Curriculum Vitae

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vitae Curriculum Vitae Name: Hazem Abdel-Latif GAAFAR Sex: Male DOB: 6th April, 1942 Nationality: Egyptian. Religion: Muslim. Marital status: Married and has 3 children. Address: • Home: 8 Adly Yakan st., - Mazloum - Alexandria, Egypt. • Office: 22 Amin Fekry st., Mahatet El-Ramleh, Alexandria, Egypt Tel.: Home: +20 3 5851222. Office: + 20 3 4873159 GSM: +20 12 22142154 e-mail: [email protected] Medical Qualification: • 1964: MBBCh – Alexandria Faculty of Medicine • 1967: Diploma of Laryngology and Otology, Faculty of Medicine, Alexandria University. • 1969: Diploma of surgery, Alexandria Faculty of Medicine. • 1973: M.Ch, Master of Surgery (ENT), Faculty of Medicine, Alexandria University. Current Post: • Emeriti Professor, ENT Department, Faculty of Medicine, Alexandria University. CV – Prof. Hazem GAAFAR Post-graduate training: • Rotating House officer in Alexandria University Hospitals from August 1964 – August 1965. • Resident in ENT Department, Alexandria Hospital for Health Insurance from September 1965 – June 1966. • Resident in ENT Department, Alexandria University Hospital from July 1966 – June 1968. • Senior house officer, Anesthesia, Pinderfield General Hospital, Wakefield, Yorkshirem, England from August 1968 – November 1968. • Senior Registrar ENT, University College Hospital, Ibadan, Nigeria from January 1972 – October 1972. “Study leave for studying tropical diseases affecting ENT” • Visiting lecturer, ENT, Hiroshima University School of Medicine, Japan from September 1975 – May 1976. “Study leave for training on Electron Microscopy and Microsurgery of the larynx” • Visiting professor, Department of Otolaryngology, John-Hopkins University, USA 1993. • Visiting professor, Pediatric Otolaryngology, the Children’s Neonatal Hospital, Chicago, USA 1997. • Visiting professor, Department of Pediatric Otolaryngology, Cincinnati University Hospital, Cincinnati, USA, 1999. • Visiting professor, Department of Otolaryngology-Head and Neck Surgery, University hospital of Mont-Godinne, Yvoir, Belgium, 1999. Outline of career: 1. Academic appointments: • Clinical Demonstrator, ENT Department, Alexandria Faculty of Medicine from December 1968 – December 1972. • Assistant lecturer, ENT Department, Alexandria Faculty of Medicine from December 1972 – July 1973. • Lecturer in ENT Department, Alexandria Faculty of Medicine from August 1973 – August 1978. - 2 - CV – Prof. Hazem GAAFAR • Assistant Professor in ENT Department, Alexandria Faculty of Medicine from August 1978 – August 1983. • Professor in ENT Department, Alexandria Faculty of Medicine from August 1983 – August 2002. • Emeriti Professor from August 2002 till now. 2. Teaching responsibilities: • Under and post-graduate teaching, Faculty of Medicine, Alexandria, since 1986. • Under and post-graduate teaching, Phoniatric department, Faculty of Art, Alexandria from 1977 – 1984. Prizes and Awards: • Prof. Belal, ORL Prize 1967. • Alexandria University Research Award, 1976. • Alexandria University Award, 2012. Society Membership: • Egyptian Medical Society, Cairo. • Egyptian Society of ORL, Cairo. • International Bronchoesophageal Society, Chicago, USA, since 1983. • La Societe de Broncho-oesohagologie de Langue Francaise, Paris, since 1985. • Collegium Oto-Rhino-Laryngologicum, Amicitae Sacrum, Active member, representing Egypt since 1986. • IFOS Executive Board Member since 1997. Publications: 1. Aural myiasis by sarcophaga. Bulletin Alexandria Faculty of Medicine, 1971;7:99. 2. Electron microscopy of the human nasal mixed glands. JLO 1973;87:639. 3. Surgical treatment of facial hemispasm. Tanta Medical Journal 1973;1:1. - 3 - CV – Prof. Hazem GAAFAR 4. Stapedectomy, personal experience and review of literature. Revue de laryngologie, Paris 1974;95:308. 