New Mineral Names*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iseite, Mn2mo3o8, a New Mineral from Ise, Mie Prefecture, Japan
Journal of Mineralogical and PetrologicalIseite, a new Sciences, mineral Volume 108, page 37─ 41, 2013 37 LETTER Iseite, Mn2Mo3O8, a new mineral from Ise, Mie Prefecture, Japan * ** ** *** Daisuke NISHIO-HAMANE , Norimitsu TOMITA , Tetsuo MINAKAWA and Sachio INABA * The institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan ** Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan *** Inaba-Shinju Corporation, Minamiise, Mie 516-0109, Japan Iseite, Mn2Mo3O8, a new mineral that is a Mn-dominant analogue of kamiokite, is found in the stratiform ferro- manganese deposit, Shobu area, Ise City, Mie Prefecture, Japan. It is the first mineral species that includes both Mn and Mo as essential constituents. Iseite is iron-black in color and has a submetallic luster. It occurs as ag- gregates up to about 1 mm in size made of minute crystals (<20 μm). Iseite has a zoned structure closely associ- ated with undetermined Mn-Fe-Mo oxide minerals with hexagonal forms, and it occasionally coexists with 3 small amounts of powellite. Its Mohs hardness is 4-5, and its calculated density is 5.85 g/cm . The empirical formula of iseite is (Mn1.787Fe0.193)Σ1.980Mo3.010O8. Its simplified ideal formula is written as Mn2Mo3O8. The min- eral is isostructural with kamiokite (hexagonal, P63mc). The unit cell parameters are a = 5.8052 (3) Å, c = 10.2277 (8) Å, V = 298.50 (4) Å3, and Z = 2. The Rietveld refinement using synchrotron radiation (λ = 0.413 Å) powder XRD data converges to Rwp = 3.11%, and confirms two independent Mn sites—tetrahedral and octahe- IV VI dral—in the crystal structure of iseite, indicating the structure formula Mn Mn Mo3O8. -
George Robert Rossman Feb 15, 1995
George Robert Rossman 20-Jun-2020 Present Position: Professor of Mineralogy Option Representative for Geochemistry Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500 Office Telephone: (626)-395-6471 FAX: (626)-568-0935 E-mail: [email protected] Residence: Pasadena, California Birthdate: August 3, l944, LaCrosse, Wisconsin Education: B.S. (Chemistry and Mathematics), Wisconsin State University, Eau Claire, 1966, Summa cum Laude Ph.D. (Chemistry), California Institute of Technology, Pasadena, 1971 Experience: California Institute of Technology Division of Geological and Planetary Sciences a) 1971 Instructor in Mineralogy b) 1971-1974 Assistant Professor of Mineralogy and Chemistry c) 1974-1977 Assistant Professor of Mineralogy d) 1977-1984 Associate Professor of Mineralogy e) 1984-2008 Professor of Mineralogy f) 2008-2015 Eleanor and John R. McMillan Professor of Mineralogy e) 2015- Professor of Mineralogy Principal Research Interests: a) Spectroscopic studies of minerals. These studies include problems relating to the origin of color phenomena in minerals; site ordering in crystals; pleochroism; metal ions in distorted sites; analytical applications. b) The role of low concentrations of water and hydroxide in nominally anhydrous solids. Analytical methods for OH analysis, mode of incorporation, role of OH in modifying physical and chemical properties, and its relationship to conditions of formation in the natural environment. c) Long term radiation damage effects in minerals from background levels of natural radiation. The effects of high level ionizing radiation on minerals. d) X-ray amorphous minerals. These studies have involved the physical chemical study of bioinorganic hard parts of marine organisms and products of terrestrial surface weathering, and metamict minerals. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Koritnigite Zn(Aso3oh)•
