CHARGE, coloboma, congenital heart disease, testing olfactory function in children and use it to inves- choanal atresia, mental and growth retardation, genital anomalies, tigate a group of children with CHARGE (coloboma, and ear malformations and hearing loss; PEA, phenylethylalcohol. congenital heart disease, choanal atresia, mental and growth retardation, genital anomalies, and ear malforma- tions and hearing loss) syndrome. lfaction has always been and remains the Methods. We adapted for children an olfaction test most neglected sense in studies of child de- that had just been validated in an adult French popula- Ovelopment and behavior, the main reasons tion and investigated a control group of 25 healthy chil- being the poor knowledge concerning the role of dren aged 6 to 13 years. We then tested the olfactory olfaction in human development and behavior and capacity of a group of 14 children with CHARGE syn- the lack of available tools for investigating olfaction, drome, aged 6 to 18 years. A questionnaire was com- in particular in children. Development of the olfac- pleted with the parents about their children’s feeding tory system begins very early in the human embryo; difficulties and their ability to recognize odors in every- olfactory bulbs have their definitive structure at day day life. We recorded and scored the histories of feeding 56. Then, cells of the olfactory placode differentiate behavior anomalies, the visual and auditory status, and to gonadotropic cells and migrate to the hypotha- current intellectual levels. MRI of the olfactory tracts and lamic region along the terminal nerve (cranial nerve bulbs was analyzed for 9 of 14 children. 0), the olfactory nerve (cranial nerve 1), and the Results. We showed that healthy children have sim- ilar olfactory function to that of the adult control group, vomeronasal nerve. One part of the olfactory system which was representative of the general population, projects to the anterior part of the hypothalamus for without any difference for either gender or age. We also odor perception and discrimination; the other showed that all children with CHARGE syndrome had projects to the limbic system and the hippocampus olfactory deficiency. Half of them were anosmic, and the for the behavioral impact of olfaction and olfactory others had olfactory residual function (hyposmic). We emotional memory.1 The Jacobson vomeronasal or- found no association between olfactory deficiency and gan is a fetal structure that reduces after birth and feeding behavior, visual or auditory impairment, or in- that allows the transmission of odors through aque- tellectual level. Parental subjective evaluations were ac- ous middles, in particular amniotic fluid.2 Several curate for only half of the group. All of the MRIs showed data have shown that olfaction is functional during anomalies of the olfactory tracts and bulbs varying from prenatal life.3–6 At birth, newborns have highly effi- moderate hypoplasia to complete aplasia, without any cient olfactory abilities, allowing them to discrimi- relation between the radiologic and the functional re- nate the odor of their mother’s skin or milk from sults. those of other mothers7,8 and to modify their feeding Conclusions. Olfaction can be assessed in children, behavior according to the milk flavor.9,10 In mice, even the young and disabled. Our results support the proposition that rhinencephalon anomalies should be olfaction is crucial at birth to lead the pups to their included as a major criterion for the diagnosis of mother’s nipples, and anosmic mice die shortly after 11 CHARGE syndrome. Pediatrics 2005;116:e81–e88. URL: birth because they cannot find them. All of these www.pediatrics.org/cgi/doi/10.1542/peds.2004-1970; data suggest that human neonatal olfaction probably CHARGE syndrome, olfaction in children, olfactory defi- plays a role both in mother-child bonding and in ciency. newborns’ feeding behavior. During the first years of life, the role of olfaction is probably important, al- though few studies have demonstrated this, princi- From the *General Pediatrics Unit, §Pediatrics Radiology Unit, and ࿣Biosta- pally because olfaction evaluation is difficult in this tistics Unit, Hoˆpital Necker Enfants Malades, Paris, France; and ‡Depart- age range. Nevertheless, in a previous study, we ment of Otolaryngology Head Neck Surgery, Unite´Centre National de la showed that reproducible behavioral modifications Recherche Scientifique UPRESSA 7060, Hoˆpital Europeen Georges Pompi- (breathing rhythm, mobility, and sight) indicate that dou, Paris, France. Accepted for publication Nov 22, 2004. healthy infants and toddlers (3 months to 3 years) 12 doi:10.1542/peds.2004-1970 have good olfaction abilities. Several studies have No conflict of interest declared. shown that olfaction improves from the age when it Reprint requests to (V.A.) Hoˆpital Necker-Enfants Malades, 149 Rue de becomes testable (7–8 years of