5. Human nasal sero-mucinous glands after permanent tracheostomy (electron microscopic study). ORL 1974;36:299. 6. Acute thyroiditis with gas formation. JLO 1975;89:17. 7. Retropharyngeal lipoma. JLO 1975;84:115. 8. Human nasal blood vessels after permanent tracheostomy. Electrom microscopic study. ORL 1975;38:35. 9. Scanning electron-microscopy of th endolymphatic sac epithelium. ORL 1976;38:257. 10. Rhinoscleroma. A scanning electron microscopic study. ORL 1976;38:350. 11. Role of plasma cells in Rhinoscleroma, an electron microscopic study. ORL 1977;39:1-13. 12. Blach hairy tongue. A scanning electron-microscopic study. JLO 1977;101:91. 13. The effect of an expectorant on the tracheal mucosa. A scanning electron- microscopic study. ORL 1977;39:113-121. 14. Experimental scleroma. A histopathological study. JLO 1978;92:498. 15. Electron-microscopic study of previously irradiated scleroma. ORL 1979;41:51. 16. Transmission and scanning electron-microscopic studies of rhinoscleroma. JLO 1979;93:983. 17. The tunica propria in rhinoscleroma. An electron microscopic study. Acta Otolaryngol 1981;91:595. (presented at Collegium Oto-Rhino_ Larynngologicum, San Francisco, September 1980) 18. The epithelium and chronic inflammatory cells in scleroma. An electron- microscopic study. JLO 1981;95:1049. 19. Benign and malignant lesions in the upper respiratory tract of mice after chronic exposure to ammonia vapor. J Med Res Instit Alex 1981;2:257. 20. Percutaneous direct nodal injection. A method of superficial lymphography. Bulletin Alexandria, Faculty of Medicine. 1981;17:327. 21. Aural polypi: A histopathological and histochemical study. ORL 1982;44:108. - 4 - CV – Prof. Hazem GAAFAR 22. Stability of the arytenoids during Woodman operation with description of a new instrument used in arytenoids surgery. Alex Med J 1982;24:33. 23. Ceruminous gland activity in Otomycosis. A histopathological and histochemical study. Bullet Alex 1982;18:875. 24. The effect of cigarette smoke on the vocal cord mucosa of the rabbit. An electron-microscopic study. JLO 1981;95:721. 25. The value of X-ray examination in the diagnosis of tracheobronchial foreign bodies in infants and children. ORL 1982;44:340. 26. Ceruminous glands in Otosclerosis. A histopathological and histochemical study. ORL 1983;45:20. 27. The effect of cigarette smoke on the tracheal mucosa of the rabbit. JLO 1982;96:943. 28. The fiberoptic bronchoscope in the diagnosis and investigation of laryngeal disorders. Clin Otolaryngol 1983;8:103. 29. Endoscopy of lower respiratory tract scleroma. Endoscopy 1983;15:297. 30. Tracheal scleroma: A contrast radiographic study. JLO 1984;98:65. 31. The effect of streptomycin and irradiation treatment on Rhinoscleroma: Electron-microscopic study. JLO 1986;100:11. 32. Nature of antibiotic resistance among clinical isolates of Klebsiella rhinoscleromatis. Bulletin Alex Fac Med 1986;22:605. 33. Experimental inoculation of Klebsiella rhinoscleromatis bacilli in albino mice. ORL 1987;49:214. 34. Flexible endoscopy and radiologic evaluation of the Eustachian tube in adults with Eustachian tube dysfunction. Bulletin Alex Fac Med 1987;23:855. 35. Bacitrin production by Klebsiella rhinoscleromatis and bactericidal effect of human serum on the strain. Bulletin Alex Fac Med 1987;23:855. 36. Skin affection in rhinoscleroma. A clinical, histological and electron-microscopic study on four patients. Acta Otolaryngol 1988;105:494. 37. Cytopathology in cancer larynx. ORL 1989;51:216. 38. Endoscopic pathologyof the nasopharynx in rhinoscleroma. Presented at the 25th Pan Arab Medical Conference, Baghdad, 1989. - 5 - CV – Prof. Hazem GAAFAR 39. Lines of treatment of scleroma in Egypt. Presented at the 2nd international FIURT meeting, Lanzarote, 1994. 40. The vomeronasal (Jacobson's) organ in adult humans: frequency of occurrence and enzymatic study. Acta Otolaryngol. 