ADAMITE from the OJUELA MINE, MAPIMI, MEXICO* Menv E. Mnosbl Wrrn Norns on Rhe Occunnpwce Sv Dew E

Total Page:16

File Type:pdf, Size:1020Kb

ADAMITE from the OJUELA MINE, MAPIMI, MEXICO* Menv E. Mnosbl Wrrn Norns on Rhe Occunnpwce Sv Dew E ADAMITE FROM THE OJUELA MINE, MAPIMI, MEXICO* Menv E. MnosBl wrrn Norns oN rHE Occunnpwce sv Dew E. Mevpns2 eup FnnNcrs A. Wrsn3 Alsrnect Adamite of unusually pure corrposition is described from a new locality, the Oiuela mine at Mapimi, Durango, Mexico. A chemical analysis is given together with measure- ments of the morphological axial rutio (a:b:c:O 9753:1:0.7055), the unit cell dimensions (os:8.30, bo:8.51, co:6.04 A), the specific gravity (4.435) and optical constants (X :1.722,Y:1.742, Z:1.763,2V (meas.)88"1-2'). Analysis gaveZnO 56.78,AsrOs 38.96, SiO, 0.26, H:O 3.53; total 99 53. Spectrographic analysis also revealed Cu (-g'1;, p5 (-0.1), Fe (001-0.1), Mg (0.01-0.1),Al (-9.91;, Ca (-6.91;, Ag (0.001-001) and Ga (-0.001). Cnvsrerr,ocRAPHY Most of the crystals of Mapimi adamite occur merged together as radiating crusts or as fan-shaped rosettes on a matrix of limonite. A few Frc. 1. Adamite crystal from Mapimi showing all the forns observed. single-crystals,however, were found. The crystals are elongated parallel to [010]. Most crystals were attached at one end of the &-axis;only three doubly terminated crystals could be found. These indicated holohedral symmetry. A test for piezoelectricity by the cathode-ray oscilloscope method gave negative results. The crystals range in size from j mm. to 8 mm. along [010]. The crystals are rather simple in habit. The form d{1011is dominant and is truncated by t1120\ and ml 110]. On some crystals the prism hl2I\l occurs,but only as very small faceswhich gave poor signalsdur- ing goniometric measurement,and D{010} was observedin several in- stances.The faces in the [010] zone are highly striated parallel to [010], producing a train of signals which made accurate measurementsimpos- * Contribution from the Department of Mineralogy and Petrography, Ilarvard Uni- versity, No. 298. 1 Boston University, Boston, Massachusetts. 2 Harvard University, Cambridge, Massachusetts. 3 American Smelting and Refining Co. M9 450 MARY E. MROSE, DAN E. MAYERS AND FRANCIS A. WISE sible. A somewhat idealized drawing showing all of the forms observed is given in Fig. 1. Although a great number of crystals were carefully examined, only nine of the very best of these were selectedfor measurement (Table 1). TesLE 1. Aoeurrl' : Mnasunno eNo Cer,culamn ANcr-ns No No Measured Range Forms of of Qual- itv* XIs M il"'l6zpz 1 1 VS c 9 18 M B 9 18 S D 45"11,-46 32 9 14 VS r, 63 42 -64 t4 9 36 L B 53022'-5+o59' * A equals first quality The linear elementsderived from these measurements(a:b:c:0.9753: 1:0.7056) are identical with those derived from c-ray Weissenberg measurementson the samecrystals (a: b: c:O.9753 : 1 : 0.7055). A number of other investigators have reported elements for adamite from other localities and these are listed in Table 2. TnrrB 2. ReponrBo Monpnor,ocrclr, Elrupxrs or Areurre Investigator Locality Axial Ratio 1. Des Cloizeau(1878) Chanarcillo, Chile dibie:0 .9733i1:0. 7158 2. Aloisi (1909) Mte. Valerio, Italy a:b:c:0 .9736'.1:0. 7013 3. Staples(1935) GoId Hill, Utah oib:c :0.97 42i1:0. 