The Ancient Mediterranean Environment Between Science and History Columbia Studies in the Classical Tradition

Total Page:16

File Type:pdf, Size:1020Kb

The Ancient Mediterranean Environment Between Science and History Columbia Studies in the Classical Tradition The Ancient Mediterranean Environment between Science and History Columbia Studies in the Classical Tradition Editorial Board William V. Harris (editor) Alan Cameron, Suzanne Said, Kathy H. Eden, Gareth D. Williams, Holger A. Klein VOLUME 39 The titles published in this series are listed at brill.com/csct The Ancient Mediterranean Environment between Science and History Edited by W.V. Harris LEIDEN • BOSTON 2013 Cover illustration: Fresco from the Casa del Bracciale d’Oro, Insula Occidentalis 42, Pompeii. Photograph © Stefano Bolognini. Courtesy of the Soprintendenza Archeologica di Pompei. Library of Congress Cataloging-in-Publication Data The ancient Mediterranean environment between science and history / edited by W.V. Harris. pages cm. – (Columbia studies in the classical tradition, ISSN 0166-1302 ; volume 39) Includes bibliographical references and index. ISBN 978-90-04-25343-8 (hardback : alk. paper) – ISBN 978-90-04-25405-3 (e-book) 1. Human ecology–Mediterranean Region–History. 2. Mediterranean Region–Environmental conditions–History. 3. Nature–Effect of human beings on–Mediterranean Region–History. I. Harris, William V. (William Vernon) author, editor of compilation. GF541.A64 2013 550.937–dc23 2013021551 This publication has been typeset in the multilingual “Brill” typeface. With over 5,100 characters covering Latin, IPA, Greek, and Cyrillic, this typeface is especially suitable for use in the humanities. For more information, please see www.brill.com/brill-typeface. ISSN 0166-1302 ISBN 978-90-04-25343-8 (hardback) ISBN 978-90-04-25405-3 (e-book) Copyright 2013 by The Trustees of Columbia University in the City of New York. Koninklijke Brill NV incorporates the imprints Brill, Global Oriental, Hotei Publishing, IDC Publishers and Martinus Nijhoff Publishers. All rights reserved. No part of this publication may be reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission from the publisher. Authorization to photocopy items for internal or personal use is granted by Koninklijke Brill NV provided that the appropriate fees are paid directly to The Copyright Clearance Center, 222 Rosewood Drive, Suite 910, Danvers, MA 01923, USA. Fees are subject to change. This book is printed on acid-free paper. CONTENTS List of Tables and Figures . vii Notes on Contributors . xiii Abbreviations. xvii Preface . xix What Kind of Environmental History for Antiquity? . 1 W.V. Harris PART ONE FRAMEWORKS Energy Consumption in the Roman World . 13 Paolo Malanima Fuelling Ancient Mediterranean Cities: A Framework for Charcoal Research . 37 Robyn Veal PART TWO CLIMATE What Climate Science, Ausonius, Nile Floods, Rye, and Thatch Tell Us about the Environmental History of the Roman Empire . 61 Michael McCormick Megadroughts, ENSO, and the Invasion of Late-Roman Europe by the Huns and Avars . 89 Edward R. Cook The Roman World and Climate: Context, Relevance of Climate Change, and Some Issues . 103 Sturt Manning vi contents PART THREE WOODLANDS Defining and Detecting Mediterranean Deforestation, 800bce to 700ce...............................................................173 W.V. Harris PART FOUR AREA REPORTS Problems of Relating Environmental History and Human Settlement in the Classical and Late Classical Periods: The Example of Southern Jordan . 197 Paula Kouki Human-Environment Interactions in the Southern Tyrrhenian Coastal Area: Hypotheses from Neapolis and Elea-Velia . 213 Elda Russo Ermolli, Paola Romano, and Maria Rosaria Ruello Large-Scale Water Management Projects in Roman Central-Southern Italy ................................................................233 Duncan Keenan-Jones PART FIVE FINALE The Mediterranean Environment in Ancient History: Perspectives and Prospects . 