The Science of Roman History

Total Page:16

File Type:pdf, Size:1020Kb

The Science of Roman History The Science of Roman hiSToRy The Science of Roman History Biology, climaTe, and The fuTuRe of The PaST Edited by Walter Scheidel PRinceTon univeRSiTy PReSS PRinceTon & oxfoRd Copyright © 2018 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu All Rights Reserved ISBN 978- 0- 691- 16256- 0 Library of Congress Control Number 2017963022 British Library Cataloging- in- Publication Data is available This book has been composed in Miller Printed on acid- free paper. ∞ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 conTenTS List of Illustrations and Tables · vii Notes on Contributors · ix Acknowledgments · xiii Maps · xiv Introduction 1 Walter Scheidel chaPTeR 1. Reconstructing the Roman Climate 11 Kyle Harper & Michael McCormick chaPTeR 2. Archaeobotany: The Archaeology of Human- Plant Interactions 53 Marijke van der Veen chaPTeR 3. Zooarchaeology: Reconstructing the Natural and Cultural Worlds from Archaeological Faunal Remains 95 Michael MacKinnon chaPTeR 4. Bones, Teeth, and History 123 Alessandra Sperduti, Luca Bondioli, Oliver E. Craig, Tracy Prowse, & Peter Garnsey chaPTeR 5. Human Growth and Stature 174 Rebecca Gowland & Lauren Walther chaPTeR 6. Ancient DNA 205 Noreen Tuross & Michael G. Campana chaPTeR 7. Modern DNA and the Ancient Mediterranean 224 Roy J. King & Peter A. Underhill Index · 249 [ v ] illuSTRaTionS and TaBleS Maps 1. Western Mediterranean. xiv 2. Eastern Mediterranean. xv 3. Northwestern Europe. xvi Figures 1.1. TSI (Total Solar Irradiance) from 14C. 19 1.2. TSI from 10Be. 19 1.3. Volcanic sulfates: GSIP2. 20 1.4. Estimated global volcanic forcing (negative watts per square meter). 21 1.5. Volcanic events: ice core and tree rings. 22 1.6. Temperature anomaly. 22 1.7. Precipitation totals (mm) in Northeastern France, Northeastern and Southeastern Germany. 25 1.8. Temperature anomaly (°C vs. 1961– 1990). 26 1.9. Temperature reconstruction from Spannagel Cave δ18O. 27 1.10. δ13C from Sofular Cave. 30 1.11. The complexity of Mediterranean hydrological change (50 BCE– 600 CE). 33 4.1. Age-at-death distributions of Velia Porta Marina (I– II cent. CE; N=297) and Isola Sacra (I– III cent. CE; N=526). 131 4.2. The survival trend through the age- cycle follows the theoretical model at Velia but not at Isola Sacra. 132 4.3. Spatial distribution by sex and age- at- death at Herculaneum. 133 4.4. Nitrogen and carbon isotopic delta values and presence of cribra orbitalia in the adult sample from Velia (I– II cent. CE; N=74) do not show a significant correlation. 137 4.5. Nitrogen and carbon isotopic delta values and presence of diffuse idiopathic skeletal hyperostosis (DISH) in the adult sample from Velia (I– II cent. CE; N=85) show a positive correlation. 137 4.6. Decreasing levels of bone representation affect the osteoarthritic frequency, with different grade of bias across the joints. 139 [ vii ] [ viii ] illuSTR aTionS and TaBleS 4.7. Cortical thickness of the femoral diaphysys of the individual Velia 70 (above left; right femur), compared with data from a reference collection ( bottom left). 143 5.1. Comparison of femoral length between Roman and Anglo- Saxon populations in England. 184 5.2. Long bone length plotted against dental age for a sample of Romano- British and Anglo- Saxon skeletons. 190 5.3. Vertebral body height for the cervical vertebrae. 191 6.1. Diagram of the polymerase chain reaction. 208 7.1. Y chromosome gene tree of major haplogroup relationships and estimated ages in thousands of calendar years based on single nucleotide substitutions detected while resequencing ca. 10 million nucleotide bases in each of the globally representative individuals. 234 Tables 1.1. Physical characteristics of Alpine glaciers. 23 1.2. Speleothem series. 28 1.3. Lake records. 31 4.1. Approximate collagen formation times in femoral bone based on the radiocarbon tracer experiments. 148 5.1. The regression formulae developed by Trotter and Gleser for estimating stature from the femur. 178 5.2. Stature from Romano- British skeletons calculated using the anatomical method, a range of commonly used regression techniques, and a newly developed population- specific regression method for Roman Britain. 181 5.3. Comparison of mean femur length between Romano- British and Anglo- Saxon cemeteries in Southern and Eastern England. 