Koritnigite Zn(AsO3OH) • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic, pseudomonoclinic. Point Group: 1. As imperfect platy crystals, to 5 mm, in aggregates. Physical Properties: Cleavage: {010}, perfect; cleavage traces k [001] and k [100], visible on {010}. Tenacity: Flexible. Hardness = 2 D(meas.) = 3.54 D(calc.) = 3.56 Optical Properties: Transparent. Color: Colorless, white, rose. Luster: Pearly on {010}. Optical Class: Biaxial (+). Orientation: X = b; Y ∧ a ' 28◦; Z ∧ c ' 22◦. α = 1.632(5) β = 1.652(3) γ = 1.693(3) 2V(meas.) = 70(5)◦ Cell Data: Space Group: P 1. a = 7.948(2) b = 15.829(5) c = 6.668(2) α =90.86(2)◦ β =96.56(2)◦ γ =90.05(2)◦ Z=8 X-ray Powder Pattern: Tsumeb, Namibia; very close to cobaltkoritnigite. 7.90 (10), 3.16 (9), 3.83 (7), 2.461 (6), 2.186 (5), 3.95 (4), 2.926 (4) Chemistry: (1) (2) (3) As2O5 51.75 54.67 51.46 FeO + Fe2O3 trace 0.05 CoO 4.54 NiO 2.44 ZnO 35.97 25.83 36.44 MgO trace H2O [12.3] [12.47] 12.10 Total [100.0] [100.00] 100.00 2− (1) Tsumeb, Namibia; by electron microprobe, (AsO3OH) confirmed by IR, H2O by difference. • (2) J´achymov, Czech Republic; H2O by difference. (3) Zn(AsO3OH) H2O. Occurrence: A secondary mineral of the lower oxidation zone in a dolostone-hosted polymetallic hydrothermal ore deposit (Tsumeb, Namibia). Association: Tennantite, cuprian adamite, stranskiite, lavendulan, k¨ottigite,tsumcorite, prosperite, o’danielite (Tsumeb, Namibia); erythrite, arsenolite, sphalerite (J´achymov, Czech Republic). -
RINMANITE, Zn2sb2mg2fe4o14(OH)2, a NEW MINERAL SPECIES with a NOLANITE-TYPE STRUCTURE from the GARPENBERG NORRA MINE, DALARNA, SWEDEN
1675 The Canadian Mineralogist Vol. 39, pp. 1675-1683 (2001) RINMANITE, Zn2Sb2Mg2Fe4O14(OH)2, A NEW MINERAL SPECIES WITH A NOLANITE-TYPE STRUCTURE FROM THE GARPENBERG NORRA MINE, DALARNA, SWEDEN DAN HOLTSTAM§ Department of Mineralogy, Research Division, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden KJELL GATEDAL School of Mines and Metallurgy, Box 173, SE-682 24 Filipstad, Sweden KARIN SÖDERBERG AND ROLF NORRESTAM Department of Structural Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden ABSTRACT Rinmanite, ideally Zn2Sb2Mg2Fe4O14(OH)2, is a new mineral species from the Garpenberg Norra Zn–Pb mine, Hedemora, Dalarna, in south-central Sweden, where it occurs in a skarn assemblage associated with tremolite, manganocummingtonite, talc, franklinite, barite and svabite. Rinmanite crystals are prismatic, up to 0.5 mm in length, with good {100} cleavage. The VHN100 –3 is in the range 841–907. Dcalc = 5.13(1) g•cm . The mineral is black (translucent dark red in thin splinters) with a submetallic luster. The mineral is moderately anisotropic and optically uniaxial (–). Reflectance values measured in air are 13.5–12.1% ( = 470 nm), 12.9–11.8% (546 nm), 12.6–11.7 (589 nm) and 12.2–11.3% (650 nm). Electron-microprobe analyses of rinmanite (wt.%) gave MgO 8.97, Al2O3 0.82, MnO 2.47, Fe2O3 34.33, ZnO 14.24, Sb2O5 36.31, H2O 1.99 (calculated), sum 99.13, yielding the empirical formula (Zn1.58Mn0.31Mg0.06)⌺1.95Sb2.03[Mg1.95Fe3.88Al0.15]⌺5.98O14.01(OH)1.99. Rinmanite is hexagonal, space group 3 P63mc, with a 5.9889(4), c 9.353(1) Å, V 290.53(5) Å and Z = 1. -