age) until the age of Se`vres, 75743 Paris Cedex 15, France. E-mail: [email protected] ϳ40 years.13–16 These observations may be attribut- hop-paris.fr PEDIATRICS (ISSN 0031 4005). Copyright © 2005 by the American Acad- able to the methods of olfaction testing and are dis- emy of Pediatrics. cussed later. After puberty, girls have better olfaction www.pediatrics.org/cgi/doi/10.1542/peds.2004-1970Downloaded from www.aappublications.org/news by guest PEDIATRICSon September 26,Vol. 2021 116 No. 1 July 2005 e81 abilities than boys.17,18 From the age of ϳ40 years, Patients With CHARGE Syndrome olfaction abilities decrease, which partly explains an- Fourteen children with CHARGE syndrome were included. orexia in the elderly.18 The role of olfaction in adults The group consisted of 8 girls aged 7.5 to 18 years (mean Ϯ SD: is likely involved in several fields, such as appetite, 12.5 Ϯ 4) and 6 boys aged 6 to 10 years (mean Ϯ SD: 7.8 Ϯ 1.4). The diagnosis of CHARGE syndrome was made according to Blake emotional memory, and sexual bonding. However, and Amiel’s criteria (5 major criteria or 4 major criteria and 3 few studies can prove these roles. Studies on behav- minor criteria30,31). We asked the families to participate when their ior in adults with olfaction disorders, in particular child had speech and mental age corresponding to a 5- or 6-year patients with Kallmann syndrome, are rare and do level. Their visual ability had to be good enough to allow them to not show major effects of hyposmia, suggesting that recognize drawings representing the odors on 10 10-cm pictures. Six patients had peripheral risk factors for olfaction deficit: pa- hyposmic patients compensate for their deficit by tients 2 and 3 had cleft lip and palate; patients 2, 3, 8, and 9 had other sensorial and cognitive means.19–21 Moreover, transient tracheostomy; and patients 5, 9, and 14 had unilateral in humans, especially in Western and so-called de- choanal atresia. Patient 14 had previously been tested with a veloped cultures, the sense of smell is not well taught different method. She was excluded from the results but included in the association calculation and the discussion. or stimulated. Parents and children of both groups all were volunteers for this CHARGE syndrome (coloboma, congenital heart prospective study. Consent of all of the families was obtained in disease, choanal atresia, mental and growth retarda- accordance with the ethics rules of our hospital. tion, genital anomalies, and ear malformations and hearing loss) is a congenital malformative picture Olfactory Tests that was described 25 years ago.22,23 In addition to The French Biolfa olfactory test, recently validated in healthy young adults, was adapted to children.29 The Biolfa test uses 2 the defects cited in the acronym, other anomalies series of 30-mL glass sniff bottles that contain odorous chemical have been described. Some of them have a high substances. The first series measure the olfactory thresholds of 3 frequency, such as vestibular anomalies, facial dys- different substances (eugenol, aldehyde C14, and phenyl ethyl morphism, asymmetrical facial palsy, and brainstem alcohol [PEA; quantitative trial]). The second series is an odor dysfunction, whereas others have a lower frequency, identification test to determine quality of olfactory function using a large panel of odors that are common to Southern European such as renal, esophageal, osseous, and cerebral mal- countries (qualitative trial). formations.24–26 Once the structural anomalies are repaired, children with CHARGE have to overcome Olfactory Thresholds multiple sensory impairments, such as visual, audi- The threshold test consisted of aqueous dilutions of 3 compo- tory, and balance impairments. Olfaction has never nents (eugenol, aldehyde C14, and PEA), the mean detection been investigated in patients with CHARGE syn- thresholds of which (0.5, 0.15, and 7.5 ppm, respectively) were published by the French Association for Normalization in 1989.32 drome, although several arguments suggest that ol- These concentrations defined the level 3 on the difficulty scale of faction dysfunction is crucial in this malformative 9 concentration levels used in the test (Table 1). The lowest con- condition. First, most children with CHARGE syn- centration at which 1 of these odors was detected was termed drome have initial, severe, and long-lasting feeding “detection threshold.” In each test, we asked the child which of 2 disorders that are poorly explained by their swallow- stimuli (an odor or a blank), presented sequentially and in random order, smelled stronger (the forced-choice procedure). The first ing disorders alone. Second, children with CHARGE test began at the third level of difficulty. When a child failed to syndrome may have genital anomalies as a result of detect an odor, the next test was performed at the next higher hypothalamic luteinizing hormone-releasing hor- concentration level.
