A Chronology of Middle Missouri Plains Village Sites

Total Page:16

File Type:pdf, Size:1020Kb

A Chronology of Middle Missouri Plains Village Sites Smithsonian Institution Scholarly Press smithsonian contributions to zoology • number 627 Smithsonian Institution Scholarly Press TheA Chronology Therian Skull of MiddleA Missouri Lexicon with Plains EmphasisVillage on the OdontocetesSites J. G. Mead and R. E. Fordyce By Craig M. Johnson with contributions by Stanley A. Ahler, Herbert Haas, and Georges Bonani SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions in History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines. General requirements for manuscript preparation are on the inside back cover of printed volumes. For detailed submissions require- ments and to review the “Manuscript Preparation and Style Guide for Authors,” visit the Submissions page at www.scholarlypress.si.edu. smithsonian contributions to zoology • number 627 The Therian Skull A Lexicon with Emphasis on the Odontocetes J. G. Mead and R. E. Fordyce WASHINGTON D.C. 2009 ABSTRACT Mead, J. G., and R. E. Fordyce. The Therian Skull: A Lexicon with Emphasis on the Odontoce- tes. Smithsonian Contributions to Zoology, number 627, 248 pages, frontispiece, 2 diagrams, 32 figures, 9 tables, 2009. — Cetaceans form one of the most unique groups in the evolutionary history of mammals. They have returned to the sea and modified their tail as an efficient means of locomotion. As they adapted to the limited visibility in the aquatic environment, the odontocetes developed a system of echolocation that resulted in extensive modifications to the skull bones. This made descriptive comparisons very difficult and early anatomists unwittingly composed new terms for anatomical structures that had already been named in other taxa. This made anatomical comparisons, based on the literature, extremely tenuous. This lexicon is an attempt to remedy that situation in that it provides headwords and defini- tions for all the terms that have been used in describing the mammal skull and notes the synony- mous terms. The lexicon includes the human nomenclature (Nomina Anatomica), the veterinary nomenclature (Nomina Anatomica Veterinaria) and the nomenclature that is used in descriptive comparative anatomy. The lexicon covers not only extant but extinct mammalian groups and is extensively indexed. Cover: Detail from Frontispiece, illustration of a dolphin skull (cf. Delphinus sp.) presented by Gesner (1560). Published by Smithsonian Institution Scholarly Press P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu Library of Congress Cataloging-in-Publication Data Mead, James G. The therian skull : a lexicon with emphasis on the odontocetes / J. G. Mead and R. E. Fordyce. p. cm. — (Smithsonian contributions to zoology, ISSN 0081-0282 ; no. 627) Includes bibliographical references and index. 1. Skull—Dictionaries. 2. Mammals—Anatomy. 3. Cetacea—Anatomy. 4. Anatomy, Comparative. I. Fordyce, R. Ewan. II. Title. QL822M43 2009 571.3'195—dc22 2007045891 ∞ The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials Z39.48–1992. Dedication The authors dedicate this work to the memory of Dr. John E. Heyning (6 January 1957–17 February 2007), who was a colleague in anatomy, a fellow museum curator, and a valued friend. FRONTISPIECE. Dolphin skull (cf. Delphinus spp.) with the caption “Delphini Calvaria è libro Bellonij” presented by Gesner (1560:162). Contents LIST OF ILLUSTRATIONS vii LIST OF TABLES ix INTRODUCTION 1 History 1 Evolutionary Changes 2 MATERIALS AND METHODS 3 Protocol for Terms in the Lexicon 3 Priority 4 Embryological Terms 4 Orientation Terms and Terms that Imply Size, Shape, and Proportion 4 Eponymous Terms 5 Usage of Terms 5 Absence of Landmarks 5 Illustrations 5 Separate Treatment of Bones Associated with the Ear 5 Craniometric Landmarks 5 Specimens Used 5 OSTEOLOGICAL RELATIONSHIPS OF THE SKULL BONES 