Prof. Hans Kopfermann
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Max Planck Institute for the History of Science Werner Heisenberg And
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science PREPRINT 203 (2002) Horst Kant Werner Heisenberg and the German Uranium Project Otto Hahn and the Declarations of Mainau and Göttingen Werner Heisenberg and the German Uranium Project* Horst Kant Werner Heisenberg’s (1901-1976) involvement in the German Uranium Project is the most con- troversial aspect of his life. The controversial discussions on it go from whether Germany at all wanted to built an atomic weapon or only an energy supplying machine (the last only for civil purposes or also for military use for instance in submarines), whether the scientists wanted to support or to thwart such efforts, whether Heisenberg and the others did really understand the mechanisms of an atomic bomb or not, and so on. Examples for both extreme positions in this controversy represent the books by Thomas Powers Heisenberg’s War. The Secret History of the German Bomb,1 who builds up him to a resistance fighter, and by Paul L. Rose Heisenberg and the Nazi Atomic Bomb Project – A Study in German Culture,2 who characterizes him as a liar, fool and with respect to the bomb as a poor scientist; both books were published in the 1990s. In the first part of my paper I will sum up the main facts, known on the German Uranium Project, and in the second part I will discuss some aspects of the role of Heisenberg and other German scientists, involved in this project. Although there is already written a lot on the German Uranium Project – and the best overview up to now supplies Mark Walker with his book German National Socialism and the quest for nuclear power, which was published in * Paper presented on a conference in Moscow (November 13/14, 2001) at the Institute for the History of Science and Technology [àÌÒÚËÚÛÚ ËÒÚÓËË ÂÒÚÂÒÚ‚ÓÁ̇ÌËfl Ë ÚÂıÌËÍË ËÏ. -
CLEO Conference
Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D CLEO: QELS-Fundamental Science 08:00–10:00 08:00–10:00 08:00–10:00 08:00–10:00 FM1A • Quantum Engineering FM1B • Relativistic Laser-Plasma FM1C • Hyperbolic and Epsilon- FM1D • PT Symmetry and Presider: Nicholas Peters; Applied Interactions near-zero Materials Related Phenomena Communication Sciences, USA Presider: Sergei Tochitsky; Univ. Presider: Philippe Tassin; Presider: Matthias Heinrich, Univ. of California Los Angeles, USA Chalmers Univ., Sweden of Central Florida, USA FM1A.1 • 08:00 Tutorial FM1B.1 • 08:00 Invited FM1C.1 • 08:00 FM1D.1 • 08:00 Quantum Optomechanics, Markus Aspel- High energy ion acceleration and neutron Wave Propagation in Magnetized Epsilon- Beyond PT-symmetry: SUSY-mediated real meyer1; 1Universitat Wien, Austria. This production using relativistic transparency Near-Zero Metamaterials, Arthur Davoyan1, spectra in complex refractive index land- 1 1 1 tutorial provides an introduction to the cur- in solids, Markus Roth1, Daniel Jung2, Kat- Nader Engheta ; Univ. of Pennsylvania, USA. scapes, Mohammad-Ali Miri , Matthias Hein- 1 1 1 rent state-of-the-art, the challenges and the erina Falk2, Nevzat Guler2, Vincent Bagnoud3, In this work we theoretically study light propa- rich , Demetrios N. Christodoulides ; CREOL prospects of achieving quantum optical con- Stefan Bedacht1, Oliver Deppert1, Matthew gation in magnetized epsilon-near-zero (ENZ) The College of Optics and Photonics, Univ. of trol over nano-, micro- and macro-mechanical J. Devlin2, Andrea Favalli2, Juan Fernandez2, metamaterials. We reveal novel regimes of Central Florida, USA. In the presence of gain devices, i.e. quantum optomechanics. -
Guide to the James Franck Papers 1882-1966