1998 Jun;118(3):409-12. Presented at Collegium meeting in Salzburg – Austria 1997. 41. The effect of ammonia on olfactory epithelium and vomeronasal organ neuroepithelium of rabbits. A histological and histochemical study. ORL J Otorhinolaryngol Relat Spec. 1998 Mar-Apr;60(2):88-91. 42. Nasal endoscopy and CT study of Pharaonic and Roman Mummies. Acta Otolaryngol. (Stockh) 1999;119:257-60. Presented at Collegium meeting in Denmark 1998. 43. Experimental intravenous inoculation of Klebsiella rhinoscleromatis bacilli in albino rats: a histopathological and bacteriological study. Acta Otolaryngol 2000;120(2):279-85. Presented in front of Collegium meeting Lyon – France 22-25 August 1999. 44. Frontal sinus out flow tract “anatomical study”. Acta Otolaryngol. 2001 Jan;121(2):305-9. Presented in front of Collegium annual meeting August 27 – 30, 2000, Washington. 45. Segmental tracheal replacement in mongrel dogs. Acta Otolaryngology (Stockholm) 2003; Vol.123(2) :283-287. Presented at Collegium annual meeting July 2002, Holland. 46. Laryngotracheal augmentation using titanium mesh. Acta Otolaryngology. (2008), 122, 391–396. 47. Rhinoscleroma: An updated experience through the last 10 years. Acta Oto- Laryngologica 2011;131(4):440-6. Presented at Collegium meeting in Budapest 2010. 48. Ancient Egyptian and Roman Instruments used for endonasal brain removal during mummification. Presented in front of Collegium ORALS 25 – 29 August 2012. - 6 - CV – Prof. Hazem GAAFAR Thesis Supervised: I) Master Degree: 1. Histopathological and histochemical study on the effect of prolonged exposure to cigarette smoke on the laryngeal and tracheal mucosa of rabbits, 1986. 2. The ossicles in chronic suppurative otitis media with cholesteatoma. 1987. 3. The effect of rhinoscleroma on the Eustachian tube. Endoscopic and audilogical study, 1989. 4. Role of radiography and endoscopy in the management of adenoids. 1993. 5. Evaluation
Recommended publications
  • Evolution of the Nasal Structure in the Lower Tetrapods
    AM. ZOOLOCIST, 7:397-413 (1967). Evolution of the Nasal Structure in the Lower Tetrapods THOMAS S. PARSONS Department of Zoology, University of Toronto, Toronto, Ontario, Canada SYNOPSIS. The gross structure of the nasal cavities and the distribution of the various types of epithelium lining them are described briefly; each living order of amphibians and reptiles possesses a characteristic and distinctive pattern. In most groups there are two sensory areas, one lined by olfactory epithelium with nerve libers leading to the main olfactory bulb and the other by vomeronasal epithelium Downloaded from https://academic.oup.com/icb/article/7/3/397/244929 by guest on 04 October 2021 with fibers to the accessory bulb. All amniotes except turtles have the vomeronasal epithelium in a ventromedial outpocketing of the nose, the Jacobson's organ, and have one or more conchae projecting into the nasal cavity from the lateral wall. Although urodeles and turtles possess the simplest nasal structure, it is not possible to show that they are primitive or to define a basic pattern for either amphibians or reptiles; all the living orders are specialized and the nasal anatomy of extinct orders is unknown. Thus it is impossible, at present, to give a convincing picture of the course of nasal evolution in the lower tetrapods. Despite the rather optimistic title of this (1948, squamates), Stebbins (1948, squa- paper, I shall, unfortunately, be able to do mates), Bellairs and Boyd (1950, squa- iittle more than make a few guesses about mates), and Parsons (1959a, reptiles). Most the evolution of the nose. I can and will of the following descriptions are based on mention briefly the major features of the these works, although others, specifically nasal anatomy of the living orders of cited in various places, were also used.