6 Types of Features 6 Topographic Relationships of the Bones 6 Cranial Nerves 6 GUIDE TO LEXICON ENTRIES 10 LEXICON 11 Basioccipital Bone 11 Ethmoid Bone 13 Exoccipital Bone 17 Frontal Bone 24 Hyoid Apparatus 32 Interparietal Bone 33 Jugal Bone 35 Lacrimal Bone 38 Mandible 42 v i • smithsonian contributions to zoolog Y Maxilla 48 Nasal Bone 68 Palatine Bone 70 Parietal Bone 76 Premaxilla 79 Pterygoid Bone 82 Septomaxilla 90 Sphenoid Bone 90 Squamosal Bone 102 Supraoccipital Bone 108 Tympanoperiotic Complex 111 Periotic Bone 111 Tympanic Bulla 133 Auditory Ossicles 149 Malleus 149 Incus 151 Stapes 151 Vomer 151 MULTI-ELEMENT COMPLEXES: STRUCTURES SHARED BY ADJACENT BONES 154 Topographic Features 154 The Rostrum 154 Antorbital Region 154 Facial Region 154 The Palate and Pterygopalatine Fossa 154 The Cranium 154 Vertex 155 Occipital Area 155 Zygomatic Arch and Temporal Fossa 155 Orbit and Orbital Fissure 155 Basicranium 155 Tympanoperiotic 155 Cranial Hiatus 155 Pterygoid Sinus Complex 156 Venous Sinus System 156 Mandible and Mandibular Foramen 156 Transmission of Vessels, Nerves, and Passages 156 Infraorbital Complex 156 Nasal Passages 156 Nares 156 Nasal Cavity 157 Basipharyngeal Canal 157 Paranasal Sinuses 157 Arterial Circulation and Basicranial Foramina 157 FIGURES 159 ACKNOWLEDGMENTS 201 APPENDIX A. Historical TerminologY of the Cranial Nerves 203 APPENDIX B. Skull Measurements for Delphinids 205 REFERENCES 207 INDEX 217 Illustrations Cover. Detail from Frontispiece. Frontispiece. Dolphin skull (cf. Delphinus spp.) presented by Gesner (1560). iv Diagram 1. Schematic cross section of the rostrum and antorbital fossa. 50 Diagram 2. Schematic dorsal view around the antorbital notch in Odontoceti. 51 Figure 1. Intact skull of adult specimen, dorsal view. 160 Figure 2. Intact skull of adult specimen, ventral view. 161 Figure 3. Intact skull of adult specimen, lateral view. 162 Figure 4. Intact skull of adult specimen, anterior view. 162 Figure 5. Intact skull of adult specimen, posterior view. 163 Figure 6a–f. Intact neonatal skull. 164 Figure 6g–i. Disarticulated neonatal skull (g) and anterodorsal views of young (h) and adult (i) specimens. 165 Figure 7. Disarticulated neonatal skull, basioccipital. 166 Figure 8. Disarticulated neonatal skull, ethmoid. 167 Figure 9. Disarticulated neonatal skull, exoccipital. 168 Figure 10. Disarticulated neonatal skull, frontal. 169 Figure 11. Disarticulated neonatal skull, hyoid. 170 Figure 12. Disarticulated neonatal skull, interparietal. 171 Figure 13. Disarticulated neonatal skull, jugal. 172 Figure 14. Disarticulated neonatal skull, lacrimal. 173 Figure 15. Disarticulated neonatal skull, mandible. 174 Figure 16. Disarticulated neonatal skull, maxilla. 175 Figure 17. Disarticulated neonatal skull, nasal. 176 Figure 18. Disarticulated neonatal skull, palatine. 177 Figure 19. Disarticulated neonatal skull, parietal. 178 Figure 20. Disarticulated neonatal skull, premaxilla. 179 Figure 21. Disarticulated neonatal skull, pterygoid. 180 Figure 22. Disarticulated neonatal skull, sphenoid. 181 Figure 23. Disarticulated neonatal skull, squamosal. 182 Figure 24. Disarticulated neonatal skull, supraoccipital. 183 v i i i • smithsonian contributions to zoolog Y Figure 25a–c. Disarticulated neonatal skull, tympanoperiotic. 184 Figure 25d,e. Disarticulated neonatal skull, tympanic, right. 185 Figure 25f–k. Adult skull, tympanic, right. 186 Figure 25l–q. Adult skull, periotic, right. 187 Figure 25r,s. Adult skull, tympanic and malleus, left. 188 Figure 25t–v. Adult skull, periotic, left. 189 Figure 25w,x. Adult skull, sectioned tympanoperiotic, right. 190 Figure 25y. Disarticulated neonatal skull, tympanoperiotic, left. 191 Figure 26a–f. Skull of juvenile specimen, malleus, right. 192 Figure 26g–l. Skull of juvenile specimen, incus, right. 193 Figure 26m–r. Skull of juvenile specimen, stapes, right. 194 Figure 27. Disarticulated neonatal skull, vomer. 195 Figure 28. Disarticulated neonatal skull, basicranium, right, dorsal view. 196 Figure 29. Disarticulated neonatal skull, bulla, right, ventrolateral view. 197 Figure 30. Skull of adult specimen, basicranium, right, ventrolateral view. 198 Figure 31. Skull