184 noTeS on conTRiBuToRS luca Bondioli is director of the Sezione di Bioarcheologia at the Museo delle Civiltà— Museo Nazionale Preistorico Etnografico “L. Pigorini,” in Rome, Italy. His recent research interests have focused mainly on advanced methodologies and techniques for information retrieval from fossil/ archaeological human bone in an evolutionary, functional, and population perspective. He has worked on a variety of paleoanthropological topics focusing on dental maturation, radiographic applications in the fossil record, and skeletal biology of Roman remains. He is involved in Early Pleistocene fieldwork in Buia (Eritrean Danakil). michael g. camPana is a computational genomicist at the Smithsonian National Zoological Park and Conservation Biology Institute. His research uses ancient DNA data for the study of disease and animal populations through time. PRofeSSoR oliveR e. cRaig specializes in biomolecular archaeology, specifically the recovery of proteins, lipids, and DNA from ancient skeletal remains and archaeological artifacts to provide insights into past human activities. His particular interests lie in temporal transitions and variability in human diets, cuisine and subsistence practices, and the impact that dietary changes had on social evolution, health, and the environment. Oliver is interested in combining a broad range of analytical techniques to study palaeodiet but particularly stable isotope analysis of human bone and organic residue analysis of food remains on ceramics. He directs the BioArCh centre at the University of York. PeTeR gaRnSey is Professor Emeritus of the History of Classical Antiquity at Cambridge. His current interests include the history of political thought, comparative systems of penal law, and Roman society and culture, with special reference to skeletal evidence. ReBecca gowland is an Associate Professor in Bioarchaeology at Durham University. Her research interests include the inter-relationship between the human skeleton and social identity; health and the life course in the Roman World; palaeopathology; and social perceptions of the physically impaired. She has co- edited (with Christopher Knusel) Social Archaeology of Funerary Remains (2006) and (with Lindsay Powell and William Southwell- Wright) Care in the Past: Archaeological and Interdisciplinary Perspectives (2016), and has co- authored (with Tim Thompson) Human Identity and Identification (2013). She has published over 40 scholarly articles in books and peer-reviewed [ ix ] [ x ] noTeS on conTRiBuToRS journals, including the American Journal of Physical Anthropology, Antiquity, Britannia, and the International Journal of Osteoarchaeology. Kyle haRPeR is Senior Vice President and Provost and Professor of Classics and Letters at the University of Oklahoma. He is the author of Slavery in the Late Roman World, AD 275– 425 (2011) and From Shame to Sin: The Christian Transformation of Sexual Morality in Late Antiquity (2013). His current work is on the demographic and environmental history of late antiquity: Princeton has just published his third book, The Fate of Rome: Climate, Disease, and the End of an Empire. Roy J. King is an Associate Professor Emeritus in the Department of Psychiatry and Behavioral Science at Stanford University. He has published widely on the modern DNA archaeogenetics of the Mediterranean Region, with particular interest in both the spread of the Neolithic across Europe and, more recently, models of Late Bronze Age/Archaic Greek colonization of the Eastern and Central Mediterranean. michael macKinnon is Professor of Classics at the University of Winnipeg. As an archaeologist he has worked at over 60 sites throughout the Mediterranean. His particular interests focus upon the role of animals within ancient Greek and Roman societies, as drawn from the integration of zooarchaeological, ancient textual, and iconographical evidence. michael mccoRmicK studies the fall of the Roman Empire and the origins of Europe. He is the Francis Goelet Professor of Medieval History at Harvard University, where he chairs the Initiative for the Science of the Human Past (SoHP: https://sohp.fas.harvard.edu/). His books include the prize- winning Origins of the European Economy (2002) and Charlemagne’s Survey of the Holy Land (2011); he recently led the first multiproxy scientific and historical reconstruction of climate under the Roman Empire (Journal of Interdisciplinary History 43 (2012)). He edits the free, student-created online Digital Atlas of Roman and Medieval Civilizations (http://darmc .harvard.edu/), and is active archaeologically in France and Spain. TRacy PRowSe is an Associate Professor in the Department of Anthropology at McMaster University. Her research integrates stable isotope and osteological analysis of human remains to investigate weaning, diet, and migration in Roman period populations. walTeR Scheidel is the Dickason Professor in the Humanities, Professor of Classics and History, and a Kennedy- Grossman Fellow in Human Biology at Stanford University. The author or (co- )editor