7095 4. Mrose (1948) Mapimi, Mexico a:bic:0 .975311 :0.7055 5. Rosickf(1910) Thasos, Turkey atb.c :0.97 64iI i0.7049 6. Ungemach(1921) Laurium, Greece ai b: c : 0.977 01 1 t0.7 124 7. Des Cloizeauand Lacroix (1e10) Laurium, Greece aibic:o .9784:.l:0.7ll7 8. Kukharenko(1939) Northwestern Balkhash region (lilac variety) a;btc:0 .9787:l:,0 .7128 9. Palache(priv. comm.;1921) Laurium, Greece a:bi c :0.9812i1 :0. 7108 10. Laspeyres(1878) Laurium (emerald-green; cuprian) aibi c:0.9958i1 :0. 6848 Laurium (colorless) a:btc :0.99s8i I io.717 6 11. Murdoch (1936) Chloride Clifi, Calif. (colorless) aibic:0.996:1:0.718 The wide variation observed appears to be due largely to the poor quality of the measured crystals. In part, however, the difierencesmay be due to variation in chemical composition such as substitution of Cu or Co for Zn or of (POa)for (AsOn),but no definite correlations could be ADAMITE FROM MAPIMI, MEXICO r+J -t established.Laspeyres (1878) has shown that the angles of the adamite crystals from Laurium vary measurably with the presenceof Cu in sub- stitution for Zn. The arithmetical averageof the linear elementsreported, after eliminating those of Laspeyres (1878), Murdoch (1936) and Des Cloizeau (1878), which are relatively far out of line with the others, is a:b:c:0.9769:1:0.7086.An angle-tablefor the forms observedon the Mapimi crystals calculated for these elementsis given in Table 3. Tasrn 3. AlAltrr: ANcr.r Teslr Orthorhombic; dipyramidal-2 /m 2/m 2/nt a:bic:0.9769:1:0.7086; po:qoiro:o.7254:0.7086:1 Qt:r i fu: 0 .97 69 : 1. 37 86 : | ; rzifzi qz: | .4ll2 : I 0236i I Forms: Q p:C 6r pl--A 6z pz:B b 010 0'00' 90000, 90'00' 90'00' 0'00' t 120 27 06+ 90 00 90 00 62 53+ 0'00' 27 06+ m 710 45 40i 90 00 90 00 M 19+ 0 00 45 40' h 2r0 63 58 90 00 90 00 26 02 000 6358 d r0l 90 00 35 57; 0 00 54 02+ 5402+ 90 00 Pnvsrc.q.rPnoprnrrrs Cleavage[101] good. The {010} cleavagereported by Staples(1935) on crystals from Gold Hill, Utah, was not observed. Fracture un- even. Brittle. Hardness3+. G.:4.435 +0.005 (an average of measure- ments of 8 difierent crystals on the microbalance); 4.435 (calculated). The specific gravity found for the Mapimi adamite, which is essentially pure Zn2(AsOrOH) is comparable to the values 4.475 and 4.484 re- ported by de Schulten (1903) for the pure artificial compound and by Rosickf (1910) for pure adamite from Thasos, Turkey. Lower values, rangingbetween 4.319 and 4.35,have beenfound for material containing Cu, Co or Fe" in substitutionfor Zn. Luster vitreous. Small crystalson the specimensare nearly colorless,while the larger crystals are greenish- yellow; all are transparent. The Mapimi adamite fluoresces a bright lemon yellow with a pale lemon yellow phosphorescencein short-wave ultraviolet radiation; a much weaker reaction is given in long-wave ultra- violet and in r-rays (pale bluish-green). Specimensfrom other localities react variously. A blue-green Laurium specimen gave a weak greenish fluorescencein both long- and short-wave ultraviolet; bluish-green, in K-rays. Negative results were obtained with a colorlessspecimen from Laurium, a blue-greenspecimen from Gold Hill, Utah, cobaltian material from Cap Garonne, France, and Tsumeb, Africa, and with cuprian ma- terial from Tsumeb. 452 MARY E, MROSE, DAN E, MAYERS AND FRANCIS A. WISE -;j ?. aE.q1 ^ =Y - d MJ hF 2'* 95€ .3i*, * 'Ac=-.o^9^ --i -i -i ri 3 ;; +t +t +l \llo u =t Nh h **- 9 -- +r:9 o o o r/ /\ N € . .n \ 6€ +t +l +l J I ,Hj i --* X ^ N++ il f9<* 3 x -6- E s 888- 3* ???" HE ii A^ : s B f 3S g;E i :::l,i EE9* p : ooo rl 9 o o P 9= E {,3r:i H9lhr >9 * .'