    [Show full text]
  • Is the Mole Rat Vomeronasal Organ Functional?
    THE ANATOMICAL RECORD (2019) Is the Mole Rat Vomeronasal Organ Functional? JOHN C. DENNIS,1 NATALIE K. STILWELL,2 TIMOTHY D. SMITH ,3,4* 5 6 1 THOMAS J. PARK , KUNWAR P. BHATNAGAR, AND EDWARD E. MORRISON 1Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, Alabama 2Seastar Communications and Consulting, Athens, Georgia 3School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 4Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania 5Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 6Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky ABSTRACT The colonial naked mole rat Heterocephalus glaber is a subterranean, eusocial rodent. The H. glaber vomeronasal organ neuroepithelium (VNE) displays little postnatal growth. However, the VNE remains neuronal in contrast to some mammals that possess nonfunctional vomeronasal organ remnants, for example, catarrhine primates and some bats. Here, we describe the vomeronasal organ (VNO) microanatomy in the naked mole rat and we make preliminary observations to determine if H. glaber shares its minimal postnatal VNE growth with other African mole rats. We also determine the immunoreactivity to the mitotic marker Ki67, growth- associated protein 43 (GAP43), and olfactory marker protein (OMP) in six adult and three subadult H. glaber individuals. VNE volume measure- ments on a small sample of Cryptomys hottentotus and Fukomys damaren- sis indicate that the VNE of those African mole rat species are also likely to be growth-deficient. Ki67(+) cells show that the sensory epithelium is mitotically active. GAP43 labelling indicates neurogenesis and OMP(+) cells are present though less numerous compared to GAP43(+) cells.
    [Show full text]
  • Thieme: Ear, Nose, and Throat Diseases
    445 Subject Index Page numbers in italics denote figures and those in bold denote tables A adenomas, salivarygland 428 –430, anosmia 125,136 abscesses 429, 432 anotia 49, 49 brain see under brain pleomorphic see pleomorphic anterior rhinoscopy129 –131, 131 cervical soft tissue 388 adenoma antibiotic(s) epidural 188, 188 adhesive otitis 76, 76 aminoglycoside 95–96 nasal septal 199–200 aerosol inhalation 158 ototoxic 95–96 oral floor 256, 260, 260 aerotitis 87 resistance 440 orbital 186,187,187 age-related hearing loss 17 rhinosinusitis management 160 peritonsillar 270,270–272, 271 agnosia, acoustic 104 topical 144 retropharyngeal 273, 273 agranulocytosis 265 upper respiratory/digestive tract subdural 188,188–189 AIDS (acquired immune deficiency diseases 159 subperiosteal 66, 66, 186,187 syndrome) 251,251–252 antiseptics, topical 144 achalasia 362,371 aids, hearing 106, 106,107,107 antrostomy175, 176 cricopharyngeal 371–372 air conduction 28 anulus fibrosus 4, 5,69 acid burns airflow, nasal 126,126–127 aperiodic vibration 15, 15 esophageal 362,365–366 alae, nasal, anomalies 215, 217 aphasia 340–342, 341, 343 oral/pharyngeal 277–278 alkali burns aphthae 252 acinic cell tumors, salivary432 esophageal 362,365–366 articulation disorder 336 acoustic agnosia 104 oral/pharyngeal 277–278 arytenoidectomy, partial 305, 307 acoustic end organ see cochlea allergens, ear 54, 54 ataxia 20 acoustic neuroma 92,92,93, 94 allergic glossitis 256–257 atresia acoustic rhinomanometry136 allergic rhinitis 150–151, 151 choanal 211–212 acoustic trauma, acute 88 allergic
    [Show full text]
  • Other Primate Species* A
