Narial Novelty in Mammals: Case Studies and Rules Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
About Pigs [PDF]
May 2015 About Pigs Pigs are highly intelligent, social animals, displaying elaborate maternal, communicative, and affiliative behavior. Wild and feral pigs inhabit wide tracts of the southern and mid-western United States, where they thrive in a variety of habitats. They form matriarchal social groups, sleep in communal nests, and maintain close family bonds into adulthood. Science has helped shed light on the depths of the remarkable cognitive abilities of pigs, and fosters a greater appreciation for these often maligned and misunderstood animals. Background Pigs—also called swine or hogs—belong to the Suidae family1 and along with cattle, sheep, goats, camels, deer, giraffes, and hippopotamuses, are part of the order Artiodactyla, or even-toed ungulates.2 Domesticated pigs are descendants of the wild boar (Sus scrofa),3,4 which originally ranged through North Africa, Asia and Europe.5 Pigs were first domesticated approximately 9,000 years ago.6 The wild boar became extinct in Britain in the 17th century as a result of hunting and habitat destruction, but they have since been reintroduced.7,8 Feral pigs (domesticated animals who have returned to a wild state) are now found worldwide in temperate and tropical regions such as Australia, New Zealand, and Indonesia and on island nations, 9 such as Hawaii.10 True wild pigs are not native to the New World.11 When Christopher Columbus landed in Cuba in 1493, he brought the first domestic pigs—pigs who subsequently spread throughout the Spanish West Indies (Caribbean).12 In 1539, Spanish explorers brought pigs to the mainland when they settled in Florida. -
Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery. -
Õ“°“√§—¥®¡Ÿ° (Nasal Obstruction)
π“π“ “√– § ≈‘ π‘ ° Õ“°“√§—¥®¡Ÿ° (Nasal Obstruction) Õ“°“√§¥®¡— °Ÿ (Nasal Obstruction) Õ“°“√§—¥®¡Ÿ°‡ªìπÕ“°“√∑’Ëæ∫‰¥â∫àÕ¬„π‡«™ªØ‘∫—µ‘ ´÷ËßÕ“®‡ªìπÕ“°“√∑’Ëæ∫‰¥âµ“¡ª°µ‘ (´÷Ëßæ∫‡ªìπ à«ππâÕ¬ ‰¥â·°à Õ“°“√§—¥®¡Ÿ°∑’ˇ°‘¥®“°°“√∑’Ë®¡Ÿ°∑”ß“π ≈—∫¢â“ß°—πµ“¡∏√√¡™“µ‘ ∑’ˇ√’¬°«à“ nasal À√◊Õ turbinate cycle À√◊ÕÕ“°“√§—¥®¡Ÿ°∑’ˇ°‘¥®“°°“√‡ª≈’ˬπ∑à“∑“ß ‡™àπ πÕπµ–·§ß·≈â«§—¥®¡Ÿ°¢â“ß∑’ËπÕπ∑—∫Õ¬Ÿà ‡¡◊ËÕµ–·§ß‰ªÕ’°¥â“πÀπ÷Ëß ¥â“π∑’ˇ§¬§—¥®–°≈—∫‚≈àߢ÷Èπ ´÷Ë߇°‘¥®“°·√ߥ÷ߥŸ¥¢Õß‚≈°) À√◊Õ‡°‘¥®“°‚√§¢Õß®¡Ÿ°À≈“¬Ê ™π‘¥ (´÷Ëßæ∫‡ªìπ à«π¡“°) ·≈– ‡ªìπÕ“°“√∑’Ëæ∫∫àÕ¬Õ’°Õ“°“√Àπ÷Ëß∑’Ëπ”ºŸâªÉ«¬¡“À“·æ∑¬å ‡π◊ËÕß®“°¡—°∑”„À⺟âªÉ«¬√”§“≠ ·≈– ∑π∑ÿ°¢å∑√¡“π ·≈–¡’§ÿ≥¿“æ™’«‘µ·¬à≈ß „πª√–‡∑» À√—∞Õ‡¡√‘°“‰¥â‡§¬¡’ºŸâª√–‡¡‘π«à“¡’§à“„™â ®à“¬„π°“√√—°…“Õ“°“√§—¥®¡Ÿ° Ÿß∂÷ß 5 æ—π≈â“π‡À√’¬≠ À√—∞µàÕªï ·≈–¡’§à“„™â®à“¬ Ÿß∂÷ß 60 ≈â“π ‡À√’¬≠ À√—∞µàÕªï „π°“√∑”°“√ºà“µ—¥√—°…“Õ“°“√§—¥®¡Ÿ°1. §”®”°¥§«“¡— Õ“°“√§¥®¡— °‡ªŸ πÕ“°“√∑ì º’Ë ªŸâ «¬√É Ÿâ °À√÷ Õ‡¢◊ “„®«â “≈¡À√à ÕÕ“°“»∑◊ º’Ë “π‡¢à “À√â ÕÕÕ°®“°®¡◊ °Ÿ πâÕ¬°«à“ª°µ‘ ‚¥¬∑’Ë¡’≈¡À√◊ÕÕ“°“»∑’˺à“π‡¢â“À√◊ÕÕÕ°®“°®¡Ÿ°πâÕ¬®√‘ß (objective restriction of nasal cavity airflow) ‡π◊ËÕß®“°¡’§«“¡º‘¥ª°µ‘¢Õ߇¬◊ËÕ∫ÿ®¡Ÿ° À√◊Õ¡’ª√‘¡“≥πÈ”¡Ÿ°‡æ‘Ë¡¡“° ¢÷Èπ2 °“√∑’ˇ¬◊ËÕ∫ÿ®¡Ÿ° “¡“√∂√—∫√ŸâÕ“°“»∑’˺à“π‡¢â“À√◊ÕÕÕ°®“°®¡Ÿ° ‡™◊ËÕ«à“ºà“π∑“ßµ—«√—∫√Ÿâ —¡º— ·≈–Õÿ≥À¿Ÿ¡‘ (tactile and thermoreceptors) ∑’ËÕ¬Ÿà„π nasal vestibule ·≈–‡¬◊ËÕ∫ÿ®¡Ÿ° ´÷Ëß §«“¡‰«¢Õßµ—«√—∫√Ÿâ¥—ß°≈à“«®–πâÕ¬≈߇√◊ËÕ¬Ê ®“°¥â“πÀπⓉª¥â“πÀ≈—ß ‡ âπª√– “∑∑’Ë√—∫√ŸâÕ“°“» ª“√¬– Õ“»π–‡ π æ.∫., √Õß»“ µ√“®“√¬ å “¢“‚√§®¡°·≈–‚√§¿Ÿ ¡Ÿ ·æ‘ â ¿“§«™“‚ µ‘ π“ °‘ ≈“√ß´‘ «å ∑¬“‘ §≥–·æ∑¬»“ µ√»å √‘ √“™æ¬“∫“≈‘ ¡À“«∑¬“≈‘ ¬¡À— ¥≈‘ §≈‘π‘° ªï∑’Ë 29 ©∫—∫∑’Ë 4 ‡¡…“¬π 2556 235 ∑’˺à“π‡¢â“À√◊ÕÕÕ°®“°®¡Ÿ° §◊Õ ª√– “∑ ¡Õß§Ÿà∑’Ë 5 Õ“°“»„ÀâÕÿàπ·≈–™◊Èπ¢÷ÈππâÕ¬°«à“§πª°µ‘, ºŸâªÉ«¬‚√§ (ophthalmic and maxillary branch of trigeminal ®¡Ÿ°Õ—°‡ ∫¿Ÿ¡‘·æâ™π‘¥ƒ¥Ÿ°“≈∑’ËÕ¬ŸàπÕ°ƒ¥Ÿ°“≈À√◊Õ nerve). -