259 Andrew Wilson Bibliography . 277 Index ...................................................................327 LIST OF TABLES AND FIGURES Malanima Tables 1 Energy consumption in the early Roman Empire . 17 2 Energy consumption in advanced regions of the West and East according to I. Morris. 8000bc–2000ad . 35 Figures 1 Dated remains of coal in England 1–500ad . 23 2 Oxygen isotopes in the ice carrot GISP2 (Greenland glacier ice core) 60bc–350ad. 25 3 Intensity of precipitation between 400bc and ad400 (and range of error) . 26 4 Estimates of forest clearance in Central Europe (Germany, North-Eastern France) from archaeological wood remains 200bc–400ad . 28 5 Food consumption by modern populations according to age . 31 Veal Figures 1 Factors affecting the wood supply, which underpin the types of archaeological charcoals found. 41 2 Examples of charcoals from excavation . 46 3 Modern charcoal stack ready for covering with mud, leaves and charring residues, which was then set to char by insertion of a burning log . 48 4 Summary results of diachronic study of wood fuel of Pompeii c. third c. bc to ad79 . 56 viii list of tables and figures McCormick Tables 1 Nile Floods: overview of broader qualities as classified by Bonneau 1971 . 77 2 Detailed categories of flood qualities of the Nile according to Bonneau 1971 . 78 3 Recording quality as assessed by Bonneau . 80 Figures 1 Reconstructed precipitation anomalies (mm/day), April, May, June, 367–378ad, northeast France. 69 2 Percentages of Nile flood qualities, early vs. later Roman Empire . 78 Cook Figures 1 The Dulan-Wulan annual tree-ring chronology from north-central China and the occurrence of severe droughts during the times of the Hun-Avar migrations into late-Roman Europe.............................................................. 90 2 Correlations between December–February Niño 3.4 sea surface temperatures (a measure of ENSO variability) and March–June total precipitation from 1951 to 2003 . 94 3 Two 2,000 year long annual tree-ring chronologies from ENSO sensitive regions in the Northern and Southern Hemispheres: Douglas fir from northwest New Mexico and Kauri from the North Island of New Zealand . 95 4 Correlations between the Douglas fir and Kauri tree-ring chronologies and Hadley Centre global sea surface temperatures (HadISST1) for the winter season: 1871–2003. 96 5 The average (A) and difference (B) of the Douglas fir and Kauri tree-ring chronologies . 97 6 Correlations between December–February average SSTs and the average and difference of the Douglass fir and Kauri annual tree-ring chronologies, each with an identified ENSO signal . 98 7 Comparisons of correlation patterns of March–June precipitation with actual and tree-ring ENSO indices . 99 list of tables and figures ix 8 The Douglas fir—Kauri average interhemispheric ENSO index with drought inducing La Niña periods indicated around the times of the Hun-Avar migrations into late-Roman Europe . 100 Manning Figures 1a Comparisons of general northern hemisphere temperature covering the past millennium and the often differing (almost opposite) precipitation records from the west and east Mediterranean . 110 1b A comparison of periods noted in the analyses of Nicault et al. (2008) of decadal or longer intervals of wetter (more negative PDSI) and drier (more positive PDSI) for Italy, Greece and the Levant versus reconstructed winter NAO indices. 111 2 A. The standard radiocarbon calibration curve for the period 3000bc to ad1950 from known-age trees. B. The Δ14C record per mille (‰) from A—this is the relative 14C content decay corrected and normalized. C. The residual Δ14C record per mille (‰) after a 1000-year moving average is removed . 