Recommended publications
  • A 1810 Skull of Napoleon Army's Soldier: a Clinical–Anatomical
    Surgical and Radiologic Anatomy (2019) 41:1065–1069 https://doi.org/10.1007/s00276-019-02275-y ORIGINAL ARTICLE A 1810 skull of Napoleon army’s soldier: a clinical–anatomical correlation of steam gun trauma N. Benmoussa1,2 · F. Crampon3,4 · A. Fanous5 · P. Charlier1,6 Received: 5 March 2019 / Accepted: 22 June 2019 / Published online: 28 June 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Introduction In the following article, we are presenting a clinical observation of Baron Larrey. In 1804, Larrey was the inspector general of health, as well as the chief surgeon of the imperial Napoleonic Guard. He participated in all of Napoleon’s campaigns. A paleopathological study was performed on a skull from Dupuytren’s Museum (Paris) with a long metal stick in the head. We report here a clinical case as well as the autopsy description of this soldier’s skull following his death. We propose a diferent anatomical analysis of the skull, which allowed us to rectify what we believe to be an anatomical error and to propose varying hypotheses regarding the death of soldier Cros. Materials and methods The skull was examined, observed and described by standard paleopathology methods. Measure- ments of the lesion were performed with metric tools and expressed in centimeters. Historical research was made possible through the collaboration with the Museum of Medicine History-Paris Descartes University. Results Following the above detailed anatomical analysis of the path of the metal rod, we propose various possible lesions in soldier Cros due to the accident. At the inlet, the frontal sinuses could have been damaged.
    [Show full text]
  • Palatal Injection Does Not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth
    Open Access Review Article DOI: 10.7759/cureus.2120 Palatal Injection does not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth Joe Iwanaga 1 , R. Shane Tubbs 2 1. Seattle Science Foundation 2. Neurosurgery, Seattle Science Foundation Corresponding author: Joe Iwanaga, [email protected] Abstract The superior alveolar nerves course lateral to the maxillary sinus and the greater palatine nerve travels through the hard palate. This difficult three-dimensional anatomy has led some dentists and oral surgeons to a critical misunderstanding in developing the anterior and middle superior alveolar (AMSA) nerve block and the palatal approach anterior superior alveolar (P-ASA) nerve block. In this review, the anatomy of the posterior, middle and anterior superior alveolar nerves, greater palatine nerve, and nasopalatine nerve are revisited in order to clarify the anatomy of these blocks so that the perpetuated anatomical misunderstanding is rectified. We conclude that the AMSA and P-ASA nerve blockades, as currently described, are not based on accurate anatomy. Categories: Anesthesiology, Medical Education, Other Keywords: anatomy, innervation, local anesthesia, maxillary nerve, nerve block, tooth Introduction And Background Anesthetic blockade of the posterior superior alveolar (PSA) branch of the maxillary nerve has played an important role in the endodontic treatment of irreversible acute pulpitis of the upper molar teeth except for the mesiobuccal root of the first molar tooth [1, 2]. This procedure requires precise anatomical knowledge of the pterygopalatine fossa and related structures in order to avoid unnecessary complications and to make the blockade most effective. The infraorbital nerve gives rise to middle superior alveolar (MSA) and anterior superior alveolar (ASA) branches.