Dorsal Approach Rhinoplasty Dorsal Approach Rhinoplasty
AIJOC 10.5005/jp-journals-10003-1105 ORIGINAL ARTICLE Dorsal Approach Rhinoplasty Dorsal Approach Rhinoplasty Kenneth R Dubeta Part I: Historical Milestones in Rhinoplasty ABSTRACT Direct dorsal excision of skin and subcutaneous tissue is employed in rhinoplasty cases characterized by thick rigid skin to achieve satisfactory esthetic results, in which attempted repair by more conventional means would most likely frustrate both surgeon and patient. This historical review reminds us of the lesson: ‘History repeats itself.’ Built on a foundation of reconstructive rhinoplasty, modern cosmetic and corrective rhinoplasty have seen the parallel development of both open and closed techniques as ‘new’ methods are introduced and reintroduced again. It is from the perspective of constant evolution in the art of rhinoplasty surgery that the author presents, in Part II, his unique ‘eagle wing’ chevron incision technique of dorsal approach rhinoplasty, to overcome the problems posed by the rigid skin nose. Keywords: Dorsal approach rhinoplasty, Eagle wing incision, Fig. 1: Ancient Greek ‘perikephalea’ to support the Rigid skin nose, External approach rhinoplasty, Historical straightened nose1 milestones. How to cite this article: Dubeta KR. Dorsal Approach and functions of the nose. Refinement of these techniques Rhinoplasty. Int J Otorhinolaryngol Clin 2013;5(1):1-23. seemingly had to await three antecedent developments; Source of support: Nil topical vasoconstriction; topical, systemic and local Conflict of interest: None declared anesthesia; and safe, reliable sources of illumination. The last half of the 20th century has seen the dissemination of INTRODUCTION two of the most important developments in the history of Throughout the ages, numerous techniques of altering, nasal surgery: correcting and more recently, improving the appearance and 1. -
The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work. -
Last Interglacial (MIS 5) Ungulate Assemblage from the Central Iberian Peninsula: the Camino Cave (Pinilla Del Valle, Madrid, Spain)
Palaeogeography, Palaeoclimatology, Palaeoecology 374 (2013) 327–337 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Last Interglacial (MIS 5) ungulate assemblage from the Central Iberian Peninsula: The Camino Cave (Pinilla del Valle, Madrid, Spain) Diego J. Álvarez-Lao a,⁎, Juan L. Arsuaga b,c, Enrique Baquedano d, Alfredo Pérez-González e a Área de Paleontología, Departamento de Geología, Universidad de Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain b Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4, 28029 Madrid, Spain c Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain d Museo Arqueológico Regional de la Comunidad de Madrid, Plaza de las Bernardas, s/n, 28801-Alcalá de Henares, Madrid, Spain e Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, s/n, 09002 Burgos, Spain article info abstract Article history: The fossil assemblage from the Camino Cave, corresponding to the late MIS 5, constitutes a key record to un- Received 2 November 2012 derstand the faunal composition of Central Iberia during the last Interglacial. Moreover, the largest Iberian Received in revised form 21 January 2013 fallow deer fossil population was recovered here. Other ungulate species present at this assemblage include Accepted 31 January 2013 red deer, roe deer, aurochs, chamois, wild boar, horse and steppe rhinoceros; carnivores and Neanderthals Available online 13 February 2013 are also present. The origin of the accumulation has been interpreted as a hyena den. Abundant fallow deer skeletal elements allowed to statistically compare the Camino Cave fossils with other Keywords: Early Late Pleistocene Pleistocene and Holocene European populations. -