- lRFii5, s-vs.'x' F J -J-jxI 333.59 €€o fr F" 833- p E F A ooo il o o E ! +r+r+r N.: o u aq E]' ppsi I €qEIs u Jr.ix'.' E=9,9R F F ooo6:1 nnnr; o R$3 ? s -.; r' ..i x i e A -- .i.: o a -.Uo."9Eix>sE'E .9E F.X* CJ UlH dN ADAMITE FROM MAPIMI, MEXICO 453 Oprrcar Pnopnnrtps The optical properties of the Mapimi adamite are cited in Table 4 in comparison with those reported on material from other localities. The wide variation in the indices of refraction is due to variation in the chem- ical composition of the crystals, as is clearly shown by comparison of the data on the cuprian and cobaltian material from Tsumeb, but since chemical analyses are lacking in most instances the nature of the rela- tionship is not clear. X-Rav Srunv A selectedsingle-crystal of the Mapimi adamite was studied by the Weissenberg r-ray method. The unit cell dimensions, given in Table 5, are in close agreement with those obtained by Strunz (1936) and Kok- koros (1937) on adamite from Thasos and Laurium. The Weissenberg films exhibited orthorhombic centro-symmetry. If the crystal class is TAslo 5. UNrr Cnr,r Druoxsror.rsol Almrrrn 1 .t Adamite (Mapimi) Adamite (Thasos) Adamite (Laurium) (Mrose, 1948) (Strunz, 1936) (Kokkoros, 1937) &o 8.30+0.02 8.32 8.31 bo 8.51 + 0.02 8.54 851 Co 6.04+ 0.02 6.08 6.06 asibsics 0.975:1:0.706 0.974:l:0.712 0.977:lto 712 ao/co 1.38 1.37 1.37 Vo 427 431 429 Space group Pnnm Pnnm Pnnm taken to be dipyramidal, as is indicated by the form development (sum- marized by Ungemach (1921)) and by the absenceof piezoelectricity, the spacegroup is establishedby the diffraction effects as Pnnm in conform- ance with that earlier reported. The spacing data obtained from a powder photograph of the Mapimi material are listed in Table 6. Photographs of the adamite pattern and of the isostructural species olivenite, Cuz(AsOd(OH), and libethenite, Cuz(POa)(OH),are given by Richmond (1940).
Recommended publications
  • Durango-Silverton Narrow Gauge Railroad F) - ~7~ - File I a Study NPS :J:Ntl,-Fl II T
    I I Durango-Silverton Narrow Gauge Railroad f) - ~7~ - file I a study NPS :J:ntl,-fl II t. Pr~ pt>"#£' - UNITED STATES DEPARTME NT OF THE INTERIOR NATIONAL PARK SERVICE 1 ON MICROFILM 1\WE IIElUIIH o: ~ liii'ORIIMTIOH OOC1Bl I I I I I. DURANGO - SILVERTON NARROW GAUGE RAILROAD 1\ A Study I I I I I March 1962 I I I. I' I I Department of the Interior National Park Service Region Two Office I Omaha, Nebraska I I I ' I .I I I. I INTRODUCTION I This study is the story of a railroad line and an account of a I chain of recent events which have complicated that study. It describes I. in text and picture the Durango to Silverton narrow gauge line of the Denver and Rio Grande Western Railroad, i t s operating equipment and I facilities, its scenic and historic surroundings . The significance of this narrow gauge railroad in our Nation's history is pointed out and a case is made for its preservation. The objectives of such preservation • 1: are outlined and some possible solutions are briefed. I I I I I I • I I I \, . ._.. ·---- ~~----------------------~ I y M • w 0 I ...... -- ---- ----.,--- ----- ----------~---- I I I T L 0 R A D 0 A H ~ c 0 OOLORAOO NATIONAL MONUMI:NT Colorado I Sprin9s CAPITOL Rill: I" NATI ON"L I MONUMENT ORI!AT ~ SANO O UNI:8 I NATION& I.,. I Si I OMO NUMI!:NT 81tYc;E C ANYON NATIONAL rf PAIUC 0 0 0 I NAVAJO NAT IONAl.