    [Show full text]
  • Anatomic Variations of the Nose and Paranasal Sinuses in Saudi Population
    234 Original article Anatomic variations of the nose and paranasal sinuses in saudi population: computed tomography scan analysis Nada Alshaikha, Amirah Aldhuraisb aDepartment of Otolaryngology Head & Neck Background Surgery, Rhinology Unit, Dammam Medical Knowledge of the anatomy constitutes an integral part in the total management of Complex (DMC), bDepartment of ENT, King Fahad Specialist Hospital (KFSH), Dammam, patients with sinonasal diseases. The aim of this study was to obtain the prevalence Saudi Arabia of sinonasal anatomic variations in Saudi population and to understand their importance and impact on the disease process, as well as their influence on Correspondence to Nada Alshaikh, MD, Department of Otorhinolaryngology Head and surgical management and outcome. Neck Surgery, Dammam Medical Complex, Materials and methods Dammam - 31414, Saudi Arabia This study is prospective review of retrospectively performed normal computed e-mail: [email protected] tomography (CT) scans of the nose and paranasal sinuses in adult Saudi Received 13 November 2016 population at Dammam Medical Complex. The scans were reviewed by two Accepted 23 December 2016 independent observers. The Egyptian Journal of Otolaryngology Results 2018, 34:234–241 Of all CT scans that were reviewed, 48.4% were of female patients and 51.6% were of male patients. The mean age of the study sample was 38.5±26.5 years. The most common anatomic variation after excluding agger nasi cell was pneumatized crista galli, which was seen in 73% of the scans. However, the least common variation seen in this series was hypoplasia of the maxillary sinus, which was encountered in 5% of the cases. We did not detect a single pneumatized inferior turbinate among the studied scans.
    [Show full text]
  • Para Nasal Sinusitis : a Problem for the General Practitioner
    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1933 Para nasal sinusitis : a problem for the general practitioner Robert James Ralston University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Recommended Citation Ralston, Robert James, "Para nasal sinusitis : a problem for the general practitioner" (1933). MD Theses. 283. https://digitalcommons.unmc.edu/mdtheses/283 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. PARA-NASAL SINUSITIS A PROBLEM FOR THE GENERAL PRACTITIONER by Rooert James Ralston, B. Sc. Presented to the Faculty of The College of Medicine in the University of Nebraska in Partial Fulfillment of the Requirements - for the Degree of Doctor of Medicine 1933 Omaha, Nebraska TABLE O.F' CONTENTS Pages I Introductory and Historioal 1 - 2 II Anatomioal Discussion of Nose and Accessory Nasal Sinuses 3 - 16 III Etiology and Inoidence of Paranasal Sinus Infection 17 - 20 IV Pathology of Paranasal Sinusitis 21 - 23 V Sinus Infection in Relation to Systemic Disease 24 - 28 VI Symptoms and Diagnosis of Paranasal Sinusitis 29 - 38 VII Treatment of Paranasal Sinusitis 39 - 45 VIII Case Histories 46 - 55 IX Conclusion 56 X Bibliography 1 INTRODUOTORY AND HISTORICAL The paranasal, or accessory sinuses of the nose, are as­ sociated with the general health of the individual just as closely as are the tonsils, the teeth, the gall bladder, or any other of the commonly accepted foci of infection in the human body.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Morphology of the Pterion in Serbian Population