University of Chicago Library Guide to the James Franck Papers 1882-1966 © 2006 University of Chicago Library Table of Contents Acknowledgments 3 Descriptive Summary 3 Information on Use 3 Access 3 Citation 3 Biographical Note 4 Scope Note 15 Related Resources 21 Subject Headings 21 INVENTORY 22 Series I: Correspondence 22 Series II: Manuscripts 51 Subseries 1: Physics - work in Germany and Denmark, 1905-1934 51 Subseries 2: Physics - work in United States, 1935-1958 53 Subseries 3: Biophysics - work on Photosynthesis at Johns Hopkins, 1935-193855 Subseries 4: Biophysics - work on Photosynthesis at the University of Chicago,55 1938-48 Subseries 5: Biophysics - work on Photosynthesis after 1948 55 Subseries 6: General Articles and Talks on Science 71 Subseries 7: Papers by other scientists 72 Subseries 8: Notes, memoranda and fragments 76 Subseries 9: Atomic Scientists' Movement, 1944-1953 76 Subseries 10: Franck Memorial Symposium, May 12-13, 1966 79 Series III: Tape Recordings and Photographs 80 Subseries 1: Tape recordings 80 Subseries 2: Hertha Sponer's photograph album, Göttingen, 1920-1933 80 Series IV: Personal Documents and Memorabilia 90 Subseries 1: Documents 90 Subseries 2: Clippings 93 Subseries 3: Biographies and Obituaries 94 Subseries 4: Memorabilia; Scrolls, Certificates, Medals, Mementos 96 Series V: Robert Platzman's Editorial Papers for the "Selected Works of James98 Franck" Series VI: Addenda 103 Subseries 1: Correspondence between James Franck and his nephew and Dr. Heinz104 Kallman Subseries 2: Oversize 105 Descriptive Summary Identifier ICU.SPCL.FRANCK Title Franck, James. Papers Date 1882-1966 Size 20.5 linear feet (29 boxes) Repository Special Collections Research Center University of Chicago Library 1100 East 57th Street Chicago, Illinois 60637 U.S.A. -
On the Shoulders of Giants: a Brief History of Physics in Göttingen
1 6 ON THE SHO UL DERS OF G I A NTS : A B RIEF HISTORY OF P HYSI C S IN G Ö TTIN G EN On the Shoulders of Giants: a brief History of Physics in Göttingen 18th and 19th centuries Georg Ch. Lichtenberg (1742-1799) may be considered the fore- under Emil Wiechert (1861-1928), where seismic methods for father of experimental physics in Göttingen. His lectures were the study of the Earth's interior were developed. An institute accompanied by many experiments with equipment which he for applied mathematics and mechanics under the joint direc- had bought privately. To the general public, he is better known torship of the mathematician Carl Runge (1856-1927) (Runge- for his thoughtful and witty aphorisms. Following Lichtenberg, Kutta method) and the pioneer of aerodynamics, or boundary the next physicist of world renown would be Wilhelm Weber layers, Ludwig Prandtl (1875-1953) complemented the range of (1804-1891), a student, coworker and colleague of the „prince institutions related to physics proper. In 1925, Prandtl became of mathematics“ C. F. Gauss, who not only excelled in electro- the director of a newly established Kaiser-Wilhelm-Institute dynamics but fought for his constitutional rights against the for Fluid Dynamics. king of Hannover (1830). After his re-installment as a profes- A new and well-equipped physics building opened at the end sor in 1849, the two Göttingen physics chairs , W. Weber and B. of 1905. After the turn to the 20th century, Walter Kaufmann Listing, approximately corresponded to chairs of experimen- (1871-1947) did precision measurements on the velocity depen- tal and mathematical physics. -
Father of the Shell Model
CENTENARY Father of the shell model Heidelberg University held a symposium on fundamental physics and the shell model this summer to celebrate the 100th anniversary of the birth of Hans Jensen, the German who created the nuclear shell model with Maria Goeppert-Mayer of Argonne. Hans Jensen (1907–1973) is the only theorist among the three winners from Heidelberg University of the Nobel Prize for Physics. He shared the award with Maria Goeppert-Mayer in 1963 for the development of the nuclear shell model, which they published independently in 1949. The model offered the first coherent expla- nation for the variety of properties and structures of atomic nuclei. In particular, the “magic numbers” of protons and neutrons, which had been determined experimentally from the stability properties and observed abundances of chemical elements, found a natural explanation in terms of the spin-orbit coupling of the nucleons. These numbers