    [Show full text]
  • L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
    American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Koritnigite Zn(Aso3oh)•
    Koritnigite Zn(AsO3OH) • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic, pseudomonoclinic. Point Group: 1. As imperfect platy crystals, to 5 mm, in aggregates. Physical Properties: Cleavage: {010}, perfect; cleavage traces k [001] and k [100], visible on {010}. Tenacity: Flexible. Hardness = 2 D(meas.) = 3.54 D(calc.) = 3.56 Optical Properties: Transparent. Color: Colorless, white, rose. Luster: Pearly on {010}. Optical Class: Biaxial (+). Orientation: X = b; Y ∧ a ' 28◦; Z ∧ c ' 22◦. α = 1.632(5) β = 1.652(3) γ = 1.693(3) 2V(meas.) = 70(5)◦ Cell Data: Space Group: P 1. a = 7.948(2) b = 15.829(5) c = 6.668(2) α =90.86(2)◦ β =96.56(2)◦ γ =90.05(2)◦ Z=8 X-ray Powder Pattern: Tsumeb, Namibia; very close to cobaltkoritnigite. 7.90 (10), 3.16 (9), 3.83 (7), 2.461 (6), 2.186 (5), 3.95 (4), 2.926 (4) Chemistry: (1) (2) (3) As2O5 51.75 54.67 51.46 FeO + Fe2O3 trace 0.05 CoO 4.54 NiO 2.44 ZnO 35.97 25.83 36.44 MgO trace H2O [12.3] [12.47] 12.10 Total [100.0] [100.00] 100.00 2− (1) Tsumeb, Namibia; by electron microprobe, (AsO3OH) confirmed by IR, H2O by difference. • (2) J´achymov, Czech Republic; H2O by difference. (3) Zn(AsO3OH) H2O. Occurrence: A secondary mineral of the lower oxidation zone in a dolostone-hosted polymetallic hydrothermal ore deposit (Tsumeb, Namibia). Association: Tennantite, cuprian adamite, stranskiite, lavendulan, k¨ottigite,tsumcorite, prosperite, o’danielite (Tsumeb, Namibia); erythrite, arsenolite, sphalerite (J´achymov, Czech Republic).
    [Show full text]
  • First Majestic Silver Corp. San Dimas Silver/Gold Mine Durango and Sinaloa States, Mexico NI 43-101 Technical Report on Mineral
    First Majestic Silver Corp. San Dimas Silver/Gold Mine Durango and Sinaloa States, Mexico NI 43-101 Technical Report on Mineral Resource and Mineral Reserve Estimates Qualified Persons: Ramón Mendoza Reyes, P.Eng. Joaquín Merino, P.Geo. María Elena Vázquez, P.Geo. Persio P. Rosario, P.Eng. Report Prepared For: First Majestic Silver Corp. Report Effective Date December 31, 2020 CERTIFICATE OF QUALIFIED PERSON Ramón Mendoza Reyes, P.Eng. Vice President of Technical Services First Majestic Silver Corp. 925 West Georgia Street, Suite 1800 Vancouver, BC, Canada, V6C 3L2 I, Ramón Mendoza Reyes, P.Eng., am employed as Vice President of Technical Services with First Majestic Silver Corp. (First Majestic). This certificate applies to the technical report entitled “San Dimas Silver/Gold Mine, Durango and Sinaloa States, Mexico, NI 43-101 Technical Report on Mineral Resource and Mineral Reserve Estimates” that has an effective date of December 31, 2020. I graduated from the National Autonomous University of Mexico with a Bachelor of Science Degree in Mining Engineering in 1989, and also obtained a Master of Science Degree in Mining and Earth Systems Engineering from the Colorado School of Mines in Golden, Colorado, in 2003. I am a member of the Engineers and Geoscientists British Columbia (P.Eng. #158547). I have practiced my profession continuously since 1990, and have been involved in precious and base metal mine projects and operations in Mexico, Canada, the United States of America, Chile, Peru, and Argentina. As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (NI 43–101).