Recommended publications
  • Chemoreception
    Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath.
    [Show full text]
  • Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
    Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder
    [Show full text]
  • The Olfactory Bulb Theta Rhythm Follows All Frequencies of Diaphragmatic Respiration in the Freely Behaving Rat
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH ARTICLE published: 11 June 2014 BEHAVIORAL NEUROSCIENCE doi: 10.3389/fnbeh.2014.00214 The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat Daniel Rojas-Líbano 1,2†, Donald E. Frederick 2,3, José I. Egaña 4 and Leslie M. Kay 1,2,3* 1 Committee on Neurobiology, The University of Chicago, Chicago, IL, USA 2 Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA 3 Department of Psychology, The University of Chicago, Chicago, IL, USA 4 Departamento de Anestesiología y Reanimación, Facultad de Medicina, Universidad de Chile, Santiago, Chile Edited by: Sensory-motor relationships are part of the normal operation of sensory systems. Sensing Donald A. Wilson, New York occurs in the context of active sensor movement, which in turn influences sensory University School of Medicine, USA processing. We address such a process in the rat olfactory system. Through recordings of Reviewed by: the diaphragm electromyogram (EMG), we monitored the motor output of the respiratory Thomas A. Cleland, Cornell University, USA circuit involved in sniffing behavior, simultaneously with the local field potential (LFP) of Emmanuelle Courtiol, New York the olfactory bulb (OB) in rats moving freely in a familiar environment, where they display University Langone Medical Center, a wide range of respiratory frequencies. We show that the OB LFP represents the sniff USA cycle with high reliability at every sniff frequency and can therefore be used to study the *Correspondence: neural representation of motor drive in a sensory cortex.
    [Show full text]
  • Special Issue “Olfaction: from Genes to Behavior”
    G C A T T A C G G C A T genes Editorial Special Issue “Olfaction: From Genes to Behavior” Edgar Soria-Gómez 1,2,3 1 Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; [email protected] or [email protected] 2 Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain 3 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain Received: 12 June 2020; Accepted: 15 June 2020; Published: 15 June 2020 The senses dictate how the brain represents the environment, and this representation is the basis of how we act in the world. Among the five senses, olfaction is maybe the most mysterious and underestimated one, probably because a large part of the olfactory information is processed at the unconscious level in humans [1–4]. However, it is undeniable the influence of olfaction in the control of behavior and cognitive processes. Indeed, many studies demonstrate a tight relationship between olfactory perception and behavior [5]. For example, olfactory cues are determinant for partner selection [6,7], parental care [8,9], and feeding behavior [10–13], and the sense of smell can even contribute to emotional responses, cognition and mood regulation [14,15]. Accordingly, it has been shown that a malfunctioning of the olfactory system could be causally associated with the occurrence of important diseases, such as neuropsychiatric depression or feeding-related disorders [16,17]. Thus, a clear identification of the biological mechanisms involved in olfaction is key in the understanding of animal behavior in physiological and pathological conditions.