123 3 Bottom: observed sun-spot numbers (SSN) per year. Top: The annual Δ14C record per mille (‰) ad1600–1900 and an 11-year moving average of this record. Middle: The Δ14C record per mille (‰) from IntCal09 and IntCal04 and two models of 14C production . 124 4 Top: A. The residual annual Δ14C with 2 point (pt) FFT smoothing from the data shown in Figure 3 from Stuiver et al. (1998) calculated minus a 22pt FFT smoothing to emphasise the change around the longer-term trend. B. The residual annual production of 14C (iterative method—see Figure 3) with 2pt smoothing . 125 5 High resolution 10Be data from Greenland for the most recent six centuries . 127 6a Comparison of the Total Solar Irradiance (TSI) reconstructions of Vieira et al. (2011) from the 14C record versus Steinhilber et al. (2009) from the 10Be record . 128 6b Top: Total Solar Irradiance (TSI) reconstruction from ice-core 10Be records from Steinhilber et al. (2009)—see Figure 6a. Bottom: 14C production from Marmod09 (Reimer et al. 2009) . 129 x list of tables and figures 7 Top: detail of the Total Solar Irradiance (dTSI) reconstruction from ice-core 10Be records from Steinhilber et al. (2009) for the period 300bc to ad800. Bottom: two 14C production models: (a) from Marmod09 (Reimer et al. 2009) and (b) the iterative model from Usoskin and Kromer (2005) . 130 8 Top: the two 14C production models in Figure 7—now not inverted—for the period 300bc to ad800. Bottom: the SSN reconstruction from Solanki et al. (2004) for 300bc to ad800 . 131 9 The main trends of the solar proxy records in Figures 7 and 8 for the period 300bc to ad700 . 134 10 Top: Extra-tropical Northern Hemisphere temperature record. A. 50-year smoothed curve; B. A 10pt FFT smoothed curve. Middle: IntCal09 radiocarbon calibration curve. Bottom: Ring widths of ANG-7B . 138 11 Top: the mean tree-ring widths record for the tree-ring series from Istanbul. Bottom: the reconstructed temperature and precipitation records from central European oak time-series shown
Recommended publications
  • Medieval Warm Period in South America
    M EDIEVAL WARM PERIOD IN OUTH MERICA S A SPPI & CO2SCIENCE ORIGINAL PAPER ♦ September 4, 2013 MEDIEVAL WARM PERIOD IN SOUTH AMERICA Citation: Center for the Study of Carbon Dioxide and Global Change. "Medieval Warm Period in South America.” Last modified September 4, 2013. http://www.co2science.org/subject/m/summaries/mwpsoutham.php. Was there a Medieval Warm Period anywhere in addition to the area surrounding the North Atlantic Ocean, where its occurrence is uncontested? This question is of utmost importance to the ongoing global warming debate, since if there was, and if the locations where it occurred were as warm then as they are currently, there is no need to consider the temperature increase of the past century as anything other than the natural progression of the persistent millennial- scale oscillation of climate that regularly brings the earth several-hundred-year periods of modestly higher and lower temperatures that are totally independent of variations in atmospheric CO2 concentration. Hence, this question is here considered as it applies to South America, a region far removed from where the existence of the Medieval Warm Period was first recognized. Cioccale (1999) assembled what was known at the time about the climatic history of the central region of the country over the past 1400 years, highlighting a climatic "improvement" that began some 400 years before the start of the last millennium, which ultimately came to be characterized by "a marked increase of environmental suitability, under a relatively homogeneous climate." And as a result of this climatic amelioration that marked the transition of the region from the Dark Ages Cold Period to the Medieval Warm Period, Cioccale reported that "the population located in the lower valleys ascended to higher areas in the Andes," where they remained until around AD 1320, when the transition to the stressful and extreme climate of the Little Ice Age began.