    Int. J. Morphol., 38(4):820-824, 2020. Morphology of the Pterion in Serbian Population Morfología del Pterion en Población Serbia Knezi Nikola1; Stojsic Dzunja Ljubica1; Adjic Ivan2; Maric Dusica1 & Pupovac Nikolina4 KNEZI, N.; STOJSIC, D. L.; ADJIC, I.; MARIC, D. & PUPOVAC, N. Morphology of the pterion in Serbian population. Int. J. Morphol., 38(4):820-824, 2020. SUMMARY: The pterion is a topographic point on the lateral aspect of the skull where frontal, sphenoid, parietal and temporal bones form the H or K shaped suture. This is an important surgical point for the lesions in anterior and middle cranial fossa. This study was performed on 50 dry skulls from Serbian adult individuals from Department of Anatomy, Faculty of Medicine in Novi Sad. The type of the pterion on both sides of each skull was determined and they are calcified in four types (sphenoparietal, frontotemporal, stellate and epipteric). The distance between the center of the pterion and defined anthropological landmarks were measured using the ImageJ software. Sphenoparietal type is predominant with 86 % in right side and 88 % in left side. In male skulls, the distance from the right pterion to the frontozygomatic suture is 39.89±3.85 mm and 39.67±4.61 mm from the left pterion to the frontozygomatic suture. In female skulls the distance is 37.38±6.38 mm on the right and 35.94±6.46 mm on the left. The shape and the localization of the pterion are important because it is an anatomical landmark and should be used in neurosurgery, traumatology and ophthalmology.
    [Show full text]
  • Surgical Anatomy of the Juxtadural Ring Area
    Surgical anatomy of the juxtadural ring area Susumu Oikawa, M.D., Kazuhiko Kyoshima, M.D., and Shigeaki Kobayashi, M.D. Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan Object. The authors report on the surgical anatomy of the juxtadural ring area of the internal carotid artery to add to the information available about this important structure. Methods. Twenty sides of cadaver specimens were used in this study. The plane of the dural ring was found to incline in the posteromedial direction. Medial inclination was measured at 21.8š on average against the horizontal line in the anteroposterior view on radiographic studies. Posterior inclination was measured at 20.3š against the planum sphenoidale in the lateral projection, and the medial edge of the dural ring was located 0.4 mm above the tuberculum sellae in the same projection. The lateral edge of the tuberculum sellae was located 1.4 mm below the superior border of the anterior clinoid process. The carotid cave was situated at the medial or posteromedial aspect of the dural ring; however, two of the 20 specimens showed no cave formation. The carotid cave contained the subarachnoid space in 13 sides, the arachnoid membrane only in three sides, and the extraarachnoid space in two sides. The authors propose that the marker of the medial side of the dural ring, which is more proximal than the lateral, is the tuberculum sellae in the lateral view on radiographic studies. In the medial aspect of the dural ring the intradural space can be situated below the level of the tuberculum sellae because of the existence of the carotid cave.