play a decisive role in the synthesis of the ele- ments in stars, as well as in the artificial synthesis of the heaviest elements at the borderline of the periodic table of elements. Hans Jensen was born in Hamburg on 25 June 1907. He studied physics, mathematics, chemistry and philosophy in Hamburg and Freiburg, obtaining his PhD in 1932. After a short period in the Hans Jensen in his study at 16 Philosophenweg, Heidelberg German army’s weather service, he became professor of theo- in 1963. (Courtesy Bettmann/UPI/Corbis.) retical physics in Hannover in 1940. Jensen then accepted a new chair for theoretical physics in Heidelberg in 1949 on the initiative Mayer 1949). -
Bruno Touschek in Germany After the War: 1945-46
LABORATORI NAZIONALI DI FRASCATI INFN–19-17/LNF October 10, 2019 MIT-CTP/5150 Bruno Touschek in Germany after the War: 1945-46 Luisa Bonolis1, Giulia Pancheri2;† 1)Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany 2)INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy Abstract Bruno Touschek was an Austrian born theoretical physicist, who proposed and built the first electron-positron collider in 1960 in the Frascati National Laboratories in Italy. In this note we reconstruct a crucial period of Bruno Touschek’s life so far scarcely explored, which runs from Summer 1945 to the end of 1946. We shall describe his university studies in Gottingen,¨ placing them in the context of the reconstruction of German science after 1945. The influence of Werner Heisenberg and other prominent German physicists will be highlighted. In parallel, we shall show how the decisions of the Allied powers, towards restructuring science and technology in the UK after the war effort, determined Touschek’s move to the University of Glasgow in 1947. Make it a story of distances and starlight Robert Penn Warren, 1905-1989, c 1985 Robert Penn Warren arXiv:1910.09075v1 [physics.hist-ph] 20 Oct 2019 e-mail: [email protected], [email protected]. Authors’ ordering in this and related works alternates to reflect that this work is part of a joint collaboration project with no principal author. †) Also at Center for Theoretical Physics, Massachusetts Institute of Technology, USA. Contents 1 Introduction2 2 Hamburg 1945: from death rays to post-war science4 3 German science and the mission of the T-force6 3.1 Operation Epsilon . -
James, Steinhauser, Hoffmann, Friedrich One Hundred Years at The
James, Steinhauser, Hoffmann, Friedrich One Hundred Years at the Intersection of Chemistry and Physics Published under the auspices of the Board of Directors of the Fritz Haber Institute of the Max Planck Society: Hans-Joachim Freund Gerard Meijer Matthias Scheffler Robert Schlögl Martin Wolf Jeremiah James · Thomas Steinhauser · Dieter Hoffmann · Bretislav Friedrich One Hundred Years at the Intersection of Chemistry and Physics The Fritz Haber Institute of the Max Planck Society 1911–2011 De Gruyter An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org Aut ho rs: Dr. Jeremiah James Prof. Dr. Dieter Hoffmann Fritz Haber Institute of the Max Planck Institute for the Max Planck Society History of Science Faradayweg 4–6 Boltzmannstr. 22 14195 Berlin 14195 Berlin [email protected] [email protected] Dr. Thomas Steinhauser Prof. Dr. Bretislav Friedrich Fritz Haber Institute of the Fritz Haber Institute of the Max Planck Society Max Planck Society Faradayweg 4–6 Faradayweg 4–6 14195 Berlin 14195 Berlin [email protected] [email protected] Cover images: Front cover: Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, 1913. From left to right, “factory” building, main building, director’s villa, known today as Haber Villa. Back cover: Campus of the Fritz Haber Institute of the Max Planck Society, 2011. The Institute’s his- toric buildings, contiguous with the “Röntgenbau” on their right, house the Departments of Physical Chemistry and Molecular Physics. -
Mitteilungen 2 Technical and Scientific Journal of the Physikalisch-Technische Bundesanstalt 2012