Recommended publications
  • Medieval Warm Period in South America
    M EDIEVAL WARM PERIOD IN OUTH MERICA S A SPPI & CO2SCIENCE ORIGINAL PAPER ♦ September 4, 2013 MEDIEVAL WARM PERIOD IN SOUTH AMERICA Citation: Center for the Study of Carbon Dioxide and Global Change. "Medieval Warm Period in South America.” Last modified September 4, 2013. http://www.co2science.org/subject/m/summaries/mwpsoutham.php. Was there a Medieval Warm Period anywhere in addition to the area surrounding the North Atlantic Ocean, where its occurrence is uncontested? This question is of utmost importance to the ongoing global warming debate, since if there was, and if the locations where it occurred were as warm then as they are currently, there is no need to consider the temperature increase of the past century as anything other than the natural progression of the persistent millennial- scale oscillation of climate that regularly brings the earth several-hundred-year periods of modestly higher and lower temperatures that are totally independent of variations in atmospheric CO2 concentration. Hence, this question is here considered as it applies to South America, a region far removed from where the existence of the Medieval Warm Period was first recognized. Cioccale (1999) assembled what was known at the time about the climatic history of the central region of the country over the past 1400 years, highlighting a climatic "improvement" that began some 400 years before the start of the last millennium, which ultimately came to be characterized by "a marked increase of environmental suitability, under a relatively homogeneous climate." And as a result of this climatic amelioration that marked the transition of the region from the Dark Ages Cold Period to the Medieval Warm Period, Cioccale reported that "the population located in the lower valleys ascended to higher areas in the Andes," where they remained until around AD 1320, when the transition to the stressful and extreme climate of the Little Ice Age began.
    [Show full text]
  • Using Patterns of Recurring Climate Cycles to Predict Future Climate Changes D.J
    CHAPTER 21 Using Patterns of Recurring Climate Cycles to Predict Future Climate Changes D.J. Easterbrook Western Washington University, Bellingham, WA, United States OUTLINE 1. Introduction 395 4. Correlation of Temperature Cycles and the Pacific Decadal Oscillation 405 2. The Past is the Key to the Future: Lessons From Past Global Climate Changes 396 5. The Atlantic Multidecadal Oscillation 407 2.1 Past Climate Changes 396 6. Where Is Climate Headed During the Coming 2.2 Magnitude and Rate of Abrupt Climate Changes 396 Century? 407 2.3 Holocene Climate Changes (10,000 Years Ago 6.1 IPCC Predictions 407 to Present) 398 6.2 Predictions Based on Past Cyclic Climate 2.3.1 The Roman Warm Period 398 Patterns 407 2.3.2 Dark Ages Cool Period 398 2.3.3 Medieval Warm Period (900e1300 AD) 400 References 410 2.3.4 The Little Ice Age 401 2.3.5 Climate Changes During the Past Century 403 3. Significance of Past Global Climate Changes 404 1. INTRODUCTION Global warming that occurred from 1978 to about 1998 pushed climate change into the forefront of potential concern. Every day the news media is filled with dire predictions of impending disastersdcatastrophic melting of the Antarctic and Greenland ice sheets, drowning of major cities from sea level rise, drowning of major portions of countries, droughts, severe water shortages, no more snow, more extreme weather events (hurricanes, tor- nadoes), etc. With no unequivocal, cause-and-effect, tangible, physical evidence that increasing CO2 caused this most recent global warming, adherents of this ideology have had to rely on computer models that have proven to be unreliable.