    [Show full text]
  • Original Article Anatomic Study of the Lacrimal Fossa and Lacrimal Pathway
    Original Article Anatomic study of the lacrimal fossa and lacrimal pathway for bypass surgery with autogenous tissue grafting Hai Tao, Zhi‑zhong Ma1, Hai‑Yang Wu, Peng Wang, Cui Han Purpose: To study the microsurgical anatomy of the lacrimal drainage system and to provide anatomical Access this article online evidence for transnasal endoscopic lacrimal drainage system bypass surgery by autogenous tissue grafting. Website: Materials and Methods: A total of 20 Chinese adult cadaveric heads in 10% formaldehyde, comprising www.ijo.in 40 lacrimal ducts were used. The middle third section of the specimens were examined for the following DOI: features: the thickness of the lacrimal fossa at the anterior lacrimal crest, vertical middle line, and posterior 10.4103/0301-4738.121137 lacrimal crest; the cross section of the upper opening, middle part, and lower opening of the nasolacrimal PMID: canal; the horizontal, 30° oblique, and 45° oblique distances from the lacrimal caruncle to the nasal cavity; ***** the distance from the lacrimal caruncle to the upper opening of the nasolacrimal duct; and the included Quick Response Code: angle between the lacrimal caruncle–nasolacrimal duct upper opening junction and Aeby’s plane. Results: The middle third of the anterior lacrimal crest was significantly thicker than the vertical middle line and the posterior lacrimal crest (P > 0.05). The horizontal distance, 30° oblique distance, and 45° oblique distance from the lacrimal caruncle to the nasal cavity exhibited no significant differences (P > 0.05). The included angle between the lacrimal caruncle and the lateral wall middle point of the superior opening line of the nasolacrimal duct and Aeby’s plane was average (49.9° ± 1.8°).
    [Show full text]
  • Surgical Anatamic of Paranasal Sinuses
    SURGICAL ANATAMIC OF PARANASAL SINUSES DR. SEEMA MONGA ASSOCIATE PROFESSOR DEPARTMENT OF ENT-HNS HIMSR MIDDLE TURBINATE 1. Anterior attachment : vertically oriented, sup to the lateral border of cribriform plate. 2. Second attachment :Obliquely oriented- basal lamella/ ground lamella, Attached to the lamina papyracea ( medial wall of orbit anterior, posterior air cells, sphenopala‐ tine foramen 3. Posterior attachment :medial wall of maxillary sinus, horizontally oriented. , supreme turbinate 3. Occasionally 4. fourth turbinate, 5. supreme meatus, if present 6. drains posterior ethmoid drains inferior, middle, superior turbinates and, occasionally, the supreme turbinate, the fourth turbinate. e. Lateral to these turbinates are the corresponding meatuses divided per their drainage systems ANATOMICAL VARIATIONS OF THE TURBINATES 1. Concha bullosa, 24–55%, often bilateral, 2. Interlamellar cell of grunwald: pneumatization is limited to the vertical part of middle turbinate, usually not causing narrowing of the ostiomeatal unit 3. Paradoxic middle turbinate: 26%,. Occasionally, it can affect the patency of the ostiomeatal unit 4. Pneumatized basal lamella, falsely considered, posterior ethmoid air cell Missed basal lamella – attaches to lateral maxillary sinus wall Ostiomeatal unit Anterior ostiomeatal unit, maxillary, anterior ethmoid, frontal sinuses, (1) ethmoid infundibulum, (2) middle meatus, (3) hiatus semilunaris, (4) maxillaryOstium, (5) ethmoid bulla, (6) frontal recess, (7) uncinate process. , sphenoethmoidal recess Other draining osteomeatal unit, posterior in the nasal cavity, posterior ethmoid sinus, lateral to the superior turbinate, . sphenoid Sinus medial to the superior turbinate Uncinate Process Crescent‐shaped, thin individual bone inferiorly- ethmoidal process of inferior turbinate, anterior, lacrimal bone, posteriorly- hiatus Semilunaris, medial -ethmoid infundibulum, laterally, middle meatus superior attachment- variability, direct effect on frontal sinus drainage pathway.