Download PDF File
ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 Two cases of combined anatomical variations: maxillofacial trunk, vertebral, posterior communicating and anterior cerebral atresia, linguofacial and labiomental trunks Authors: M. C. Rusu, A. M. Jianu, M. D. Monea, A. C. Ilie DOI: 10.5603/FM.a2021.0007 Article type: Case report Submitted: 2020-11-28 Accepted: 2021-01-08 Published online: 2021-01-29 This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed. Powered by TCPDF (www.tcpdf.org) Two cases of combined anatomical variations: maxillofacial trunk, vertebral, posterior communicating and anterior cerebral atresia, linguofacial and labiomental trunks M.C. Rusu et al., The maxillofacial trunk M.C. Rusu1, A.M. Jianu2, M.D. Monea2, A.C. Ilie3 1Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania 2Department of Anatomy, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania 3Department of Functional Sciences, Discipline of Public Health, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania Address for correspondence: M.C. Rusu, MD, PhD (Med.), PhD (Biol.), Dr. Hab., Prof., Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd., RO-76241, Bucharest, Romania, , tel: +40722363705 e-mail: [email protected] ABSTRACT Background: Commonly, arterial anatomic variants are reported as single entities. -
An Educator's Resource to Texas Mammal Skulls and Skins
E4H-014 11/17 An Educator’s Resource to Texas Mammal Skulls and Skins for use in 4-H Wildlife Programs and FFA Wildlife Career Development Events By, Denise Harmel-Garza Program Coordinator I, Texas A&M AgriLife Extension Service, 4-H Photographer and coauthor, Audrey Sepulveda M.Ed. Agricultural Leadership, Education and Communications, Texas A&M University College Station, Texas 2017 “A special thanks to the Biodiversity Research and Teaching Collections at Texas A&M University for providing access to their specimens.” Texas A&M AgriLife Extension provides equal opportunities in its programs and employment to all persons, regardless of race, color, sex, religion, national origin, disability, age, genetic information, veteran status, sexual orientation, or gender identity. The Texas A&M University System, U.S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating. Introduction Texas youth that participate in wildlife programs may be asked to identify a skull, skin, scat, tracks, etc. of an animal. Usually, educators must find this information and assemble pictures of skulls and skins from various sources. They also must ensure that what they find is relevant and accurate. Buying skulls and skins to represent all Texas mammals is costly. Most educators cannot afford them, and if they can, maintaining these collections over time is problematic. This study resource will reduce the time teachers across the state need to spend searching for information and allow them more time for presenting the material to their students. This identification guide gives teachers and students easy access to information that is accurate and valuable for learning to identify Texas mammals. -
The Facial Artery of the Dog