Kornerupine (Mg, Fe , Al, ☐)10(Si, Al, B)5O21(OH, F)
2+ Kornerupine (Mg, Fe , Al, ☐)10(Si, Al, B)5O21(OH, F) Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals prismatic, to over 20 cm, showing principally {110}, {100}, and {010}, rarely terminated; as radiating aggregates. Physical Properties: Cleavage: Good on {110}. Hardness = 6-7 D(meas.) = 3.29-3.35 D(calc.) = 3.288 Optical Properties: Transparent to translucent and opaque. Color: Colorless, white, blue, green, dark green, greenish yellow, yellow-brown, black. Luster: Vitreous. Optical Class: Biaxial (-); may be pseudouniaxial (-). α = 1.660-1.671 β = 1.673-1.683 γ = 1.674-1.684 2V(meas.) = 3°-48° Pleochroism: X = colorless to green; Y = colorless, pale brownish yellow, pale yellowish green; Z = pale brownish green, green, light amber. Orientation: X = c; Y = a; Z = b. Dispersion: r < v or r > v. Cell Data: Space Group: Cmcm. a = 16.041(3) b = 13.746(2) c = 6.715(2) Z = 4 X-ray Powder Pattern: Mautia Hill, Tanzania. 2.639 (100), 3.03 (80), 3.37 (60), 2.118 (60), 1.503 (40), 2.096 (30), 1.685 (30) Chemistry: (1) (1) SiO2 29.80 MgO 18.96 TiO2 0.06 CaO 0.07 B2O3 1.44 Li2O 0.08 Al2O3 45.85 Na2O 0.04 FeO 1.60 F 0.01 MnO 0.05 H2O [1.21] Total [99.17] (1) Fiskenæsset, Greenland; by electron microprobe, Li, B, F by ion microprobe, H2O calculated from stoichiometry; corresponding to (Mg3.48Fe0.16Li0.04Ca0.01Na0.01Al5.64Ti0.01)Σ=9.35(Si3.67Al1.02 B0.31)Σ=5.00O21[(OH)0.99F0.01]Σ=1.00. -
The Journal of R
The Journal of r Volumemmoie 28 Noemmoi. emmoi2 Apriol 200 2 o Notes from the Laboratory Chocolate- brown Opal Inclutsfbns in Gemstones Natural Amethyst hi1 (iemmoiotiuMl Asstvi.it inn .nij C iem Tcstiiv* I .ahoivitoi'v oi Crrot Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London ECIN 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk President: Professor AT. Collins Vice-Presidents: N. W. Deeks, AE. Farn, RA Howie, D.G. Kent, RK. Mitchell Honorary Fellows: Chen Zhonghui, RA Howie, RT. Liddicoat [nr, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A [obbins, H. Tillander Council of Management: T.J. Davidson, RR Harding, 1. Mercer, J. Monnickendam, M.I. O'Donoghue, E. Stern, 1. Thomson, v.P. Watson Members' Council: AJ. Allnutt, S. Burgoyne, P. Dwyer-Hickey, S.A. Everitt, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.G. Read, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West - D. M. Brady, Scottish - B. Jackson, South West - RM. Slater Examiners: AJ. Allnutt, M.Sc., PhD., FGA, L. Bartlett, B.5c., M.Phil., FGA, DGA, S. Coelho, B.5c., FGA, DGA, Prof. AT. Collins, B.Sc., Ph.D, A.G. Good, FGA, DGA, I. Greatwood, FGA, G.M. Howe, FGA, DGA, S. Hue Williams MA, FGA, DGA, B. Jackson, FGA, DGA, G.B. Jones, B.5c., Ph.D., FGA, Li Li Ping, FGA, DGA, M. Newton, B.Sc.,D.Phil., c.I.E. Oldershaw, B.Sc. -
Kornerupine-Bearing Gneiss from Inanakafy Near Betroka, Madagascar