    [Show full text]
  • Implications for the Evolution of the North Alpine Foreland Basin During the Miocene Climate Optimum
    Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum Authors: Jürg Jost, Daniel Kälin, Saskia Börner, Davit Vasilyan, Daniel Lawver, & Bettina Reichenbacher NOTICE: this is the author’s version of a work that was accepted for publication in Palaeogeography, Palaeoclimatology, Palaeoecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Palaeogeography, Palaeoclimatology, Palaeoecology, [Vol# 426, (May 15, 2015)] DOI# 10.1016/j.palaeo.2015.02.028 Jost, Jurg, Daniel Kalin, Saskia Borner, Davit Vasilyan, Daniel Lawver, and Bettina Reichenbacher. "Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum." Palaeogeography, Palaeoclimatology, Palaeoecology 426 (May 2015): 22-33. DOI: https://dx.doi.org/10.1016/j.palaeo.2015.02.028. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum a b c d e c Jürg Jost , Daniel Kälin , Saskia Börner , Davit Vasilyan , Daniel Lawver , Bettina Reichenbacher a Bärenhubelstraße 10, CH-4800 Zofingen, Switzerland b Bundesamt für Landestopographie swisstopo, Geologische Landesaufnahme, Seftigenstrasse 264, 3084 Wabern, Switzerland c Department of Earth and Environmental Sciences, Section on Palaeontology and Geobiology, Ludwig-Maximilians-University, Richard-Wagner Str.
    [Show full text]
  • The Science of Roman History Biology, Climate, and the Future of the Past
    The Science of Roman History Biology, climaTe, and The fuTuRe of The PaST Edited by Walter Scheidel PRinceTon univeRSiTy PReSS PRinceTon & oxfoRd Copyright © 2018 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu All Rights Reserved ISBN 978- 0- 691- 16256- 0 Library of Congress Control Number 2017963022 British Library Cataloging- in- Publication Data is available This book has been composed in Miller Printed on acid- free paper. ∞ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 conTenTS List of Illustrations and Tables · vii Notes on Contributors · ix Acknowledgments · xiii Maps · xiv Introduction 1 Walter Scheidel chaPTeR 1. Reconstructing the Roman Climate 11 Kyle Harper & Michael McCormick chaPTeR 2. Archaeobotany: The Archaeology of Human- Plant Interactions 53 Marijke van der Veen chaPTeR 3. Zooarchaeology: Reconstructing the Natural and Cultural Worlds from Archaeological Faunal Remains 95 Michael MacKinnon chaPTeR 4. Bones, Teeth, and History 123 Alessandra Sperduti, Luca Bondioli, Oliver E. Craig, Tracy Prowse, & Peter Garnsey chaPTeR 5. Human Growth and Stature 174 Rebecca Gowland & Lauren Walther chaPTeR 6. Ancient DNA 205 Noreen Tuross & Michael G. Campana chaPTeR 7. Modern DNA and the Ancient Mediterranean 224 Roy J. King & Peter A. Underhill Index · 249 [ v ] illuSTRaTionS and TaBleS Maps 1. Western Mediterranean. xiv 2. Eastern Mediterranean. xv 3. Northwestern Europe. xvi Figures 1.1. TSI (Total Solar Irradiance) from 14C. 19 1.2. TSI from 10Be. 19 1.3.