    [Show full text]
  • Chapter 2 Implants and Oral Anatomy
    Chapter 2 Implants and oral anatomy Associate Professor of Maxillofacial Anatomy Section, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tatsuo Terashima In recent years, the development of new materials and improvements in the operative methods used for implants have led to remarkable progress in the field of dental surgery. These methods have been applied widely in clinical practice. The development of computerized medical imaging technologies such as X-ray computed tomography have allowed detailed 3D-analysis of medical conditions, resulting in a dramatic improvement in the success rates of operative intervention. For treatment with a dental implant to be successful, it is however critical to have full knowledge and understanding of the fundamental anatomical structures of the oral and maxillofacial regions. In addition, it is necessary to understand variations in the topographic and anatomical structures among individuals, with age, and with pathological conditions. This chapter will discuss the basic structure of the oral cavity in relation to implant treatment. I. Osteology of the oral area The oral cavity is composed of the maxilla that is in contact with the cranial bone, palatine bone, the mobile mandible, and the hyoid bone. The maxilla and the palatine bones articulate with the cranial bone. The mandible articulates with the temporal bone through the temporomandibular joint (TMJ). The hyoid bone is suspended from the cranium and the mandible by the suprahyoid and infrahyoid muscles. The formation of the basis of the oral cavity by these bones and the associated muscles makes it possible for the oral cavity to perform its various functions.
    [Show full text]
  • Mediated Cochlear Gene Transfer
    Gene Therapy (2000) 7, 377–383 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt VIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Transduction of the contralateral ear after adenovirus- mediated cochlear gene transfer T Sto¨ver1,2, M Yagi1,3 and Y Raphael1 1Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan Medical School, Ann Arbor, MI, USA; 2Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover, Germany; and 3Department of Otolaryngology, Kansai Medical University, Osaka, Japan Cochlear gene transfer is a promising new approach for cochleae, whereas virus inoculation into the bloodstream did inner ear therapy. Previous studies have demonstrated hair not. The cochlear aqueduct was identified as the most likely cell protection with cochlear gene transfer not only in the route of virus spread to the contralateral cochlea. These data inoculated, but also in the uninoculated ear. To characterize enhance our understanding of the kinetics of virus-mediated the kinetics of viral spread, we investigated the extent of transgene expression in the inner ear, and assist in the transgene expression in the contralateral (uninoculated) development of clinical applications for inner ear gene ther- cochlea after unilateral adenoviral cochlear gene transfer. apy. Our results showed a functional communication We used a lacZ reporter gene vector, and demonstrated between the CSF and the perilymphatic space of the inner spread of the adenovirus into the cerebrospinal fluid (CSF) ear, that is not only of importance for otological gene trans- after cochlear inoculation of 25 ␮l viral vector. Direct virus fer, but also for CNS gene transfer.
    [Show full text]
  • Persistent Metopic Suture with Multiple Sutural Bones at Unusual Sites
    CASE REPORT Persistent metopic suture with multiple sutural bones at unusual sites Ambade HV, Fulpatil MP, Kasote AP Ambade HV, Fulpatil MP, Kasote AP. Persistent metopic suture with multiple in a human skull at asterion, left pterion and right coronal suture apart from the sutural bones at unusual sites. Int J Anat Var. 2017;10(3):69-70. lambdoid suture. Moreover, there was a persistent metopic suture between bregma to nasion in the same skull. The metopic suture with multiple sutural bones SUMMARY spreading beyond lambdoid suture at unusual sites is not reported previously. The knowledge of such variation and combination is rare and very important Sutural bones are small irregular bones found in the sutures and fontanels of for forensic expert, radiologists, orthopedists, neurosurgeons and anthropologist the human skull. They are commonly found at lambda and lambdoid suture point of view. It is very important to know about such variation because they can followed by pterion; and rarely at other sites. They vary from person to person in mislead the diagnosis of fracture of skull bones. number and shape, hence not named. Usually, 1-3 sutural bones in one skull are present, but 8-10 sutural bones are also reported in the literature, all restricted in Key Words: Metopic suture; Sutural bones; Wormian bones; Skull; Unusual sites; the vicinity of lambdoid sutures. In the present case, 8 sutural bones were present Variations INTRODUCTION etopic suture is present in between two frontal bones during fetal Mlife and soon disappear after birth. The obliteration starts at the age of 2 years and completed at the age of 8 years from above downwards (1).
    [Show full text]