    [Show full text]
  • Chapter 17: the Special Senses
    Chapter 17: The Special Senses I. An Introduction to the Special Senses, p. 550 • The state of our nervous systems determines what we perceive. 1. For example, during sympathetic activation, we experience a heightened awareness of sensory information and hear sounds that would normally escape our notice. 2. Yet, when concentrating on a difficult problem, we may remain unaware of relatively loud noises. • The five special senses are: olfaction, gustation, vision, equilibrium, and hearing. II. Olfaction, p. 550 Objectives 1. Describe the sensory organs of smell and trace the olfactory pathways to their destinations in the brain. 2. Explain what is meant by olfactory discrimination and briefly describe the physiology involved. • The olfactory organs are located in the nasal cavity on either side of the nasal septum. Figure 17-1a • The olfactory organs are made up of two layers: the olfactory epithelium and the lamina propria. • The olfactory epithelium contains the olfactory receptors, supporting cells, and basal (stem) cells. Figure 17–1b • The lamina propria consists of areolar tissue, numerous blood vessels, nerves, and olfactory glands. • The surfaces of the olfactory organs are coated with the secretions of the olfactory glands. Olfactory Receptors, p. 551 • The olfactory receptors are highly modified neurons. • Olfactory reception involves detecting dissolved chemicals as they interact with odorant-binding proteins. Olfactory Pathways, p. 551 • Axons leaving the olfactory epithelium collect into 20 or more bundles that penetrate the cribriform plate of the ethmoid bone to reach the olfactory bulbs of the cerebrum where the first synapse occurs. • Axons leaving the olfactory bulb travel along the olfactory tract to reach the olfactory cortex, the hypothalamus, and portions of the limbic system.
    [Show full text]
  • Feedforward and Feedback Signals in the Olfactory System Srimoy Chakraborty University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2019 Feedforward and Feedback Signals in the Olfactory System Srimoy Chakraborty University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Behavioral Neurobiology Commons, Bioelectrical and Neuroengineering Commons, Cognitive Neuroscience Commons, Engineering Physics Commons, Health and Medical Physics Commons, and the Systems Neuroscience Commons Recommended Citation Chakraborty, Srimoy, "Feedforward and Feedback Signals in the Olfactory System" (2019). Theses and Dissertations. 3145. https://scholarworks.uark.edu/etd/3145 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Feedforward and Feedback Signals in the Olfactory System A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Srimoy Chakraborty University of Calcutta Bachelor of Science in Physics, 2008 University of Arkansas Master of Science in Physics, 2015 May 2019 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. _________________________________ Woodrow Shew, Ph.D. Dissertation Director _________________________________ Wayne J. Kuenzel, Ph.D. Committee Member _________________________________ Jiali Li, Ph.D. Committee Member _________________________________ Pradeep Kumar, Ph.D. Committee Member Abstract The conglomeration of myriad activities in neural systems often results in prominent oscillations . The primary goal of the research presented in this thesis was to study effects of sensory stimulus on the olfactory system of rats, focusing on the olfactory bulb (OB) and the anterior piriform cortex (aPC).
    [Show full text]
  • The Role of Chemoreceptor Evolution in Behavioral Change Cande, Prud’Homme and Gompel 153
    Available online at www.sciencedirect.com Smells like evolution: the role of chemoreceptor evolution in behavioral change Jessica Cande, Benjamin Prud’homme and Nicolas Gompel In contrast to physiology and morphology, our understanding success. How an organism interacts with its environment of how behaviors evolve is limited.This is a challenging task, as can be divided into three parts: first, the sensory percep- it involves the identification of both the underlying genetic tion of diverse auditory, visual, tactile, chemosensory or basis and the resultant physiological changes that lead to other cues; second, the processing of this information by behavioral divergence. In this review, we focus on the central nervous system (CNS), leading to a repres- chemosensory systems, mostly in Drosophila, as they are one entation of the sensory signal; and third, a behavioral of the best-characterized components of the nervous system response. Thus, behaviors could evolve either through in model organisms, and evolve rapidly between species. We changes in the peripheral nervous system (PNS) (e.g. examine the hypothesis that changes at the level of [1 ]), or through changes in higher-order neural circuitry chemosensory systems contribute to the diversification of (Figure 1). While the latter remain elusive, recent work behaviors. In particular, we review recent progress in on chemosensation in insects illustrates how the PNS understanding how genetic changes between species affect shapes behavioral evolution. chemosensory systems and translate into divergent behaviors. A major evolutionary trend is the rapid Chemosensation in insects depends on three classes of diversification of the chemoreceptor repertoire among receptors expressed in peripheral neurons housed in species.