    J. Anat. (1984), 138, 2, pp. 217-225 217 With 3 figures Printed in Great Britain The structure of the vomeronasal organ and nasopalatine ducts in Aotus trivirgatus and some other primate species* A. J. HUNTER, D. FLEMING AND A. F. DIXSON Department of Reproduction, Institute of Zoology, Zoological Society of London, Regents Park, London NW1 (Accepted 16 June 1983) INTRODUCTION The vomeronasal organ was first fully described by Jacobson (1811), although its presence had been noted by Ruysch (1703). Since its discovery, the occurrence and structure of the organ has been well documented in many species (Allison, 1953; Negus, 1956; Cooper & Bhatnagar, 1976; Vaccarezza, Sepich & Tramezzani, 1981). The vomeronasal organ is a bilateral, symmetrical structure encapsulated by cartil- age. It lies at the base of the nasal septum and, in most mammals, opens anteriorly into the nasopalatine canal via the vomeronasal duct. Detailed studies of the structure of the vomeronasal organ have only been carried out in a few primate species: the mouse lemur, Microcebus murinus (Schilling, 1970); the tarsier, Tarsius bancanus borneanus (Starck, 1975); the bushbaby, Galago senega- lensis (Eloff, 1951), Galago demidovii and the squirrel monkey, Samiri sciureus (Maier, 1980). Frets (1912) studied the organ in thefetuses ofa number ofPlatyrrhine and Catarrhine species, but in only one adult specimen of Cebus hypoleucus. He concludes that the organ is well developed only in Platyrrhine primates. Similar results were obtained by Jordan (1972) and Loo (1974), with the organ being present in the slow loris, lemur and capuchin monkey but absent in the gibbon and various macaque species, although in many studies it is not clear whether fetal or adult material has been used (e.g.
    [Show full text]
  • Study on the Morphology and Frequency of the Vomeronasal Organ in Humans
    Int. J. Morphol., 26(2):283-288, 2008. Study on the Morphology and Frequency of the Vomeronasal Organ in Humans Estudio sobre la Morfología y la Frecuencia del Órgano Vomeronasal en los Seres Humanos *Maria de Fátima Pereira de Carvalho, **Adriana Leal Alves & ***Mirna Duarte Barros CARVALHO, M. F. P.; ALVES, A. L. & BARROS, M. D. Study on the morphology and frequency of the vomeronasal organ in humans. Int. J. Morphol., 26(2):283-288, 2008. SUMMARY: The vomeronasal organ was first described in humans in the seventeenth century. It has a chemosensory function and is found in the mucosa of the nasal septum of mammals and consists of an opening in the mucosa at the base of the nasal septum. For this study, 143 individuals undergoing nasofibrolaryngoscopy were studied, and presence of the vomeronasal organ was considered to be a finding from the examination. Three morphological types of vomeronasal organ were observed: fissure, fossette and circular. The total prevalence of the vomeronasal organ among these patients was 28% (40 individuals). The prevalence of the vomeronasal organ in this study population is compatible with what has been reported in other studies. The forms of the vomeronasal organ can be characterized: fissure, fossette and circular. The fossette type is commonest in males and the fissure among females. KEY WORDS: Vomeronasal organ; Human; Anatomy. INTRODUCTION The vomeronasal organ (VNO) opens up in the mu- on each side of the mucosa that covers the nasal septum cosa at the base of the nasal septum. It has a variable shape (Monti-Bloch et al.) (Fig.