    [Show full text]
  • Abstract Book.Pdf
    Welcome! Welcome to the VI Symposium on Dinosaur Eggs and Babies, the return of this periodic gathering to the Iberian Peninsula, when it hatched eighteen years ago. From the slopes of the Pyrenees, we have followed the first steps of dinosaurs through France, Argentina, the United States and China. Today, we come back and see the coast where the first theropod embryos were discovered twenty years ago. Since the end of the last century, Paleoology, much like other branches of palaeontology, has evolved thanks to the advance of new methodologies and analytical tools, becoming a progressively more interdisciplinary area of knowledge. Dinosaur babies and embryos, rare findings back when these meetings started, seem to be everywhere now that we learn to look for them under the light of the microscope. New astonishing specimens allow us to understand how Mesozoic dinosaurs mate and reproduce. Oology, our parent discipline in the modern world, has made great advances in understanding the form and function of the egg, and its applications on poultry industry are countless. More than thirty contributions evidence that our field remains small but alive and healthy. We hope that you find in this Symposium an opportunity to share knowledge and open new lines of collaboration. And do not forget to enjoy your stay in Portugal. The host committee CONTENTS How to get to the FCT 6 Acknowledgements 10 PROGRAM 11 ABSTRACTS 14 THE FIRST ORNITHOMIMID EMBRYO IN A SHELL WITH A SINGLE STRUCTURAL LAYER: A CHALLENGE TO ORTHODOXY 15 Araújo R., Lamb J., Atkinson P., Martins R. M. S., Polcyn M.J., Fernandez V.
    [Show full text]
  • Oxygen Isotope Evidence for Paleoclimate Change During The
    PALEOCLIMATE RECONSTRUCTION IN NORTHWEST SCOTLAND AND SOUTHWEST FLORIDA DURING THE LATE HOLOCENE Ting Wang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Geological Sciences. Chapel Hill 2011 Approved by: Dr. Donna M. Surge Dr. Joseph G. Carter Dr. Jose A. Rial Dr. Justin B. Ries Dr. Karen J. Walker © 2011 Ting Wang ALL RIGHTS RESERVED ii ABSTRACT TING WANG: Paleoclimate Reconstruction in Northwest Scotland and Southwest Florida during the Late Holocene (Under the direction of Dr. Donna M. Surge) The study reconstructed seasonal climate change in mid-latitude northwest Scotland during the climate episodes Neoglacial (~3300-2500 BP) and Roman Warm Period (RWP; ~2500-1600 BP) and in subtropical southwest Florida during the latter part of RWP (1-550 AD) based on archaeological shell accumulations in two study areas. In northwest Scotland, seasonal sea surface temperature (SST) during the Neoglacial and RWP was estimated from high-resolution oxygen isotope ratios (δ18O) of radiocarbon-dated limpet (Patella vulgata) shells accumulated in a cave dwelling on the Isle of Mull. The SST results revealed a cooling transition from the Neoglacial to RWP, which is supported by earlier studies of pine pollen in Scotland and European glacial events and also coincident with the abrupt climate deterioration at 2800-2700 BP. The cooling transition might have been driven by decreased solar radiation and weakened North Atlantic Oscillation (NAO) conditions. In southwest Florida, seasonal-scale climate conditions for the latter part of RWP were reconstructed by using high-resolution δ18O of archaeological shells (Mercenaria campechiensis) and otoliths (Ariopsis felis).
    [Show full text]
  • Strange Tadpoles from the Lower Miocene of Turkey: Is Paedogenesis Possible in Anurans?
