Iseite, Mn2mo3o8, a New Mineral from Ise, Mie Prefecture, Japan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
George Robert Rossman Feb 15, 1995
George Robert Rossman 20-Jun-2020 Present Position: Professor of Mineralogy Option Representative for Geochemistry Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500 Office Telephone: (626)-395-6471 FAX: (626)-568-0935 E-mail: [email protected] Residence: Pasadena, California Birthdate: August 3, l944, LaCrosse, Wisconsin Education: B.S. (Chemistry and Mathematics), Wisconsin State University, Eau Claire, 1966, Summa cum Laude Ph.D. (Chemistry), California Institute of Technology, Pasadena, 1971 Experience: California Institute of Technology Division of Geological and Planetary Sciences a) 1971 Instructor in Mineralogy b) 1971-1974 Assistant Professor of Mineralogy and Chemistry c) 1974-1977 Assistant Professor of Mineralogy d) 1977-1984 Associate Professor of Mineralogy e) 1984-2008 Professor of Mineralogy f) 2008-2015 Eleanor and John R. McMillan Professor of Mineralogy e) 2015- Professor of Mineralogy Principal Research Interests: a) Spectroscopic studies of minerals. These studies include problems relating to the origin of color phenomena in minerals; site ordering in crystals; pleochroism; metal ions in distorted sites; analytical applications. b) The role of low concentrations of water and hydroxide in nominally anhydrous solids. Analytical methods for OH analysis, mode of incorporation, role of OH in modifying physical and chemical properties, and its relationship to conditions of formation in the natural environment. c) Long term radiation damage effects in minerals from background levels of natural radiation. The effects of high level ionizing radiation on minerals. d) X-ray amorphous minerals. These studies have involved the physical chemical study of bioinorganic hard parts of marine organisms and products of terrestrial surface weathering, and metamict minerals. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
RINMANITE, Zn2sb2mg2fe4o14(OH)2, a NEW MINERAL SPECIES with a NOLANITE-TYPE STRUCTURE from the GARPENBERG NORRA MINE, DALARNA, SWEDEN
1675 The Canadian Mineralogist Vol. 39, pp. 1675-1683 (2001) RINMANITE, Zn2Sb2Mg2Fe4O14(OH)2, A NEW MINERAL SPECIES WITH A NOLANITE-TYPE STRUCTURE FROM THE GARPENBERG NORRA MINE, DALARNA, SWEDEN DAN HOLTSTAM§ Department of Mineralogy, Research Division, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden KJELL GATEDAL School of Mines and Metallurgy, Box 173, SE-682 24 Filipstad, Sweden KARIN SÖDERBERG AND ROLF NORRESTAM Department of Structural Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden ABSTRACT Rinmanite, ideally Zn2Sb2Mg2Fe4O14(OH)2, is a new mineral species from the Garpenberg Norra Zn–Pb mine, Hedemora, Dalarna, in south-central Sweden, where it occurs in a skarn assemblage associated with tremolite, manganocummingtonite, talc, franklinite, barite and svabite. Rinmanite crystals are prismatic, up to 0.5 mm in length, with good {100} cleavage. The VHN100 –3 is in the range 841–907. Dcalc = 5.13(1) g•cm . The mineral is black (translucent dark red in thin splinters) with a submetallic luster. The mineral is moderately anisotropic and optically uniaxial (–). Reflectance values measured in air are 13.5–12.1% ( = 470 nm), 12.9–11.8% (546 nm), 12.6–11.7 (589 nm) and 12.2–11.3% (650 nm). Electron-microprobe analyses of rinmanite (wt.%) gave MgO 8.97, Al2O3 0.82, MnO 2.47, Fe2O3 34.33, ZnO 14.24, Sb2O5 36.31, H2O 1.99 (calculated), sum 99.13, yielding the empirical formula (Zn1.58Mn0.31Mg0.06)⌺1.95Sb2.03[Mg1.95Fe3.88Al0.15]⌺5.98O14.01(OH)1.99. Rinmanite is hexagonal, space group 3 P63mc, with a 5.9889(4), c 9.353(1) Å, V 290.53(5) Å and Z = 1. -
Design Rules for Discovering 2D Materials from 3D Crystals
Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point. -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
Minerals Localities