    [Show full text]
  • The Human Vomeronasal (Jacobson's) Organ
    Open Access Review Article DOI: 10.7759/cureus.2643 The Human Vomeronasal (Jacobson’s) Organ: A Short Review of Current Conceptions, With an English Translation of Potiquet’s Original Text George S. Stoyanov 1 , Boyko K. Matev 2 , Petar Valchanov 3 , Nikolay Sapundzhiev 4 , John R. Young 5 1. Department of General and Clinical Pathology, Forensic Medicine and Deontology, Medical University – Varna "Prof. Dr. Paraskev Stoyanov", Varna, BGR 2. Student, Faculty of Medicine, Medical University – Varna “prof. Dr. Paraskev Stoyanov”, Varna, BGR 3. Anatomy and Cell Biology, Faculty of Medicine, Medical University – Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria, Varna, BGR 4. Department of Neurosurgery and Ent, Division of Ent, Faculty of Medicine, Medical University Varna "prof. Dr. Paraskev Stoyanov", Varna, BGR 5. Consultant Otolaryngologist, North Devon, Uk Corresponding author: George S. Stoyanov, [email protected] Abstract The vomeronasal organ (VNO) is a structure located in the anteroinferior portion of the nasal septum and is part of the accessory olfactory system. The VNO, together with its associated structures, has been shown to play a role in the formation of social and sexual behavior in animals, thanks to its pheromone receptor cells and the stimulating effect on the secretion of gonadotropin-releasing hormone. The VNO was first described as a structure by the Dutch botanist and anatomist Frederik Ruysch in 1703 while dissecting a young male cadaver. This finding, however, is widely contradicted due to no elaborate descriptions being made by the Ruysch. The description of the VNO is more widely attributed to the Danish surgeon Ludwig Jacobson, with whom the VNO has been synonymized, as in 1803 he described the structure in a variety of mammals.
    [Show full text]
  • Vomeronasal Organ and Human Pheromones
    European Annals of Otorhinolaryngology, Head and Neck diseases (2011) 128, 184—190 UPDATE Vomeronasal organ and human pheromones D. Trotier ∗ CNRS, INRA, FRE 3295, Neurobiologie Sensorielle, domaine de Vilvert, bâtiment 325, 78350 Jouy-en-Josas, France Available online 5 March 2011 KEYWORDS Summary For many organisms, pheromonal communication is of particular importance in Olfaction; managing various aspects of reproduction. In tetrapods, the vomeronasal (Jacobson’s) organ Vomeronasal; specializes in detecting pheromones in biological substrates of congeners. This information trig- Pheromones; gers behavioral changes associated, in the case of certain pheromones, with neuroendocrine Human correlates. In human embryos, the organ develops and the nerve fibers constitute a substrate for the migration of GnRH-secreting cells from the olfactory placode toward the hypothalamus. After this essential step for subsequent secretion of sex hormones by the anterior hypophysis, the organ regresses and the neural connections disappear. The vomeronasal cavities can still be observed by endoscopy in some adults, but they lack sensory neurons and nerve fibers. The genes which code for vomeronasal receptor proteins and the specific ionic channels involved in the transduction process are mutated and nonfunctional in humans. In addition, no accessory olfactory bulbs, which receive information from the vomeronasal receptor cells, are found. The vomeronasal sensory function is thus nonoperational in humans. Nevertheless, several steroids are considered to be putative human pheromones; some activate the anterior hypothalamus, but the effects observed are not comparable to those in other mammals. The signaling process (by neuronal detection and transmission to the brain or by systemic effect) remains to be clearly elucidated. © 2011 Published by Elsevier Masson SAS.
    [Show full text]
  • On the Embryonic Development of the Nasal Turbinals and Their Homology in Bats
    fcell-09-613545 March 17, 2021 Time: 12:30 # 1 ORIGINAL RESEARCH published: 23 March 2021 doi: 10.3389/fcell.2021.613545 On the Embryonic Development of the Nasal Turbinals and Their Homology in Bats Kai Ito1*, Vuong Tan Tu2,3, Thomas P. Eiting4, Taro Nojiri5,6 and Daisuke Koyabu7,8,9* 1 Department of Anatomy, Tissue and Cell Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan, 2 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam, 3 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, 4 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States, 5 Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan, 6 The University Museum, The University of Tokyo, Tokyo, Japan, 7 Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan, 8 Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, 9 Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan Edited by: Multiple corrugated cartilaginous structures are formed within the mammalian nasal Juan Pascual-Anaya, capsule, eventually developing into turbinals. Due to its complex and derived RIKEN Cluster for Pioneering Research (CPR), Japan morphology, the homologies of the bat nasal turbinals have been highly disputed Reviewed by: and uncertain. Tracing prenatal development has been proven to provide a means Oleksandr Yaryhin, to resolve homological problems. To elucidate bat turbinate homology, we conducted Max Planck Institute for Evolutionary the most comprehensive study to date on prenatal development of the nasal capsule.