    [Show full text]
  • Using Patterns of Recurring Climate Cycles to Predict Future Climate Changes D.J
    CHAPTER 21 Using Patterns of Recurring Climate Cycles to Predict Future Climate Changes D.J. Easterbrook Western Washington University, Bellingham, WA, United States OUTLINE 1. Introduction 395 4. Correlation of Temperature Cycles and the Pacific Decadal Oscillation 405 2. The Past is the Key to the Future: Lessons From Past Global Climate Changes 396 5. The Atlantic Multidecadal Oscillation 407 2.1 Past Climate Changes 396 6. Where Is Climate Headed During the Coming 2.2 Magnitude and Rate of Abrupt Climate Changes 396 Century? 407 2.3 Holocene Climate Changes (10,000 Years Ago 6.1 IPCC Predictions 407 to Present) 398 6.2 Predictions Based on Past Cyclic Climate 2.3.1 The Roman Warm Period 398 Patterns 407 2.3.2 Dark Ages Cool Period 398 2.3.3 Medieval Warm Period (900e1300 AD) 400 References 410 2.3.4 The Little Ice Age 401 2.3.5 Climate Changes During the Past Century 403 3. Significance of Past Global Climate Changes 404 1. INTRODUCTION Global warming that occurred from 1978 to about 1998 pushed climate change into the forefront of potential concern. Every day the news media is filled with dire predictions of impending disastersdcatastrophic melting of the Antarctic and Greenland ice sheets, drowning of major cities from sea level rise, drowning of major portions of countries, droughts, severe water shortages, no more snow, more extreme weather events (hurricanes, tor- nadoes), etc. With no unequivocal, cause-and-effect, tangible, physical evidence that increasing CO2 caused this most recent global warming, adherents of this ideology have had to rely on computer models that have proven to be unreliable.
    [Show full text]
  • Palaeogeography, Harbour Potential and Salt Resources Since the Greek and Roman Periods at the Promontory of Pachino
    Palaeogeography, harbour potential and salt resources since the Greek and Roman periods at the promontory of Pachino. Preliminary results and perspectives Salomon Ferréol, Darío Bernal-Casasola, Cécile Vittori, Hatem Djerbi To cite this version: Salomon Ferréol, Darío Bernal-Casasola, Cécile Vittori, Hatem Djerbi. Palaeogeography, harbour potential and salt resources since the Greek and Roman periods at the promontory of Pachino. Pre- liminary results and perspectives. Darío Bernal-Casasola; Daniele Malfitana; Antonio Mazzaglia; José Juan Díaz. Le cetariae ellenistiche e romane di Portopalo (Sicilia) / Las cetariae helenisticas y ro- manas de Portopalo (Sicilia), Supplement – 1, pp.217-233, 2021, HEROM - Journal on Hellenistic an Roman material culture, 2294-4273. hal-03230863 HAL Id: hal-03230863 https://hal.archives-ouvertes.fr/hal-03230863 Submitted on 20 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeogeography, harbour potential and salt resources since the Greek and Roman periods at the promontory of Pachino. Preliminary results and perspectives Ferréol Salomon, Darío Bernal-Casasola, Cécile Vittori and Hatem Djerbi Introduction Cicogna was surveyed along with the Pantano Morghella part of the Riserva naturale orientate ai Pantani della Sicilia Sud-Orientale.