    [Show full text]
  • Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits
    Records of the Australian Museum (2001) Vol. 53: 49–56. ISSN 0067-1975 Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits MARTIN J. CRANE, JAMES L. SHARPE AND PETER A. WILLIAMS School of Science, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia [email protected] (corresponding author) ABSTRACT. Intense weathering of copper orebodies in New South Wales and Queensland, Australia has produced an unusual suite of secondary copper minerals comprising chrysocolla, azurite, malachite and the phosphates libethenite and pseudomalachite. The phosphates persist in outcrop and show a marked zoning with libethenite confined to near-surface areas. Abundant chrysocolla is also found in these environments, but never replaces the two secondary phosphates or azurite. This leads to unusual assemblages of secondary copper minerals, that can, however, be explained by equilibrium models. Data from the literature are used to develop a comprehensive geochemical model that describes for the first time the origin and geochemical setting of this style of economically important mineralization. CRANE, MARTIN J., JAMES L. SHARPE & PETER A. WILLIAMS, 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53(1): 49–56. Recent exploitation of oxide copper resources in Australia these deposits are characterized by an abundance of the has enabled us to examine supergene mineral distributions secondary copper phosphates libethenite and pseudo- in several orebodies that have been subjected to intense malachite associated with smaller amounts of cornetite and weathering.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]
  • On the Symmetry of Tsumcorite Group Minerals Based on the New Species Rappoldite and Zincgartrellite
    Mineralogical Magazine, December 2000, Vol. 64(6), pp. 1109-1126 On the symmetry of tsumcorite group minerals based on the new species rappoldite and zincgartrellite H. EFFENBERGERI,*, W. KRAUSE2, H.-J. BERNHARDT3 AND M. MARTIN4 I Institut fUr Mineralogie und Kristallographie, Universitat Wien, Althanstra~e 14, A-I090 Vienna, Austria 2 Henriette-Lott-Weg 8, 0-50354 Hiirth, Gennany 3 Ruhr-Universitat Bochum, Institut fUr Mineralogie, Universitatsstraf.le 150, 0-44780 Bochum, Germany 4 Heinrich-Zille-Weg 8, 0-09599 Freiberg, Germany ABSTRACT Rappoldite, the Co-analogue of helmutwinklerite, and zincgartrellite, the Zn-dominant analogue of gartrellite, are two new members of the tsumcorite group. Both minerals are triclinic, their structures are closely related to the parent structure, i.e. the 'tsumcorite type' (C2/m, Z = 2). The lower symmetry is caused by two different crysta,l-ch~mical requirements. Order :Bhenomen~+ o.f the hydrogen bonds cause the 'helmutwmklente type (PI, Z = 4), ordenng of Cu and Fe' IS responsible for the 'gartrellite type' (PI, Z = I). Rappoldite was found on samples from the Rappold mine near Schneeberg, Saxony, Gennany. The new species fonns red to red-brown prismatic and tabular crystals up to I mm long. Deale. = 5.28 g/cm3. 2Vz = 85(5r, nx = 1.85 (calc.), ny = 1.87(2) and nz = 1.90(2); dispersion is distinct with r > v; orientation is Y -II [120] and X - c. The empirical fonnula derived from electron microprobe analyses II is (Pb 1.01Cao.ol h: 1.02(COO99Nio 62ZnO.35FeO.02h:1.9S[(As04)199(S04)001h:2.00[(OH)0.02(H20) I 98h:2.00 or Pb(Co,Nih(As04h.2H20.
    [Show full text]
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • Geology and Mineralogy of the Ape.X Washington County, Utah
    Geology and Mineralogy of the Ape.x Germanium-Gallium Mine, Washington County, Utah Geology and Mineralogy of the Apex Germanium-Gallium Mine, Washington County, Utah By LAWRENCE R. BERNSTEIN U.S. GEOLOGICAL SURVEY BULLETIN 1577 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1986 For sale by the Distribution Branch, Text Products Section U.S. Geological Survey 604 South Pickett St. Alexandria, VA 22304 Library of Congress Cataloging-in-Publication Data Bernstein, Lawrence R. Geology and mineralogy of the Apex Germanium­ Gallium mine, Washington County, Utah (U.S. Geological Survey Bulletin 1577) Bibliography: p. 9 Supt. of Docs. no.: I 19.3:1577 1. Mines and mineral resources-Utah-Washington County. 2. Mineralogy-Utah-Washington County. 3. Geology-Utah-Wasington County. I. Title. II. Series: United States. Geological Survey. Bulletin 1577. QE75.B9 no. 1577 557.3 s 85-600355 [TN24. U8] [553' .09792'48] CONTENTS Abstract 1 Introduction 1 Germanium and gallium 1 Apex Mine 1 Acknowledgments 3 Methods 3 Geologic setting 3 Regional geology 3 Local geology 3 Ore geology 4 Mineralogy 5 Primary ore 5 Supergene ore 5 Discussion and conclusions 7 Primary ore deposition 7. Supergene alteration 8 Implications 8 References 8 FIGURES 1. Map showing location of Apex Mine and generalized geology of surrounding region 2 2. Photograph showing main adit of Apex Mine and gently dipping beds of the Callville Limestone 3 3. Geologic map showing locations of Apex and Paymaster mines and Apex fault zone 4 4. Scanning electron photomicrograph showing plumbian jarosite crystals from the 1,601-m level, Apex Mine 6 TABLES 1.