    [Show full text]
  • Cracking the Odor Code: Molecular and Cellular Deconstruction of the Olfactory Circuit of Drosophila Larvae Kenta Asahina
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2008 Cracking the Odor Code: Molecular and Cellular Deconstruction of the Olfactory Circuit of Drosophila Larvae Kenta Asahina Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Asahina, Kenta, "Cracking the Odor Code: Molecular and Cellular Deconstruction of the Olfactory Circuit of Drosophila Larvae" (2008). Student Theses and Dissertations. Paper 196. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. Cracking the Odor Code: Molecular and Cellular Deconstruction of the Olfactory Circuit of Drosophila Larvae A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy By Kenta Asahina June 2008 © Copyright by Kenta Asahina 2008 CRACKING THE ODOR CODE: MOLECULAR AND CELLULAR DECONSTRUCTION OF THE OLFACTORY CIRCUIT OF DROSOPHILA LARVAE Kenta Asahina, Ph.D. The Rockefeller University 2008 The Drosophila larva offers a powerful model system to investigate the general principles by which the olfactory system processes behaviorally relevant sensory stimuli. The numerically reduced larval olfactory system relieves the formidable molecular and cellular complexity found in other organisms. This thesis presents a study in four parts that investigates molecular and neuronal mechanisms of larval odor coding. First, the larval odorant receptor (OR) repertoire was characterized. ORs define the olfactory receptive range of an animal.
    [Show full text]
  • Evolution of the Nasal Structure in the Lower Tetrapods
    AM. ZOOLOCIST, 7:397-413 (1967). Evolution of the Nasal Structure in the Lower Tetrapods THOMAS S. PARSONS Department of Zoology, University of Toronto, Toronto, Ontario, Canada SYNOPSIS. The gross structure of the nasal cavities and the distribution of the various types of epithelium lining them are described briefly; each living order of amphibians and reptiles possesses a characteristic and distinctive pattern. In most groups there are two sensory areas, one lined by olfactory epithelium with nerve libers leading to the main olfactory bulb and the other by vomeronasal epithelium Downloaded from https://academic.oup.com/icb/article/7/3/397/244929 by guest on 04 October 2021 with fibers to the accessory bulb. All amniotes except turtles have the vomeronasal epithelium in a ventromedial outpocketing of the nose, the Jacobson's organ, and have one or more conchae projecting into the nasal cavity from the lateral wall. Although urodeles and turtles possess the simplest nasal structure, it is not possible to show that they are primitive or to define a basic pattern for either amphibians or reptiles; all the living orders are specialized and the nasal anatomy of extinct orders is unknown. Thus it is impossible, at present, to give a convincing picture of the course of nasal evolution in the lower tetrapods. Despite the rather optimistic title of this (1948, squamates), Stebbins (1948, squa- paper, I shall, unfortunately, be able to do mates), Bellairs and Boyd (1950, squa- iittle more than make a few guesses about mates), and Parsons (1959a, reptiles). Most the evolution of the nose. I can and will of the following descriptions are based on mention briefly the major features of the these works, although others, specifically nasal anatomy of the living orders of cited in various places, were also used.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Name: Hazem Abdel-Latif GAAFAR Sex: Male DOB: 6th April, 1942 Nationality: Egyptian. Religion: Muslim. Marital status: Married and has 3 children. Address: • Home: 8 Adly Yakan st., - Mazloum - Alexandria, Egypt. • Office: 22 Amin Fekry st., Mahatet El-Ramleh, Alexandria, Egypt Tel.: Home: +20 3 5851222. Office: + 20 3 4873159 GSM: +20 12 22142154 e-mail: [email protected] Medical Qualification: • 1964: MBBCh – Alexandria Faculty of Medicine • 1967: Diploma of Laryngology and Otology, Faculty of Medicine, Alexandria University. • 1969: Diploma of surgery, Alexandria Faculty of Medicine. • 1973: M.Ch, Master of Surgery (ENT), Faculty of Medicine, Alexandria University. Current Post: • Emeriti Professor, ENT Department, Faculty of Medicine, Alexandria University. CV – Prof. Hazem GAAFAR Post-graduate training: • Rotating House officer in Alexandria University Hospitals from August 1964 – August 1965. • Resident in ENT Department, Alexandria Hospital for Health Insurance from September 1965 – June 1966. • Resident in ENT Department, Alexandria University Hospital from July 1966 – June 1968. • Senior house officer, Anesthesia, Pinderfield General Hospital, Wakefield, Yorkshirem, England from August 1968 – November 1968. • Senior Registrar ENT, University College Hospital, Ibadan, Nigeria from January 1972 – October 1972. “Study leave for studying tropical diseases affecting ENT” • Visiting lecturer, ENT, Hiroshima University School of Medicine, Japan from September 1975 – May 1976. “Study leave for training on Electron Microscopy and Microsurgery of the larynx” • Visiting professor, Department of Otolaryngology, John-Hopkins University, USA 1993. • Visiting professor, Pediatric Otolaryngology, the Children’s Neonatal Hospital, Chicago, USA 1997. • Visiting professor, Department of Pediatric Otolaryngology, Cincinnati University Hospital, Cincinnati, USA, 1999. • Visiting professor, Department of Otolaryngology-Head and Neck Surgery, University hospital of Mont-Godinne, Yvoir, Belgium, 1999.