MINERALS and their LOCALITIES This book is respectfully dedicated to the memory of Dr. John Sinkankas for his kind initiative and support to publish this book in English version. MINERALS and their LOCALITIES Jan H. Bernard and Jaroslav Hyršl Edited by Vandall T. King © 2004 by Granit, s.r.o. © 2004 Text by Jan H. Bernard and Jaroslav Hyršl © 2004 Photos by Jaroslav Hyršl (463), Studio Granit (534), Jaromír Tvrdý (34), Petr Zajíček (4) The photographed specimens are from the collections of both authors as well as from many other collections. The autors are grateful to all institutions and persons who allowed to photograph their specimens for this book. Front cover photos: Turquoise, polished, 55 mm, Zhilandy, Kazakhstan, G Galena, 45 mm, Madan, Bulgaria, G Sphalerite, xx 12 mm, Morococha, Peru, H Gypsum, xx 40 mm, Las Salinas, Peru, H Variscite, xx 5 mm, Itumbiara, Brazil, H Rhodochrosite, polished, 50 mm, Capillitas, Argentina, H Back cover photo: Wolframite, 45 mm, Yaogangxian, China, H Page 1: Muscovite, 45 mm, Linopolis, Brazil, H Page 2: Vivianite, 100 mm, Huanzala, Bolivia, H Page 3: Liddicoatite, polished, 70 mm, Anjanabonoina, Madagaskar, G Page 5: Opal - fire, polished, 50 mm, Mezezo, Ethiopia, G Page 12: Brazilianite, 35 mm, Linopolis, Brazil, H Page 13: Gold, 35 mm, Eagle's Nest Mine, California, G Published by Granit, s.r.o. Štefánikova 43, 150 00 Praha 5, Czech Republic e-mail: [email protected] www.granit-publishing.cz Composition and reproduction by Studio VVG, Prague Printed in Czech Republic by Finidr, s.r.o., Český Těšín 14/02/03/01 All rights reserved. -
Kamiokite Fe Mo O8
2+ 4+ Kamiokite Fe2 Mo3 O8 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6mm. As thick tabular hexagonal crystals, to 3 mm, hemimorphic pyramidal with {0001}, {1010}, {1011}, and smaller {1011}; also granular. Physical Properties: Cleavage: {0001}, perfect. Fracture: Even. Hardness = 3–4.5 VHN = 545–678, 600 average (50 g load); 380–410, 385 average (25 g load). D(meas.) = 5.96 D(calc.) = 6.02 Optical Properties: Opaque. Color: Iron-black; gray with an olive tint in reflected light. Streak: Black. Luster: Metallic to submetallic. Optical Class: Uniaxial (–). Anisotropism: Strong; light brownish gray to dark greenish gray. Bireflectance: Strong; gray to olive-gray. R1–R2: (400) 19.0–25.4, (420) 18.6–25.0, (440) 18.2–24.6, (460) 17.8–24.2, (480) 17.4–23.8, (500) 17.1–23.5, (520) 16.8–23.2, (540) 16.6–23.0, (560) 16.4–22.7, (580) 16.1–22.5, (600) 15.9–22.3, (620) 15.8–22.2, (640) 15.8–22.3, (660) 15.9–22.4, (680) 16.0–22.6, (700) 16.3–22.7 Cell Data: Space Group: P 63mc. a = 5.781(1) c = 10.060(1) Z = 2 X-ray Powder Pattern: Kamioka mine, Japan. 5.03 (100), 3.55 (90), 2.509 (75b), 2.430 (55), 2.006 (40), 2.785 (35), 1.5678 (35) Chemistry: (1) (2) (3) SiO2 0.95 TiO2 1.06 MoO2 71.25 64.08 72.76 VO2 2.31 Al2O3 0.86 Fe2O3 4.81 FeO 27.04 23.11 27.24 MnO 0.41 ZnO 0.45 CuO 2.48 Total 98.70 100.11 100.00 (1) Kamioka mine, Japan; by electron microprobe, average of three analyses; original analysis Fe 21.02%, Mn 0.32%, Mo 53.43%, here calculated to oxides; corresponding to (Fe2.01Mn0.03)Σ=2.04Mo2.98O8. -
New Mineral Names*
American Mineralogist, Volume 68, pages 1038-1041, 1983 NEW MINERAL NAMES* PETE J. DUNN, JOEL D. GRICE, MICHAEL FLEISCHER, AND ADOLF PABST Arhbarite* Bonshtedtite* K. Schmetzer, G. Tremmel, and 0. Medenbach (1982) Arhbar- A. P. Khomyakov, V. V. Aleksandrov, N. I. Krasnova, V. V. ite, Cuz[OHIAs04].6HzO, a new mineral from Bou-Azzer, Ermilov and N. N. Smolyaninova (1982) Bonshtedtite, Na3Fe Morocco. Neues Jahrb. Mineral., Monatsch., 529-533 (in (P04)(C03), a new mineral. Zapiski Vses. Mineralog. German). Obshch., 111, 486-490 (in Russian). Arhbarite is found as blue, spherulitic aggregates on massive Microprobe analyses from Vuonnemiok, Khibina masif, by dolomite, associated with hematite, lollingite, pharmacolite, VVE and from the Kovdor massif by G. N. Utochkina gave, erythrite, talc and mcguinnessite. Arhbarite is optically biaxial resp., NazO 35.34, 33.00; KzO 0.03,0.35; CaO 0.03,0.26, MgO with 2V = 90° and indices nx' 1.720(5) and nz' 1.740(5) (parallel 2.54, 4.61; MnO 1.65, 0.30; FeO 16.66, 16.80; PzOs 26.17, 25.80, and perpendicular to the fiber axis); extinction is inclined at COz (16.09) (calc.), 14.70; SiOz -, 0.43; loss on ignition -,4.33, =45°, X' turquoise blue, Z' deep turquoise blue. Microprobe sum 98.51, 100.15%. The Kovdor sample contained forsterite analysis gave CuO 41.00, CoO 0.03, ZnO 0.01, FeO 0.04, AszOs and shortite (each about 1%). These analyses yield the formulas, 29.19% (HzO by difference 29.73%), corresponding closely to the resp., Na3.00(Feo.63Mgo.t7MnO.06Nao.tz)(P04)t.OI(C03)J.oo, and formula CU2[OHIAs04].6HzO. -