MITTEILUNGEN 2 TECHNICAL AND SCIENTIFIC JOURNAL OF THE PHYSIKALISCH-TECHNISCHE BUNDESANSTALT 2012 PTR/PTB: 125 Years of Metrological Research MITTEILUNGEN JOURNAL OF THE PHYSIKALISCH-TECHNISCHE BUNDESANSTALT Special Journal for the Economy and Science Official Information Bulletin of the Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Advance copy from: 122nd volume, issue 2, June 2012 Contents PTR/PTB: 125 Years of Metrological Research Chronology 1887–2012 6–61 • Ernst O. Göbel: Preface 3 • Wolfgang Buck: The Intention 4 • Helmut Rechenberg: Helmholtz and the Founding Years 8 • Jörg Hollandt: The “Black Body” and the Quantization of the World 12 • Robert Wynands: The “Kuratorium”, PTB’s Advisory Board 16 • Wolfgang Buck: “New Physics” and a New Structure 20 • Dieter Hoffmann: The Einstein Case 22 • Wolfgang Buck: The Merging of the RMG and the PTR 26 • Dieter Hoffmann: The Physikalisch-Technische Reichsanstalt in the Third Reich 30 • Dieter Hoffmann: The PTR, PTA and DAMG: the Post-war Era 34 • Peter Ulbig, Roman Schwartz: Legal Metrology and the OIML 38 • Wolfgang Schmid: European Metrology 46 • Dieter Kind: The Reunification of Metrology in Germany 50 • Roman Schwartz, Harald Bosse: PTB – A Provider of Metrological Services and a Partner of Industry, Science and Society 56 • Ernst O. Göbel, Jens Simon: PTB at the Beginning of the 21st Century 62 Authors 66 Picture credits 67 Literature 68 Title picture: Together with Werner von Siemens and others, Hermann von Helmholtz campaigned personally for the foundation of the PTR and became its first presi- dent from 1888 to 1894. Imprint The PTB-Mitteilungen are the metrological specialist journal and official infor- mation bulletin of the Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin. -
Hans G. Dehmelt 1922–2017
Hans G. Dehmelt 1922–2017 A Biographical Memoir by D. J. Wineland ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. HANS GEORG DEHMELT September 9, 1922–March 7, 2017 Elected to the NAS, 1978 Hans Georg Dehmelt was a leading figure in high- resolution spectroscopy experiments on simple systems— including isolated electrons and atomic and molecular ions—that led to some of the most precise tests of quantum mechanics ever performed. After serving in World War II, Hans completed his grad- uate studies at Göttingen University, Germany, where he received his Ph.D. in 1950 and worked as a postdoctoral fellow until 1952. Moving to the United States, Hans was a postdoctoral fellow at Duke University from 1952 to 1955 and then took a faculty position at the University of Wash- ington in Seattle, where he was based until his retirement in 2002. It was at Washington that Hans carried out his By D. J. Wineland most celebrated experiments in measuring the magnetic properties of the electron and its antiparticle. Hans was born in 1922, in Görlitz, Germany, to Georg and Asta Dehmelt, but grew up in Berlin during the 1930s. Georg had studied law at the University of Berlin, served as an artillery officer in World War I, and during the Depression worked in real estate to support the family, which included Hans’s sister Brigitte and brother Bernard. As a young boy, Hans played with erector sets, and at the age of 10 he began building and playing with radios, thereby developing skills that would figure in his later experi- ments as a physicist. -
Walther Gerlach (1889–1979): Precision Physicist, Educator and Research Organizer, Historian of Science
Chapter 8 Walther Gerlach (1889–1979): Precision Physicist, Educator and Research Organizer, Historian of Science Josef Georg Huber, Horst Schmidt-Böcking, and Bretislav Friedrich Abstract Walther Gerlach’s numerous contributions to physics include precision measurements related to the black-body radiation (1912–1916) as well as the first- ever quantitative measurement of the radiation pressure (1923), apart from his key role in the epochal Stern-Gerlach experiment (1921–1922). His wide-ranging research programs at the Universities of Tübingen, Frankfurt, and Munich entailed spectroscopy and spectral analysis, the study of the magnetic properties of matter, and radioactivity. An important player in the physics community already in his 