    [Show full text]
  • Relaxed Selective Pressure on an Essential Component of Pheromone Transduction in Primate Evolution
    Relaxed selective pressure on an essential component of pheromone transduction in primate evolution Emily R. Liman*†‡§ and Hideki Innan*‡¶ *Department of Biological Sciences and Programs in †Neurosciences and ‡Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved January 28, 2003 (received for review October 9, 2002) The vomeronasal organ (VNO) detects pheromones in many ver- boundaries was assigned based on similarity to consensus motifs. tebrate species but is likely to be vestigial in humans. TRPC2(TRP2), DNA sequences were assembled by using VECTOR NTI suite 6 a gene that is essential for VNO function in the mouse, is a (InforMax, Bethesda). A reconstructed full-length hTRPC2 pseudogene in humans. Because TRPC2 is expressed only in the cDNA consisting of 2,667 nt was obtained by conceptually VNO, the loss of selective pressure on this gene can serve as a splicing exons 1, 5, and 8 identified from the genomic sequence, molecular marker for the time at which the VNO became vestigial. and the partial cDNA sequence of hTRPC2, which contains the By analyzing sequence data from the TRPC2 gene of 15 extant remaining exons. primate species, we provide evidence that the VNO was most likely functional in the common ancestor of New World monkeys and Old PCR Amplification and Sequencing of Primate Genomic DNA. World monkeys and apes, but then became vestigial in the com- Genomic DNA from the following primate species was obtained mon ancestor of Old World monkeys and apes. We propose that, from Therion (Troy, NY): squirrel monkey (Saimiri sciureus), at this point in evolution, other modalities, notably the develop- common marmoset (Callithrix jacchus), owl monkey (Aotus ment of color vision, may have largely replaced signaling by azarai), and black and white ruffed lemur (Varecia variegata).
    [Show full text]
  • The Cartilaginous Nasal Dorsum and the Pos1natal Growth of the Nose
    THE CARTILAGINOUS NASAL DORSUM AND THE POS1NATAL GROWTH OF THE NOSE THE CARTILAGINOUS NASAL DORSUM AND THE POSTNATAL GROWTH OF THE NOSE (Het kraakbenige neusdak in de groeiende neus) PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. Dr. A.H.G. Rinnooy Kan en volgens besluit van het College van Dekanen. De openbare verdediging zal plaats vinden op vrijdag 18 december 1987 om 14.00 uur door Rene Michel Louis POUBLON geboren te Makassar (Ind.) 1987 EBURON DELIT Promotiecommissie Promotor: Prof.Dr.C.D.A Verwoerd Overige !eden : Prof.Dr.P.C. de Jong Prof.DrJ.C. Molenaar Prof.DrJ. Voogd This study is part of the project Airway Stenosis. Supervisor: Dr.H.L. Verwoerd-Verhoef Institute for Otorhinolaryngology Erasmus University Rotterdam ACKNOWLEDGEMENTS For the realisation of a thesis many unpredictable circumstances have to be met. Many people have contributed to reducing those uncertainties and have inspired, stimulated and helped me to accomplish this thesis. In the first place I owe much gratitude to my promotor Prof.C.D.A.Verwoerd and his wife Dr.H.L.Verwoerd-Verhoef. Right at the beginning Carel and Jetty put me on a running train in a direction that I could hardly forsee. Your continuous encouragement and support were the foundation for experimental work. The discussions with Carel, during nasal surgery, deepened our knowledge and will be the basis for further investigations. Jetty, your comments were of indispensable value both for the content and for the linguistic form of the manuscript.