    [Show full text]
  • The Science of Roman History Biology, Climate, and the Future of the Past
    The Science of Roman History Biology, climaTe, and The fuTuRe of The PaST Edited by Walter Scheidel PRinceTon univeRSiTy PReSS PRinceTon & oxfoRd Copyright © 2018 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu All Rights Reserved ISBN 978- 0- 691- 16256- 0 Library of Congress Control Number 2017963022 British Library Cataloging- in- Publication Data is available This book has been composed in Miller Printed on acid- free paper. ∞ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 conTenTS List of Illustrations and Tables · vii Notes on Contributors · ix Acknowledgments · xiii Maps · xiv Introduction 1 Walter Scheidel chaPTeR 1. Reconstructing the Roman Climate 11 Kyle Harper & Michael McCormick chaPTeR 2. Archaeobotany: The Archaeology of Human- Plant Interactions 53 Marijke van der Veen chaPTeR 3. Zooarchaeology: Reconstructing the Natural and Cultural Worlds from Archaeological Faunal Remains 95 Michael MacKinnon chaPTeR 4. Bones, Teeth, and History 123 Alessandra Sperduti, Luca Bondioli, Oliver E. Craig, Tracy Prowse, & Peter Garnsey chaPTeR 5. Human Growth and Stature 174 Rebecca Gowland & Lauren Walther chaPTeR 6. Ancient DNA 205 Noreen Tuross & Michael G. Campana chaPTeR 7. Modern DNA and the Ancient Mediterranean 224 Roy J. King & Peter A. Underhill Index · 249 [ v ] illuSTRaTionS and TaBleS Maps 1. Western Mediterranean. xiv 2. Eastern Mediterranean. xv 3. Northwestern Europe. xvi Figures 1.1. TSI (Total Solar Irradiance) from 14C. 19 1.2. TSI from 10Be. 19 1.3.
    [Show full text]
  • Oxygen Isotope Evidence for Paleoclimate Change During The
    PALEOCLIMATE RECONSTRUCTION IN NORTHWEST SCOTLAND AND SOUTHWEST FLORIDA DURING THE LATE HOLOCENE Ting Wang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Geological Sciences. Chapel Hill 2011 Approved by: Dr. Donna M. Surge Dr. Joseph G. Carter Dr. Jose A. Rial Dr. Justin B. Ries Dr. Karen J. Walker © 2011 Ting Wang ALL RIGHTS RESERVED ii ABSTRACT TING WANG: Paleoclimate Reconstruction in Northwest Scotland and Southwest Florida during the Late Holocene (Under the direction of Dr. Donna M. Surge) The study reconstructed seasonal climate change in mid-latitude northwest Scotland during the climate episodes Neoglacial (~3300-2500 BP) and Roman Warm Period (RWP; ~2500-1600 BP) and in subtropical southwest Florida during the latter part of RWP (1-550 AD) based on archaeological shell accumulations in two study areas. In northwest Scotland, seasonal sea surface temperature (SST) during the Neoglacial and RWP was estimated from high-resolution oxygen isotope ratios (δ18O) of radiocarbon-dated limpet (Patella vulgata) shells accumulated in a cave dwelling on the Isle of Mull. The SST results revealed a cooling transition from the Neoglacial to RWP, which is supported by earlier studies of pine pollen in Scotland and European glacial events and also coincident with the abrupt climate deterioration at 2800-2700 BP. The cooling transition might have been driven by decreased solar radiation and weakened North Atlantic Oscillation (NAO) conditions. In southwest Florida, seasonal-scale climate conditions for the latter part of RWP were reconstructed by using high-resolution δ18O of archaeological shells (Mercenaria campechiensis) and otoliths (Ariopsis felis).
    [Show full text]
  • Clusters of Megaearthquakes on Upper Plate Faults Control the Eastern 1
    Originally published as: Mouslopoulou, V., Nicol, A., Begg, J. G., Oncken, O., Moreno, M. (2015): Clusters of mega-earthquakes on upper-plate faults control the Eastern Mediterranean hazard. - Geophysical Research Letters, 42, 23, pp. 10282—10289. DOI: http://doi.org/10.1002/2015GL066371 PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Clusters of megaearthquakes on upper plate faults 10.1002/2015GL066371 control the Eastern Mediterranean hazard Key Points: Vasiliki Mouslopoulou1, Andrew Nicol2, John Begg3, Onno Oncken1, and Marcos Moreno1 • Uplift along the Hellenic forearc transient due to earthquake clustering 1German Research Centre for Geosciences, GFZ Helmholtz Centre Potsdam, Germany, 2Department of Geological Sciences, • Earthquakes occur mostly on upper 3 plate faults rather than the plate University of Canterbury, Christchurch, New Zealand, GNS Science, Lower Hutt, New Zealand interface • Seismic hazard in Eastern Mediterranean underestimated Abstract The Hellenic subduction margin in the Eastern Mediterranean has generated devastating historical earthquakes and tsunamis with poorly known recurrence intervals. Here stranded paleoshorelines indicate – Supporting Information: strong uplift transients (0 7 mm/yr) along the island of Crete during the last ~50 kyr due to earthquake • Supporting Information S1 clustering. We identify the highest uplift rates in western Crete since the demise of the Minoan civilization and • Table S1 along the entire island between ~10 and 20 kyr B.P., with the absence of uplifted Late Holocene paleoshorelines in the east being due to seismic quiescence. Numerical models show that uplift along the Hellenic margin is Correspondence to: V. Mouslopoulou, primarily achieved by great earthquakes on major reverse faults in the upper plate with little contribution [email protected] from plate-interface slip.