    [Show full text]
  • Guadalupe Victoria Estado De Durango : Cuaderno Estadístico Municipal 1998
    Guadalupe Victoria. Estado de Durango. Cuaderno Estadístico Municipal. Publicación única. Primera edición. 176 p.p. Aspectos Geográficos, Estado y Movimiento de la Población, Vivienda y Servicios Básicos, Salud, Educación, Seguridad y Orden Público, Empleo, Información Económica Agregada, Agricultura, Ganadería, Industria, Comercio, Turismo, Transportes y Comunica­ ciones, Ampliación y Conservación de la Infraestructura y Finanzas Públicas. OBRAS AFINES O COMPLEMENTARIAS SOBRE EL TEMA: Anuarios Estadísticos de los Estados. SI REQUIERE INFORMACION MAS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICI 'lSE A: Instituto Nacional de Estadística, Geografía e Informática Dirección General de Difusión Dirección de Atención a Usuarios y Comercialización Av. Héroe de Nacozari Núm. 2301 Sur Fracc. Jardines del Parque, CP 20270 Aguascalientes, Ags. México TELEFONOS: 01 800 490 5900 Y 01 (49) 182998 http://www.inegi.gob.mx [email protected] DR © 1999, Instituto Nacional de Estadística, Geografía e Informática Edificio Sede Av. Héroe de Nacozari Núm. 2301 Sur Fracc. Jardines del Parque, CP 20270 Aguascalientes, Ags. htlp://www.inegi.gob.mx [email protected] Guadalupe Victoria Estado de Durango Cuaderno Estadístico Municipal Edición 1998 Impreso en México ISBN 970-13-2272-X Presentación El Instituto Nacional de Estadística, Geografía e Informática (INEGI) y el H. Ayuntamiento de Guadalupe Victoria, presentan el Cuaderno Estadístico Municipal de Guadalupe Victoria, Estado de Durango, Edición 1998, documento que fonna parte de una serie que comprende a municipios seleccionados del país y a las delegacio­ nes del Distrito Federal, proyecto que sustituye y da continuidad al de Cuademos de Información Básica para la Planeación Municipal (o Delegacional) promovido también por eIINEGI.
    [Show full text]
  • Prontuario De Información Geográfica Municipal De Los Estados Unidos Mexicanos Gómez Palacio, Durango
    Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Gómez Palacio, Durango Clave geoestadística 10007 Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Gómez Palacio, Durango Ubicación geográfica Coordenadas Entre los paralelos 25° 32’ y 25° 54’ de latitud norte; los meridianos 103° 19’ y 103° 42’ de longitud oeste; altitud entre 1 100 y 1 800 m. Colindancias Colinda al norte con los municipios de Mapimí, Tlahualilo y el estado de Coahuila de Zaragoza; al este con el estado de Coahuila de Zaragoza; al sur con el estado de Coahuila de Zaragoza y el municipio de Lerdo; al oeste con los municipios de Lerdo y Mapimí. Otros datos Ocupa el 0.7% de la superficie del estado Cuenta con 344 localidades y una población total de 304 624 habitantes http://mapserver.inegi.org.mx/mgn2k/ ; 25 de marzo de 2010. Fisiografía Provincia Sierras y Llanuras del Norte (96.8%) y Sierra Madre Oriental (3.2%) Subprovincia Del Bolsón de Mapimí (96.8%) y Sierras Transversales (3.2%) Sistema de topoformas Llanura aluvial salina (71.6%), Llanura aluvial (24.7%), Sierra compleja (3.1%), Llanura aluvial de piso rocoso o cementado (0.5%) y Sierra compleja con lomerío (0.1%) Clima Rango de temperatura 18 – 22°C Rango de precipitación 100 - 400 mm Clima Muy seco semicálido con lluvias en verano (100%) Geología Periodo Cuaternario (89.9%), Cretácico (1.7%), Terciario (0.9%) y Paleógeno (0.1%) Roca Suelo: aluvial (88.9%) y eólico (1.0%) Sedimentaria: caliza (1.7%) y conglomerado (0.1%) Ígnea intrusiva: granito (0.9%) Edafología Suelo dominante Calcisol (35.4%), Regosol (28.9%), Solonetz (11.4%), Solonchak (9.0%), Vertisol (4.2%), Leptosol (2.1%), Luvisol (0.9%), No aplicable (0.4%) y Fluvisol (0.3%) Hidrografía Región hidrológica Nazas – Aguanaval (100%) Cuenca R.
    [Show full text]