Bull. Geol. Soc. Finland 41, 79—84 (1969) KORNERUPINE-BEARING GNEISS FROM INANAKAFY NEAR BETROKA, MADAGASCAR OLEG V. KNORRING *, TH. G. SAHAMA ** and MARTTI LEHTINEN ** * Dept. of Geology, Leeds University, U. K. ** Dept. of Geology, University of Helsinki, Finland ABSTRACT This paper presents mineralogical data for the constituents of a kornerupine-bearing gneiss from Inanakafy near Betroka, Madagascar. Chemical analyses are given of the phlogopite, kornerupine, orthopyroxene and cordierite occurring in the rock. The unit cell content of kornerupine is discussed. On a visit to Madagascar in 1967 the first two Phlogopite authors were privileged to obtain a couple of specimens of a highly metamorphic gneiss con- Black phlogopite represents the most abun- taining abundant kornerupine. The rock was dant constituent of the rock. The flakes are said to come from Inanakafy near Betroka. The mostly anhedral. Sometimes, however, prisma- field association of the rock is not known to tic faces and, very rarely, poorly developed the authors. Because more recent data for the pyramidal ones are to be seen. The flakes range Madagascar kornerupine and for its mineral up to 1 cm in diameter. The chemical composi- paragenesis are not available in literature, the tion is given in Table 1. Based on (O, OH, F) = Inanakafy rock was subjected to a mineralogical 24, the unit cell content is as follows: Si 5.67, study. The results will be presented in this paper. Al 2.80, Fe3+ 0.18, Fe2+ 0.32, Mg 5.02, Ti 0.11, The rock contains the following constituents Ca 0.18, Na 0.15, K 1.20, F 0.42, OH 3.14. -
Petrological, Mineralogical, Fluid Inclusion and Stable Isotope Characteristics of the Tuvatu Gold-Silver Telluride Deposit, Upper Sabeto River Area, Fiji
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2002 Petrological, mineralogical, fluid inclusion and stable isotope characteristics of the Tuvatu gold-silver telluride deposit, upper Sabeto River area, Fiji Nancy L. Scherbarth Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Scherbarth, Nancy L., "Petrological, mineralogical, fluid inclusion and stable isotope characteristics of the Tuvatu gold-silver telluride deposit, upper Sabeto River area, Fiji" (2002). Retrospective Theses and Dissertations. 21314. https://lib.dr.iastate.edu/rtd/21314 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Petrological, mineralogical, fluid inclusion and stable isotope characteristics of the Tuvatu gold-silver telluride deposit, upper Sabeto River area, Fiji by Nancy L. Scherbarth A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Geology Program of Study Committee: Paul G. Spry, Major Professor Karl E. Seifert C. Lee Burras Iowa State University Ames, Iowa 2002 11 Graduate College Iowa State University This is to certify that the master's thesis of Nancy Lee Scherbarth has met the thesis requirements of Iowa State University Signatures have been redacted for privacy lll This thesis is dedicated in loving memory to my stepfather, Norman H. Rybka, who always showed support and interest in my educational and personal endeavors. -
The Mineralogy and Geochemistry of the Green Giant Vanadium-Graphite Deposit, S.W