    [Show full text]
  • Block and Boulder Accumulations on the Southern Coast of Crete (Greece): Evidence for the 365 CE Tsunami in the Eastern Mediterranean
    Boulton & Whitworth, 2016 Boulder deposits, Crete Block and boulder accumulations on the southern coast of Crete (Greece): evidence for the 365 CE tsunami in the Eastern Mediterranean. Sarah J. Boulton1*, Michael R.Z. Whitworth1, 2, 1School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, Devon, PL4 8AA, U.K. 2 AECOM, Mayflower House, Armada Way, Plymouth, Devon, PL1 1LD. *Correspondence ([email protected]) The Eastern Mediterranean is one of the most seismically active regions in Europe. Crete, located in the centre of the Eastern Mediterranean, should experience tsunamis resulting from large magnitude earthquakes or volcanic eruptions. At three locations boulders were observed that may relate to tsunami or storm events. At Lakki, the size of the boulders slightly favours a tsunami origin for deposition. By contrast, at Kommos boulder size and geomorphology is consistent with storm parameters in the Mediterranean. The most compelling evidence for tsunami transport is found at Diplomo Petris, where a lithologically varied grouping of large boulders (≤ 690 t) is exposed at sea level. The calculated storm wave heights (15 m) required to transport the observed boulders significantly exceeds winter averages; therefore, these accumulations are interpreted as tsunami deposits. Radiocarbon dating of encrusting biological material was undertaken to constrain periods of boulder motion. Encrustations from Diplomo Petris and Lakki pre-date the 365 CE earthquake suggesting that this event transported the largest boulders; the first time boulder deposits have been identified on Crete from this tsunami. Therefore, these data are important for developing local and regional hazard assessments but also to inform numerical models of tsunami propagation in the Mediterranean.
    [Show full text]
  • Earthquake Source Parameters Along the Hellenic Subduction Zone and Numerical Simulations of Historical Tsunamis in the Eastern Mediterranean
    Tectonophysics 536–537 (2012) 61–100 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean Seda Yolsal-Çevikbilen ⁎, Tuncay Taymaz Istanbul Technical University, the Faculty of Mines, Department of Geophysical Engineering, Maslak TR-34469, Istanbul, Turkey article info abstract Article history: We studied source mechanism parameters and slip distributions of earthquakes with Mw ≥5.0 occurred dur- Received 25 March 2011 ing 2000–2008 along the Hellenic subduction zone by using teleseismic P- and SH-waveform inversion Received in revised form 26 January 2012 methods. In addition, the major and well-known earthquake-induced Eastern Mediterranean tsunamis Accepted 13 February 2012 (e.g., 365, 1222, 1303, 1481, 1494, 1822 and 1948) were numerically simulated and several hypothetical tsu- Available online 25 February 2012 nami scenarios were proposed to demonstrate the characteristics of tsunami waves, propagations and effects of coastal topography. The analogy of current plate boundaries, earthquake source mechanisms, various Keywords: Active tectonics earthquake moment tensor catalogues and several empirical self-similarity equations, valid for global or Earthquakes local scales, were used to assume conceivable source parameters which constitute the initial and boundary Eastern Mediterranean conditions in simulations. Teleseismic inversion results showed that earthquakes along the Hellenic subduc- Slip distribution tion zone can be classified into three major categories: [1] focal mechanisms of the earthquakes exhibiting E– Source rupture parameters W extension within the overriding Aegean plate; [2] earthquakes related to the African–Aegean convergence; Tsunamis and [3] focal mechanisms of earthquakes lying within the subducting African plate.