    Strange tadpoles from the lower Miocene of Turkey: Is paedogenesis possible in anurans? ALAIN DUBOIS, STÉPHANE GROSJEAN, and JEAN−CLAUDE PAICHELER Dubois, A., Grosjean, S., and Paicheler, J.−C. 2010. Strange tadpoles from the lower Miocene of Turkey: Is paedogenesis possible in anurans? Acta Palaeontologica Polonica 55 (1): 43–55. Fossil material from the lower Miocene collected in the basin lake of Beşkonak (Turkey) included 19 slabs showing 19 amphibian anuran tadpoles of rather large size, at Gosner stages 36–38. These well preserved specimens show many mor− phological and skeletal characters. They are here tentatively referred to the genus Pelobates. Two of these tadpoles show an unusual group of black roundish spots in the abdominal region, and a third similar group of spots is present in another slab but we were unable to state if it was associated with a tadpole or not. Several hypotheses can be proposed to account for these structures: artefacts; intestinal content (seeds; inert, bacterial or fungal aggregations; eggs); internal or external parasites; diseases; eggs produced by the tadpole. The latter hypothesis is discussed in detail and is shown to be unlikely for several reasons. However, in the improbable case where these spots would correspond to eggs, this would be the first reported case of natural paedogenesis in anurans, a phenomenon which has been so far considered impossible mostly for anatomical reasons (e.g., absence of space in the abdominal cavity). Key words: Amphibia, Anura, egg, fossil, paedogenesis, tadpole, Miocene, Turkey. Alain Dubois [[email protected]] and Stéphane Grosjean [[email protected]], Département de Sytématique & Evolu− tion, Muséum National d’Histoire Naturelle, UMR 7205 Origine, Structure et Evolution de la Biodiversité, Reptiles et Amphibiens, Case 30, 25 rue Cuvier, 75005 Paris, France; Jean−Claude Paicheler [[email protected]], Laboratoire de Paléoparasitologie, UFR de Pharmacie, 51 rue Cognacq Jay, 51096 Reims Cedex, France.
    [Show full text]
  • Map 4-7-4 City Planning of Tongling Mun/Ipality , I4-2-5
    E685 Vol. 4 World Bank Financed Project Anhui Expressway Project II Public Disclosure Authorized Public Disclosure Authorized Tongling-Tangkou Expressway Project Environment Assessment Report (Third Edition) Public Disclosure Authorized World Bank Financed Project Office of Anhui Provincial Communications Dzpartment Public Disclosure Authorized Dec. 2002 FILE COPY Tongling-Tangkou highway project EIA CONTENTS Chapter I Introduction ............................................ I 1.1 Project Background ............................................ I 1.2 Progress of EA ........................................... .1 1.3 Purpose of EA ............................................. 2 1.4 Bases of Assessment ........................................... .2 1.5 Technical Process for EA ....... ..................................... 3 1.6 Scope of Assessment ............................................ 5 1.7 Methodology ............................................ 5 1.8 Applicable Standards ............................................ 5 1.8.1 Ambient Air Quality Standards ........................................... 6 1.8.2 Environmental Noise Standards .................. ......................... 6 1.8.3 Surface Water Quality Standards ............................................ 6 Chapter 2 Environmental Assessment Team ......... .................................. 8 Chapter 3 Project Description ............................................ 10 3.1 Direct Project Benefit Area ........................................... 10 3.2 Geographical Location .....
    [Show full text]
  • ISPH-PROGRAM-And-ABSTRACT-BOOK.Pdf
    - ISPH 2015 logo (front cover) designed by Jasmina Wiemann. The logo highlights several aspects well suited for the Bonn, 2015 meeting. The dwarf sauropod dinosaur, Europasaurus, stands in front of a histology-filled silhouette of the main dome of Poppelsdorf Palace, the main venue for ISPH 2015. This Late Jurassic sauropod is a fitting representative, as it was discovered in Lower Saxony, Germany, and its dwarf status was verified with histological investigations. - Cover, program and abstract book designed by Aurore Canoville and Jessica Mitchell. - Program and abstract book editors: Aurore Canoville, Jessica Mitchell, Koen Stein, Dorota Konietzko-Meier, Elzbieta Teschner, Anneke van Heteren, and P. Martin Sander. ISPH 2015 – Bonn, Germany ISPH 2015 – Bonn, Germany Table of Contents TABLE OF CONTENTS Symposium Organizers and Acknowledgements ...................................................... 4 Welcome Address ........................................................................................................ 5 Program ........................................................................................................................ 6 Main Events ........................................................................................................ 6 Venues ................................................................................................................ 8 Scientific Sessions / Oral Presentations ........................................................... 11 Scientific Sessions / List of Posters .................................................................