    [Show full text]
  • Is the Mole Rat Vomeronasal Organ Functional?
    THE ANATOMICAL RECORD (2019) Is the Mole Rat Vomeronasal Organ Functional? JOHN C. DENNIS,1 NATALIE K. STILWELL,2 TIMOTHY D. SMITH ,3,4* 5 6 1 THOMAS J. PARK , KUNWAR P. BHATNAGAR, AND EDWARD E. MORRISON 1Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, Alabama 2Seastar Communications and Consulting, Athens, Georgia 3School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 4Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania 5Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 6Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky ABSTRACT The colonial naked mole rat Heterocephalus glaber is a subterranean, eusocial rodent. The H. glaber vomeronasal organ neuroepithelium (VNE) displays little postnatal growth. However, the VNE remains neuronal in contrast to some mammals that possess nonfunctional vomeronasal organ remnants, for example, catarrhine primates and some bats. Here, we describe the vomeronasal organ (VNO) microanatomy in the naked mole rat and we make preliminary observations to determine if H. glaber shares its minimal postnatal VNE growth with other African mole rats. We also determine the immunoreactivity to the mitotic marker Ki67, growth- associated protein 43 (GAP43), and olfactory marker protein (OMP) in six adult and three subadult H. glaber individuals. VNE volume measure- ments on a small sample of Cryptomys hottentotus and Fukomys damaren- sis indicate that the VNE of those African mole rat species are also likely to be growth-deficient. Ki67(+) cells show that the sensory epithelium is mitotically active. GAP43 labelling indicates neurogenesis and OMP(+) cells are present though less numerous compared to GAP43(+) cells.
    [Show full text]
  • The Functional Anatomy of the Olfactory System
    Animal Research International (2009) 6(3): 1093 – 1101 1093 THE ROLE OF MAIN OLFACTORY AND VOMERONASAL SYSTEMS IN ANIMAL BEHAVIOUR AND REPRODUCTION IGBOKWE, Casmir Onwuaso Department of Veterinary Anatomy, University of Nigeria, Nsukka, Nigeria. Email: [email protected] Phone: +234 8034930393 ABSTRACT In many terrestrial tetrapod, olfactory sensory communication is mediated by two anatomically and functionally distinct sensory systems; the main olfactory system and vomeronasal system (accessory olfactory system). Recent anatomical studies of the central pathways of the olfactory and vomeronasal systems showed that these two systems converge on neurons in the telencephalon providing an evidence for functional interaction. The combined anatomical, molecular, physiological and behavioural studies have provided new insights into the involvement of these systems in pheromonal perception and their influence on the neuroendocrine pathways. The olfactory and vomeronasal systems have overlapping functions and both are involved in responses to both pheromones and chemical odorants. Several studies in insects, amphibians, rodents and ungulates have established the importance of pheromones in the astonishing influence exerted by the male on the reproductive activity of the female. The great diversity of signals used in chemical communication indicates that this communication is not mediated exclusively by pheromones. A number of pheromonal responses are not dependent on the vomeronasal system, but on the main olfactory system. The dual olfactory systems also have overlapping functions. The importance of this organ in reproductive and social behaviours was the aim of carrying out the review on its basic morphology and functional correlations in order to encourage more future studies of this important organ of our local species and breeds of mammals.
    [Show full text]