Oka jimas Folia Anat. Jpn., 57(1) : 55-78, May 1980 The Facial Artery of the Dog By MOTOTSUNA IRIFUNE Department of Anatomy, Osaka Dental University, Osaka (Director: Prof. Y. Ohta) (with one textfigure and thirty-one figures in five plates) -Received for Publication, November 10, 1979- Key words: Facial artery, Dog, Plastic injection, Floor of the mouth. Summary. The course, branching and distribution territories of the facial artery of the dog were studied by the acryl plastic injection method. In general, the facial artery was found to arise from the external carotid between the points of origin of the lingual and posterior auricular arteries. It ran anteriorly above the digastric muscle and gave rise to the styloglossal, the submandibular glandular and the ptery- goid branches. The artery continued anterolaterally giving off the digastric, the inferior masseteric and the cutaneous branches. It came to the face after sending off the submental artery, which passed anteromedially, giving off the digastric and mylohyoid branches, on the medial surface of the mandible, and gave rise to the sublingual artery. The gingival, the genioglossal and sublingual plical branches arose from the vessel, while the submental artery gave off the geniohyoid branches. Posterior to the mandibular symphysis, various communications termed the sublingual arterial loop, were formed between the submental and the sublingual of both sides. They could be grouped into ten types. In the face, the facial artery gave rise to the mandibular marginal, the anterior masseteric, the inferior labial and the buccal branches, as well as the branch to the superior, and turned to the superior labial artery. -
American Museum Novitates
AMERICAN MUSEUM NOVITATES Number 3737, 64 pp. February 29, 2012 New leontiniid Notoungulata (Mammalia) from Chile and Argentina: comparative anatomy, character analysis, and phylogenetic hypotheses BRUCE J. SHOCKEY,1 JOHN J. FLYNN,2 DARIN A. CROFT,3 PHILLIP GANS,4 ANDRÉ R. WYSS5 ABSTRACT Herein we describe and name two new species of leontiniid notoungulates, one being the first known from Chile, the other from the Deseadan South American Land Mammal Age (SALMA) of Patagonia, Argentina. The Chilean leontiniid is from the lower horizons of the Cura-Mallín Formation (Tcm1) at Laguna del Laja in the Andean Main Range of central Chile. This new species, Colpodon antucoensis, is distinguishable from Patagonian species of Colpodon by way of its smaller I2; larger I3 and P1; sharper, V-shaped snout; and squarer upper premo- lars. The holotype came from a horizon that is constrained below and above by 40Ar/39Ar ages of 19.53 ± 0.60 and 19.25 ± 1.22, respectively, suggesting an age of roughly 19.5 Ma, or a little older (~19.8 Ma) when corrected for a revised age of the Fish Canyon Tuff standard. Either age is slightly younger than ages reported for the Colhuehuapian SALMA fauna at the Gran Bar- ranca. Taxa from the locality of the holotype of C. antucoensis are few, but they (e.g., the mylo- dontid sloth, Nematherium, and a lagostomine chinchillid) also suggest a post-Colhuehuapian 1Department of Biology, Manhattan College, New York, NY 10463; and Division of Paleontology, American Museum of Natural History. 2Division of Paleontology, and Richard Gilder Graduate School, American Museum of Natural History. -
Patterns of Diet and Body Mass of Large Ungulates from the Pleistocene of Western Europe, and Their Relation to Vegetation