    [Show full text]
  • Viviparity in a Triassic Marine Archosauromorph Reptile.Pdf
    第55卷 第3期 古 脊 椎 动 物 学 报 pp. 210-217 2017年7月 VERTEBRATA PALASIATICA fig. 1 Viviparity in a Triassic marine archosauromorph reptile LI Chun1 Olivier RIEPPEL2 Nicholas C. FRASER3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences Beijing 100044, China [email protected]) (2 Field Museum of Natural History Chicago IL 60605, USA) (3 National Museums Scotland Edinburgh EH1 1JF, UK) Abstract Eggs or embryos have been reported in various groups of fossil reptiles, where viviparity is a common mode of reproduction in aquatic taxa such as the ichthyopterygians, some groups of sauropterygians, mosasauroids, some taxa of choristoderans and certain protorosaurs. Here, we describe a complete embryo of a marine protorosaur, based on a well-preserved, curled- up skeleton. The new discovery is referred to a taxon closely related to the remarkable long- necked Dinocephalosaurus. It further confirmed viviparity in an archosauromorph group and indicates an increasing taxonomic diversity not only within this group, but of Triassic marine reptiles in general. keywords archosauromorph, protorosaur, embryo, viviparity, marine Citation Li C, Rieppel O, Fraser N C, 2017. Viviparity in a Triassic marine archosauromorph reptile. Vertebrata PalAsiatica, 55(3): 210–217 1 Introduction A number of terms such as oviparity, ovoviviparity and viviparity have been used to describe reproductive strategies in reptiles. However, in the fossil record only oviparity and viviparity can be distinguished, thus allowing a straight-forward definition simply based on the deposition of eggs versus giving birth to live offspring (Guillette, 1993; Blackburn, 1993).
    [Show full text]
  • Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors
    Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors Dictionary of Geotourism With 635 Figures and 12 Tables Editors Anze Chen Young Ng Chinese Academy of Geological Sciences The Geological Society of Australia Beijing, China Sydney, NSW, Australia Erkuang Zhang Mingzhong Tian The Geological Society of China China University of Geosciences Beijing, China Beijing, China ISBN 978-981-13-2537-3 ISBN 978-981-13-2538-0 (eBook) ISBN 978-981-13-2539-7 (print and electronic bundle) https://doi.org/10.1007/978-981-13-2538-0 Jointly published with Science Press, Beijing, China ISBN: 978-7-03-058981-1 Science Press, Beijing, China © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for gecneral use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • The Influence of Climatic Change on the Late Bronze Age Collapse and the Greek Dark Ages Journal of Archaeological Science
    Journal of Archaeological Science 39 (2012) 1862e1870 Contents lists available at SciVerse ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages Brandon L. Drake* Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, United States article info abstract Article history: Between the 13th and 11th centuries BCE, most Greek Bronze Age Palatial centers were destroyed and/or Received 28 July 2011 abandoned. The following centuries were typified by low population levels. Data from oxygen-isotope Received in revised form speleothems, stable carbon isotopes, alkenone-derived sea surface temperatures, and changes in 19 January 2012 warm-species dinocysts and formanifera in the Mediterranean indicate that the Early Iron Age was more Accepted 26 January 2012 arid than the preceding Bronze Age. A sharp increase in Northern Hemisphere temperatures preceded the collapse of Palatial centers, a sharp decrease occurred during their abandonment. Mediterranean Sea Keywords: surface temperatures cooled rapidly during the Late Bronze Age, limiting freshwater flux into the Bronze Age Collapse Carbon isotopes atmosphere and thus reducing precipitation over land. These climatic changes could have affected Speleothems Palatial centers that were dependent upon high levels of agricultural productivity. Declines in agricul- SST tural production would have made higher-density populations in Palatial centers unsustainable. The Sea surface temperature ‘Greek Dark Ages’ that followed occurred during prolonged arid conditions that lasted until the Roman Climate change Warm Period. Paleoclimate Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction suggested that a centuries-long megadrought caused the wide- spread systems collapse of Bronze Age Palatial civilization.
    [Show full text]