    [Show full text]
  • Gen Man Pnotestant Institute of Anchaeologp in Amman
    Gen man Pnotestant Institute of Anchaeologp in Amman The Institute: HfsCowy, Actfoftfes, Facilities In the late seventies the German Prot­ Amman are funded by the Lutheran estant Institute of Archaeology in Church of Germany. Amman was founded as a branch of the German Protestant Institute for Ar­ The institute in Amman has chaeology of the Holy Land in Jerusa­ its own building which is situated at Vol.1. No. 1 June 1996 lem, which had been founded at the the north west edge of Amman, in end of the last century after a CONTENTS visit of Emperor Wilhelm II to • The Institute 1 Jerusalem. The Jerusalem in­ • Preliminary report stitute started work in 1903 on Gadara 2 and has been based since • New hope for 1982 on the Mount of Olives Petra facades 4 in East Jerusalem. The main • Water supplies of research topics of the German Early Bronze Age Protestant Institute of Archae­ towns 6 ology during the first 60 years • Fellows in residence 6 of this century were historical • Excavations at and biblical-topographical Abu Snesleh 7 The German Protestant Institute staff in front of the questions. The directors of the • jerash cathedral institute building in Amman. institute during this period project 8 were Gustaf Dalman, Albrecht • Something unusual 8 Alt and Martin Noth, all well known dose vicinity to the University of Jor­ • The prehistory of scholars of Old Testament theology. dan and the American Center for Ori­ Jordan 9 The subsequent directors were Ute ental Research (ACOR). The building • Donors to the library 10 • Petra church project.
    [Show full text]
  • Mise En Page 1
    C IESM Workshop Monographs Marine geo-hazards in the Mediterranean Nicosia,2-5February2011 CIESM Workshop Monographs ◊ 42. To be cited as: CIESM, 2011. Marine geo-hazards in the Mediterranean. N° 42 in CIESM Workshop Monographs [F. Briand Ed.], 192 pages, Monaco. This collection offers a broad range of titles in the marine sciences, with a particular focus on emerging issues. The Monographs do not aim to present state-of-the-art reviews; they reflect the latest thinking of researchers gathered at CIESM invitation to assess existing knowledge, confront their hypotheses and perspectives, and to identify the most interesting paths for future action. A collection founded and edited by Frédéric Briand. Publisher : CIESM, 16 bd de Suisse, MC-98000, Monaco. MARINE GEO-HAZARDS IN THE MEDITERRANEAN - Nicosia,2-5February 2011 CONTENTS I-EXECUTIVE SUMMARY ................................................7 1. Introduction 2. Volcanoes 2.1 Tyrrhenian Sea 2.2 Aegean Sea 2.3 Gaps of knowledge related to volcanic activity 3. Earthquakes 3.1 Geodynamics and seismo-tectonics 3.2 Distribution – short history 3.3 Seismic parameter determination – data bases 3.4 Associated marine hazards 4. Submarine landslides 4.1 Slope movement stages and physical mechanisms 4.2 Observation, detection and precursory evidence 4.3 Gaps of knowledge associated with sedimentary mass movements 5. Tsunamis 6. Risk reduction: preparedness and mitigation 7. Recommendations II – WORKSHOP COMMUNICATIONS - Geo-hazards and the Mediterranean Sea. J.Mascle.............................................................23 • Eastern Mediterranean - Marine geohazards associated with active geological processes along the Hellenic Arc and Back-Arc region. D.Sakellariou ........................................................27 3 CIESM Workshop Monographs n°42 MARINE GEO-HAZARDS IN THE MEDITERRANEAN - Nicosia,2-5February 2011 - Potential tsunamigenic sources in the Eastern Mediterranean and a decision matrix for a tsunami early warning system.