Palaeontologia Electronica palaeo-electronica.org Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation Juha Saarinen, Jussi Eronen, Mikael Fortelius, Heikki Seppä, and Adrian M. Lister ABSTRACT Ungulate diets may vary following differences in vegetation, and their body size is affected by a complex set of ecological and physiological variables. Here we analyse Middle and Late Pleistocene British and German ungulate palaeocommunities to test whether there are significant correlations of diet and body size of ungulate species with vegetation openness. We also evaluate the role of interspecific interactions on the diet and body mass of the ungulate species. We use mesowear for dietary analyses and regression equations for estimating body mass from skeletal measures. The results show a correlation between ungulate mesowear and non-arboreal pollen percentages of the localities, but there are marked differences between species. Body masses of rhinoceroses (Rhinocerotidae) and deer (Cervidae) are on average higher in open environments, whereas aurochs (Bos primigenius) does not show clear connection of body size with vegetational conditions, and bison (Bison spp.) and wild horses (Equus ferus) have on average smaller mean size in more open ecosystems, possibly because of high population densities and resulting resource limitations. It is evident that the correlation of body size and vegetation openness is not straightforward and is likely to reflect the varying effects of population density, ecological adaptations and environmental conditions on body size in different species. Juha Saarinen. Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland. -
New Data on Large Mammals of the Pleistocene Trlica Fauna, Montenegro, the Central Balkans I
ISSN 00310301, Paleontological Journal, 2015, Vol. 49, No. 6, pp. 651–667. © Pleiades Publishing, Ltd., 2015. Original Russian Text © I.A. Vislobokova, A.K. Agadjanian, 2015, published in Paleontologicheskii Zhurnal, 2015, No. 6, pp. 86–102. New Data on Large Mammals of the Pleistocene Trlica Fauna, Montenegro, the Central Balkans I. A. Vislobokova and A. K. Agadjanian Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received September 18, 2014 Abstract—A brief review of 38 members of four orders, Carnivora, Proboscidea, Perissodactyla, and Artio dactyla, from the Pleistocene Trlica locality (Montenegro), based on the material of excavation in 2010–2014 is provided. Two faunal levels (TRL11–10 and TRL6–5) which are referred to two different stages of faunal evolution in the Central Balkans are recognized. These are (1) late Early Pleistocene (Late Villafranchian) and (2) very late Early Pleistocene–early Middle Pleistocene (Epivillafranchian–Early Galerian). Keywords: large mammals, Early–Middle Pleistocene, Central Balkans DOI: 10.1134/S0031030115060143 INTRODUCTION of the Middle Pleistocene (Dimitrijevic, 1990; Forsten The study of the mammal fauna from the Trlica and Dimitrijevic, 2002–2003; Dimitrijevic et al., locality (Central Balkans, northern Montenegro), sit 2006); the MNQ20–MNQ22 zones (Codrea and uated 2.5 km from Pljevlja, provides new information Dimitrijevic, 1997); terminal Early Pleistocene improving the knowledge of historical development of (CrégutBonnoure and Dimitrijevic, 2006; Argant the terrestrial biota of Europe in the Pleistocene and and Dimitrijevic, 2007), Mimomys savinipusillus biochronology. In addition, this study is of interest Zone (Bogicevic and Nenadic, 2008); or Epivillafran in connection with the fact that Trlica belongs to chian (Kahlke et al., 2011).