The Mineralogy and Geochemistry of the Green Giant Vanadium-Graphite Deposit, S.W. Madagascar by Veronica Di Cecco A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science Department of Geology University of Toronto © Copyright by Veronica Di Cecco 2013 The Mineralogy and Geochemistry of the Green Giant Vanadium-Graphite Deposit, S.W. Madagascar Veronica Di Cecco Masters of Applied Science Department of Geology University of Toronto 2013 Abstract The purpose of this project was to determine the vanadium bearing ore minerals present at the Green Giant vanadium-graphite deposit in the S.W. of Madagascar owned by Toronto based Energizer Resources Inc. The rocks are mainly quartzofeldspathic gneiss, with alternating bands of hornblende biotite gneiss, marble, granitoid, and amphibolite. Using X-ray diffraction, electron microprobe analysis, and Raman spectroscopy, the vanadium bearing minerals were identified as vanadium bearing rutile, schreyerite, berdesinskiite, karelianite, a member of the karelianite-eskolaite solid solution, V-bearing phlogopite, V-bearing pyrrhotite, V-bearing pyrite, goldmanite, dravite, uvite, actinolite, and unidentified “V-sulphide 1,” “V-sulphide 2,” “V- silicate 1.” The mineral assemblage present at Green Giant deposit is quite similar to that at Lake Baikal, Russia. Vanadium-bearing phlogopite is primary vanadium host in the deposit, although V-bearing oxides contribute substantially to the total V concentration, even where present in very trace amounts. ii Acknowledgments Thank you to Professors E.T.C Spooner and K. Tait for your assistance and guidance. Thanks to Brendt Hyde, Vincent Vertolli, Katherine Dunnell and Tony Steede at the Royal Ontario Museum Department of Natural History, Mineralogy section, Professor Mike Gorton, Colin Bray, George Kretchman, Allison Enright, Christopher White and Beata Opalinska at the University of Toronto Department of Earth Sciences, and Craig Scherba at Energizer Resources Inc. -
The Crystal Structure of the Mineral Scholzite and a Study of the Crystal
\ I 7'1,71 ¡1 :), THE CRYSTAL STRUCTURE OF THE MINERAL SCHOLZITE AND A STUDY OF THE CRYSTAL CHEMISTRY OF SOME RELATED PHOSPHATE AND ARSENATE MINERALS A thesis submitted for the Degree of Doctor of PhilosoPhY at the University of Adelaide in April, 1975 by R0DERICK JEFFREY HILL, B.Sc. (Hons.) Department of Geology and Mineralogy Au/¿tr¡'t ,,! /'/,".'','-'"' ' TABLE OF CONTENTS Page SUMMARY (i) STATEMENT OF ORIGINATITY (ii) ACKNOWLEDGEMENTS (iii) GENERAL INTRODUCTION I CHAPTER 1 TIIE GEOI.OGY AbID MINERALOGY OF REAPHOOK HILL, SOUTTI AUSTR.ALIA 2 1.1 ABSTR,ACT 2 r.2 INTRODUCTTON 2 1.3 GEOIÐGICAL SETTING 3 I.4 EXPERTMENTAI TECHNIQT ES 5 1.5 THE MAJOR PHOSPHATE MTNERALS 6 1.5.1 Tarbuttite - Znr(po4) (OH) 6 1.5.2 Parahopeite ZnrZn(pOn) - Z.4HZo 9 I.5.3 Scholzite CaZnU(pO4) - 2.2H2O 9 1.5.4 Zincian Collinsite Car(Mg,Zn) (pO4) - 2.2H2O 15 1.6 ASPECTS OF EHE CRYSTA¡ CHEMISTRY OF THE MAJOR PHOSPHATE MINERALS 19 L.7 PARAGENESIS 23 1.7.1 Major Minerals 23 L.7.2 Other lvlinerals 26 1.7.3 Conclusions 27 CHAPTER 2 TIIE CRYSTAI STRUCTURE OF SCHOLZITE 30 2.L ABSTRACT 30 2.2 INTRODUCTION 32 2.3 DATA COLLECTION AND ÐATA REDUCTION 32 2.4 DISCUSSION OF TITE INTENSITY DISTRIBUTION 35 2.4.L Subcell Structure and pseudosynunetry 35 2.4.2 Dete::mination of the True Syrnmetry 4L 2.4.3 Structural Disorder 4l 2.5 STRUqrURE SOLUTION AND REFINEMENT OF THE AVER.AGE ST'BCELL 52 2.6 DESCRIPTION AND DISCUSSION OF THE AVERAGE ST]BCELL STRUCTURE 60 2.6.I Topology 60 2.6.2 Disorder 65 2.6.3'iThermal" parameters 67 2.7 STRUCTURE SOLUTION AND REFTNEMENT OF TITE },IAIN CELL