20s and in the German academia in his later years, Gerlach was appointed, on Werner Heisenberg’s recommendation, Plenipotentiary for nuclear research for the last six- teen months of the existence of the Third Reich. He supported the effort of the German physicists to achieve a controlled chain reaction in a uranium reactor until the last moments before the effort was halted by the Allied Alsos Mission. The reader can find additional discussion of Gerlach’s role in the supplementary material provided with the online version of the chapter on SpringerLink. After returning from his detention at Farm Hall, he redirected his boundless elan and determination to the reconstruction of German academia. Among his high-ranking appointments in the Federal Republic were the presidency of the University of Munich (1948–1951) and of the Fraunhofer Society (1948–1951) as well as the vice-presidency of the German Science Foun- dation (1949–1961) and the German Physical Society (1956–1957). -
Use Meitner Looks Back
"Of those 'principally involved1 the Soviet Union tential destructive power of the world's atomic stock must, of course, be one. piles; third, allow all peoples of all nations to see that, in this enlightened age, the great Powers of the "I would be prepared to submit to the Congress earth, both of the East and of the West, are interested of the United States, and with every expectation of in human aspirations first rather than in building up approval, any such plan that would, first, encourage the armaments of war; fourth, open up a new channel world-wide investigation into the most effective for peaceful discussion and initiative at least a new peacetime uses of fissionable material, and with the approach to the many difficult problems that must be certainty that the investigators had all the material solved in both private and public conversations if the needed for the conducting of all experiments that world is to shake off the inertia imposed by fear and were appropriate; second, begin to diminish the po- is to make positive progress towards peace. " USE MEITNER LOOKS BACK At the invitation of the Agency, Professor Lise was that life need not be easy provided only it was not Meitner gave recollections of her career in a lecture empty. And this wish I have been granted. That life in Vienna on 20 September 1963. She spoke as follows: has not always been easy - the First and Second World Wars and their consequences have seen to Though I may try and tell you something of the that - while for the fact that it has indeed been full I development of physics since the beginning of our have to thank the wonderful development ,of physics century, I can naturally give you no kind of connected during my lifetime and the great and lovable person or comprehensive report. -
A Selected Bibliography of Publications By, and About, Werner Heisenberg
A Selected Bibliography of Publications by, and about, Werner Heisenberg Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 08 June 2021 Version 1.216 Title word cross-reference (k1 − kn) [Tem91]. + [BKBS93]. $1.40 [Ano68]. 1=2 [BHX96, JKS13, LB72, Man91]. $10.95 [Jor78]. $11.50 [Jor78]. $12.00 [Kra07, Lan08]. $18.50 [Jor78]. $2 [Ano29]. 2 [Hen93]. $27.00 [Bed09]. $27.50 [Cas93a, Wil94]. $28.95 [Klo96]. $29.95 [Fra94, Hay90]. 2pπ [SHI73]. 3 [Isa82]. $35 [Lan02]. $35.00 [Neu99, Par06]. $4.75 [Ano54]. $6.95 [Lib68]. $60.00 [Wat01]. $80.00 [Cas11]. = [BKBS93]. ∗ [BT96]. 238 + [Tur46a, Tur46b]. 2 [BBF 45, DDH41a, DDH42a, DDH42c, DDH89a, + DDH89c, DDH89f, Hei42b, HBB 89, Hei89g, VBN95a, VBN95b, vBN95c]. 4 ∗ [VBN95a, VBN95b, vBN95c]. q [Bec02]. β [Gau14]. C [Pac88, Sud06]. Uh;w(H(4)) [Abd97]. d [VZ09]. η [Hei89k]. H(1)q [CGST91]. H0 [CBS20]. K0 2 d [Pac88]. L [NRS71].√ L2(R ) [RS94]. Lp [LN06]. Λ [Cul05]. ! [DH62]. π [Hei51l]. pq − qp = −1¯h=(2π) [Ber35]. q [AFW94, GH10, Sch99]. S [Bor70, Bor72, Cus86, NRS71]. S2 [Wan98]. S =1=2 [MC92]. su(2; 1) [MP92]. SU(3) [CM02, MP92]. u [dB58]. U(1; 3) ⊗s H(1; 3) [Low97]. VN(G) [CZ81]. 1 2 Vθ [Nel72]. XXZ [LFK99, ZG96]. xy [Pug80]. |kq{K:˜ }(k1 − kn): [λ˜]; Snii [Tem91].