    [Show full text]
  • Evidence of Tsunami Deposits in East Tunisia Coastline Contemporaneous
    Evidence of tsunami deposits in East Tunisia coastline contemporaneous of the AD 365 Crete earthquake: Field data and modeling Nejib BAHROUNI (1), Mustapha MEGHRAOUI (2), Hafize Başak BAYRAKTAR (3), Stefano LORITO (4), Mohamed-fawzi ZAGRARNI (5), Nabil BEN MABROUK (6) EGU21-9104 | vPICO presentation 1 Office National des Mines, Tunis, Tunisia ([email protected]); 2 Institut Terre et Environnement (ITES - CNRS UMR-7063), Strasbourg, France 3 Università degli Studi di Napoli ‘Federico II’, Italy; 4 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy ; 5 National School of Engineers, Sfax, Tunisia NH5.3/GM6.2/SSP3.11 Summary Tsunami Sites Tsunami Modeling New eld investigations along the East Tunisian near Sfax coastline reveal sedi- The nonlinear shallow water Tsunami-HySEA code is used to perform numerical modelling using 2 dierent seismic mentary deposits that may account for a catastrophic event. The sedimentary sources [2, 5] comparable to that of the AD 365 Crete earthquake. They feature 2 principal mechanisms that accommo- unit is made of sand coarse gravels, limestone beach-rock, mixed with broken date the Nubia-Aegean convergence along the Hellenic Arc, namely a shallowly dipping thrust-faulting on the subduc- shells of marine gastropods and lamellibranch mollusks, bones and organic tion interface, as well as a steeper splay faulting in the overriding material. matter. Near Thyna, at Henchir site located north of Sfax city, 2.4 m to 3.6 m high late Quaternary coastal terraces are spread over the coastline [1]; they contain a catastrophic deposit that often cover archeological sites of the Roman period.
    [Show full text]
  • The Influence of Climatic Change on the Late Bronze Age Collapse and the Greek Dark Ages Journal of Archaeological Science
    Journal of Archaeological Science 39 (2012) 1862e1870 Contents lists available at SciVerse ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages Brandon L. Drake* Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, United States article info abstract Article history: Between the 13th and 11th centuries BCE, most Greek Bronze Age Palatial centers were destroyed and/or Received 28 July 2011 abandoned. The following centuries were typified by low population levels. Data from oxygen-isotope Received in revised form speleothems, stable carbon isotopes, alkenone-derived sea surface temperatures, and changes in 19 January 2012 warm-species dinocysts and formanifera in the Mediterranean indicate that the Early Iron Age was more Accepted 26 January 2012 arid than the preceding Bronze Age. A sharp increase in Northern Hemisphere temperatures preceded the collapse of Palatial centers, a sharp decrease occurred during their abandonment. Mediterranean Sea Keywords: surface temperatures cooled rapidly during the Late Bronze Age, limiting freshwater flux into the Bronze Age Collapse Carbon isotopes atmosphere and thus reducing precipitation over land. These climatic changes could have affected Speleothems Palatial centers that were dependent upon high levels of agricultural productivity. Declines in agricul- SST tural production would have made higher-density populations in Palatial centers unsustainable. The Sea surface temperature ‘Greek Dark Ages’ that followed occurred during prolonged arid conditions that lasted until the Roman Climate change Warm Period. Paleoclimate Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction suggested that a centuries-long megadrought caused the wide- spread systems collapse of Bronze Age Palatial civilization.
    [Show full text]