Digital Integrated Circuits Revolution
Total Page:16
File Type:pdf, Size:1020Kb
Digital integrated circuits rEvolution Elettronica T A.A. 2015-2016 Introduction Introduction lDigital Integrated Circuit Design: The past, the present and the future » What made Digital IC design what it is today » Why is designing digital Ics different today than it was before? » Will it change in the future? Elettronica T A.A. 2015-2016 Introduction The First Computer The Babbage Difference Engine (1832) 25,000 parts cost: £17,470 Elettronica T A.A. 2015-2016 Introduction ENIAC - The first electronic computer (1946) Balistic calculator (Used during 2° World War) 18000 valves 1500 relais 30 tons 200 KW $ 486.804,22 (1946) During 10 years of opeating life 19000 valves had to be replaced Elettronica T A.A. 2015-2016 Introduction The transistor revolution First transistor Shockley, Brattain, Bardeen Bell Labs, 1948 Same Functionality of vacuum tubes but less power and compact, reliable and fast. Elettronica T A.A. 2015-2016 Introduction The first Integrted Circuit l Improvement on technology process : » Planar Transistors (BJT) l Integration of many transistors on the same semiconductor Phase shift oscillator – substrate Jack Kilby (1958) Elettronica T A.A. 2015-2016 Introduction The first integrated circuit ECL 3-input Gate Technology: bipolar Motorola 1966 Noyce –Fairchil Co-Founder Idea: Planar transistor Process in a single shot several transistor Manufactoring steps Doping Oxidation Lithografy Etching Deposition Beginning of the IC REVOLUTION!!! Etc Elettronica T A.A. 2015-2016 Introduction Transistor – Transistor Logic l TTL is a class of digital circuits built from bipolar junction transistors (BJT) and resistors. l Became very popular after 1963 (Texas) 7400 and 5400 series l Main issue: » Speed » Power Elettronica T A.A. 2015-2016 Introduction MOS transistor Patented : 1935 (IGFET) . .Reinvented in late ‘60 . First working device : ‘70 Elettronica T A.A. 2015-2016 Introduction Microprocessors Intel 4004 (1971) 2300 transistors 3x4mm 10um process PMOS <1 MHz operation Elettronica T A.A. 2015-2016 Introduction Microprocessors Intel 4004 (1971) 2300 transistors 3x4mm 10um process PMOS <1 MHz operation Elettronica T A.A. 2015-2016 Introduction Intel Core 2 Microprocessor Intel Core 2 (2006), 291M transistors, 65CMOS, 143mm² 3GHz Elettronica T A.A. 2015-2016 Introduction Transistor Counts Elettronica T A.A. 2015-2016 Introduction Intel SRAM Prototype Chip (2009) l 22nm l 364MB SRAM l > 2.9B transistor l 3rd generation High-K + Metal Gate Elettronica T A.A. 2015-2016 Introduction l l effectiveness every effectiveness 18months Hemadeprediction a semiconductorthat every18 24monthsto 1965,In Gordon Moore notedthatthe number transistorsof onachip doubled Elettronica T A.A.2015-2016 T Elettronica L O G2 O F T H E N U M B E R O F C O M P O N E N T S P E R IN T E G R A T E D F U N C T IO N 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 1 95 9 1 96 0 1 961 1 96 2 1 96 3 1 96 4 Law Moore’s 1 96 5 1 96 6 1 96 7 1 96 8 1 96 9 Introduction 1 97 0 1 97 1 1 97 2 1 97 3 technology doublewill its 1 97 4 1 97 5 Electronics , 1965. , April 19, Cost per Transistor cost: ¢-per-transistor 1 0.1 Fabrication capital cost per transistor (Moore’s law) 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 Elettronica T A.A. 2015-2016 Introduction Scaling l Transistor count is the most common measure of integrated circuit complexity. » Intel's 10-core XeonWestmere-EX 2.5 Billion » Xilinx currently holds the "world-record" for an FPGA containing 6.8 Billion transistors. l More integration due transistor scaling: » More compact devices » faster » Less power hungry Elettronica T A.A. 2015-2016 Introduction 65nm CMOS Technology PMOS (gate 65nm) 8 Metal Layers for local/global interconnects Elettronica T A.A. 2015-2016 Introduction Evolution in Complexity memories Elettronica T A.A. 2015-2016 Introduction Frequency 10000 Doubles every Now it’s over! 1000 ) 2 years z h M ( P6 100 y c Pentium ® proc n 486 Courtesy, Intel e u 10 386 q 8085 286 e 8086 r F 1 8080 8008 4004 0.1 1970 1980 1990 2000 2010 Year LeadLead MicroprocessorsMicroprocessors frequencyfrequency doublesdoubles everyevery 22 yearsyears Elettronica T A.A. 2015-2016 Introduction Power Dissipation Prediction (2000) Elettronica T A.A. 2015-2016 Introduction Power density 10000 Rocket ) 2 Nozzle m c 1000 / W ( Nuclear y t i Reactor s 100 n Courtesy, Intel e D r e 8086 w 10 4004 Hot Plate o P6 P 8008 8085 386 Pentium® proc 286 8080 486 1 1970 1980 1990 2000 2010 Year PowerPower densitydensity tootoo highhigh toto keepkeep junctionsjunctions atat lowlow temptemp Elettronica T A.A. 2015-2016 Introduction Not enough cooling Elettronica T A.A. 2015-2016 Introduction Why Scaling? l Technology shrinks by 0.7/generation l With every generation can integrate 2x more functions per chip; chip cost does not increase significantly l Cost of a function decreases by 2x l But … » How to design chips with more and more functions? » Design engineering population does not double every two years… l Hence, a need for more efficient design methods » Exploit different levels of abstraction Elettronica T A.A. 2015-2016 Introduction Design Abstraction Levels SYSTEM MODULE + GATE CIRCUIT DEVICE G S D n+ n+ Elettronica T A.A. 2015-2016 Introduction Not Only Microprocessors (cell phone…) Small Power Signal RF RF Power Managemen t Analog Baseband Digital Baseband (DSP + MCU) 26 Elettronica T A.A. 2015-2016 Introduction Challenges in Digital Design “Microscopic Problems” “Macroscopic Issues” • Ultra-high speed design • Time-to-Market " Interconnect • Millions of Gates • Noise, Crosstalk • High-Level Abstractions • Reliability, Manufacturability • Reuse & IP: Portability • Power Dissipation • Predictability • Clock distribution. • Verification Everything Looks a Little Different …and There’s a Lot of Them! ? Elettronica T A.A. 2015-2016 Introduction.