IMA–CNMNC Approved Mineral Symbols
Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements -
Hybrid Improper Ferroelectricity and Magnetoelectric Effects in Complex Oxides
HYBRID IMPROPER FERROELECTRICITY AND MAGNETOELECTRIC EFFECTS IN COMPLEX OXIDES BY YAZHONG WANG A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Physics and Astronomy Written under the direction of Sang-Wook Cheong and approved by New Brunswick, New Jersey May, 2018 ABSTRACT OF THE DISSERTATION Hybrid improper ferroelectricity and magnetoelectric effects in complex oxides by Yazhong Wang Dissertation Director: Sang-Wook Cheong This thesis contains several investigations of ferroelectricity and magnetoelectric effects in complex oxides. We start by reviewing the history and mechanisms of ferroelectricity and multiferroics, then give a brief introduction to proper ferroelectricity, improper ferroelectric- ity, hybrid improper ferroelectricity and polar magnets. In the hybrid improper ferroelec- 0 tricity section, several major systems are explained in detail including (AA )B2O6 double 0 perovskites, (ABO3)2=AO Ruddlesden-Popper (RP) phase and A (AB2O7) Dion-Jacobson (DJ) phase. Next, our investigations are divided into two parts. The first half focuses on the study of ferroelectricity and domain wall ( ferroelectric vs. ferroelastic, charged vs. non- charged) motion in Sr3Sn2O7 system (n=2, RP phase). We discover that layered Sr3Sn2O7 exhibits switchable polarization at room temperature, demonstrating that Sr3Sn2O7 is the first room-temperature insulating ferroelectric containing Sn4+. The in situ poling results on Sr3Sn2O7 using focused electron beams in transmission electron microscopy unveil the intriguing ferroelectric domain switching kinetics: ferroelectric noncharged domain walls move fast while ferroelectric charged domain walls do not move, probably due to octahedral rotation switching is easier along the c − axis. -
Major Types and Characteristics of the Late Paleozoic Ore Deposits in The
logy & eo G G e f o o p l h a y n s r i c u s o J Journal of Geology & Geosciences Han et al., J Geol Geosci 2014, 3:3 ISSN: 2381-8719 DOI: 10.4172/2329-6755.1000158 Research Article Open Access Major Types and Characteristics of the Late Paleozoic Ore Deposits in the East Tianshan Orogenic Belt, Central Asia Chunming Han1*, Wenjiao Xiao1, Benxun Su1,2, Patrick Asamoah Sakyi3, Guochun Zhao1 Songjian Ao1, Bo Wan1, Jien Zhang1 and Zhiyong Zhang1 1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China 3Department of Earth Science, University of Ghana, P.O. Box LG 58, Legon-Accra, Ghana Abstract One of the most largest known and important metallogenic provinces in China is East Tianshan, where seven major types of Late Paleozoic metal deposits have been recognized: (1) porphyry-type Cu-Mo-(Au) ore deposit, (2) volcanic Fe-Cu deposit, (3) orogenic lode gold deposit, (4) magmatic Cu-Ni sulfide deposit, (5) epithermal gold deposit, (6) volcanic hydrothermal Cu deposit, and (7) skarn Cu-Ag deposit. Tectonically, the development of these Late Paleozoic metal mineral deposits was closely associated with the subduction and closure of the ancient Tianshan Ocean intervening between the Tarim craton and the Junggar-Kazakhstan block. In the Late Devonian to Early Carboniferous, the northern margin of the Tarim craton existed as a passive-type continental margin, whereas the ancient Tianshan ocean was subducted beneath the southern margin of the Junggar-Kazakhstan block, resulting in the formation of the Dananhu-Tousuquan magmatic arc and associated porphyry-type Cu-Mo-(Au) deposits.