    [Show full text]
  • MORPHOLOGICAL STUDIES of VOMERONASAL ORGAN in the WILD JUVENILE RED- FLANKED DUIKER Cephalophus Rufilatus (GRAY 1864)
    Animal Research International (2009) 6(1): 932 – 937 932 MORPHOLOGICAL STUDIES OF VOMERONASAL ORGAN IN THE WILD JUVENILE RED- FLANKED DUIKER Cephalophus rufilatus (GRAY 1864) IGBOKWE, Casmir Onwuaso and OKPE, Godwin Chidozie Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria. Corresponding Author: Igbokwe, C. O. Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nigeria. Email: [email protected] Phone: +234 8034930393 ABSTRACT The vomeronasal organ (VNO) of the juvenile Red-flanked duiker (Cephalophus rufilatus) weighing between 0.8-1.4 kg was studied by gross dissection and light microscopy. The organ was found to be present at the base of the nasal septum completely housed by the vomeronasal cartilage, but the various soft tissue components of the organ were not remarkably present as in most adult mammals. The average palatal length of the organ was 1.9 cm, while the transverse diameter of the lumen of the duct measured 0.5 cm. The average thickness of the vomeronasal sensory epithelium on the medial wall was 50.05 µm, while that of the ‘non sensory’ respiratory epithelium on the lateral wall was 40.05 µm. Our findings suggest that the VNO of the juvenile duiker is rudimentary at this stage and may not be able to support vomeronasal functions. Further development of the various components is required to achieve its functional capacity. Keywords: Red-flanked duiker, Cephalophus rufilatus, Vomeronasal organ, Anatomy, Histology INTRODUCTION ((Estes, 1974; Kranz and Lumpkin, 1982). Moreover the group is relatively homogenous. All Cephalophus In several mammalian species, olfactory sensory spp are small (4 – 64 kg) with build, gait and short perception is mediated by two anatomically and slanted horns seem well adapted to movement functionally distinct organs, the main olfactory and through thick vegetation of the forest habitats.
    [Show full text]
  • Olfactory Evaluation in Children: Application to the CHARGE Syndrome
    Olfactory Evaluation in Children: Application to the CHARGE Syndrome Christel Chalouhi, MD*; Patrick Faulcon, MD‡; Christine Le Bihan, MD§; Lucie Hertz-Pannier, MD, PhD࿣; Pierre Bonfils, MD, PhD‡; and Ve´ronique Abadie, MD, PhD* ABSTRACT. Objective. To find an efficient tool for ABBREVIATIONS. CHARGE, coloboma, congenital heart disease, testing olfactory function in children and use it to inves- choanal atresia, mental and growth retardation, genital anomalies, tigate a group of children with CHARGE (coloboma, and ear malformations and hearing loss; PEA, phenylethylalcohol. congenital heart disease, choanal atresia, mental and growth retardation, genital anomalies, and ear malforma- tions and hearing loss) syndrome. lfaction has always been and remains the Methods. We adapted for children an olfaction test most neglected sense in studies of child de- that had just been validated in an adult French popula- Ovelopment and behavior, the main reasons tion and investigated a control group of 25 healthy chil- being the poor knowledge concerning the role of dren aged 6 to 13 years. We then tested the olfactory olfaction in human development and behavior and capacity of a group of 14 children with CHARGE syn- the lack of available tools for investigating olfaction, drome, aged 6 to 18 years. A questionnaire was com- in particular in children. Development of the olfac- pleted with the parents about their children’s feeding tory system begins very early in the human embryo; difficulties and their ability to recognize odors in every- olfactory bulbs have their definitive structure at day day life. We recorded and scored the histories of feeding 56. Then, cells of the olfactory placode differentiate behavior anomalies, the visual and auditory status, and to gonadotropic cells and migrate to the hypotha- current intellectual levels.
    [Show full text]