<<

QUANTITATIVE DATA FILE FOR QUANTITATIVE DATA FILE FOR ORE MINERALS THIRD EDITION

Edited by

A.J. Criddle and C.J. Stanley

Department of Natural History Museum London, UK

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. First edition 1978, second edition 1986 published by The British Museum (Natural History) Third edition 1993 © 1978,1986,1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 3rd edition 1993 — Commission on Ore Mineralogy Typeset by Dave Williams, Sawbridgeworth

ISBN 978-94-010-4652-7 ISBN 978-94-011-1486-8 (eBook) DOI 10.1007/978-94-011-1486-8 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be repro• duced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication data available Contents

Preface to third edition vii Acknowledgments vii Background and introductory notes to QDF3 ix Format of QDF3 ix Name and formula ix Symmetry x Provenance x Chemical composition x X-ray data x Reflectance standards x Monochromator and photomultiplier x Effective Numerical Aperture x Micro-indentation hardness (Vickers) xi Reflectance data xi Symbols for reflectance used in QDF3 xii Symbol or symbols xiii Reflectance data in two-media xvi Reflectance spectra and chemical composition xvii Colour and quantitative colour xvii Scaling of graphs xxii Polishing method xxii Reference and further information xxii Keys for identification xxii Species representation xxii Selected Bibliography xxiii 1. General mineralogical nomenclature xxiii 2. Quantitative and qualitative ore mineralogy xxiii 3. Reflectance-based identification schemes xxiv COM wavelength key 1 xxv Colour value key 2 xxxviii Air and oil data 440-700nm key 3 li Data file 1 PREFACE TO THE THIRD EDITION

This third edition (or issue) of the Quantitative Data reviewers, and reported by users of the earlier File for ore minerals (QDF) of the Commission on editions. The result is that 510 species and 125 are Mineralogy of the International Mineralogical compositional or structural variants, or varieties, of Association (COM-IMA) is published, with the species, are represented in QDF3. A large number of support of the Natural History Museum, London, by the entries include data collected from the type Chapman & Hall. It has been greatly revised and specimen of a : these include data extracted enlarged and now includes graphs of the reflectance from the published literature. In this respect, QDF3 spectra for all of its entries. These have been differs from earlier editions. included in response to requests from users of the We have also revised and simplified the notes earlier editions. Also included, for those users concerning X-ray data: no longer are the strongest unfamiliar with the application of such spectra to lines in the powder diffraction pattern quoted, nor mineral identification, are introductory notes, are cell dimensions generally given. Instead, it was illustrated with examples of R spectra. decided to refer to data from the original description, The 635 data sets, which are arranged or to data in the PDF of the JCPDS. Where our data alphabetically by mineral name, one set to a page, differed from those in the PDF, such differences are retain the tabular format (if slightly modified) of noted. In all, confirmatory X-ray data (or references QDF2. The graphs are drawn, depending on the to the original data) were obtained for 89.6% of the of the reflectance curves, to the most entries in QDF3. appropriate of one of four scales of reflectance (25%, Micro-indentation hardness (VHN) values are 50%,75% and 100%). Colour values computed quoted for 492 of the data sets \17 %), however, as in relative to the Commission Internationale de QDF2, a smaller proportion (46.7% of the total) were I'Eclairage (OE) illuminants A and C are provided for most of the entries (97 .5 %). at the preferred force of 100pond. The three 'keys' to A feature unique to the QDF is that most of its assist in the optical identification of a mineral, optical and compositional data were collected from introduced in QDF2, are retained, though, of course, the same area of a mineral. This follows a policy they are completely revised to incorporate the new decision of the COM which recognises the optical data, and now include simplified chemical interdependence of the two properties: composition formulae (for those users who do not automatically and optics. While every effort was made, when relate a minerals name to its composition). collecting data for the File, to ensure that reliable The production of a laboratory reference work, compositional data were included for all data sets, such as the QDF, is very demanding of time: QDF3 we were unable to replace some of the incomplete was produced using Borland's* relational database sets from QDF2. In all, some 90 % (572) of the data management system, Paradox®, combined with the sets contain related optical and compositional data. graphing facilities of Quattro Pro®. In setting-up the Another unusual feature of the QDF, in all of its database, errors and inconsistencies will, editions, is that a substantial proportion of its entries undoubtedly, have crept into the work. The Editors were previously unpublished, and obtained take responsibility for all such errors and, on behalf specifically for the File. In QDF3, these number 172, of the COM, would be grateful if any that are found many of which are for minerals where previously no are brought to their attention. optical data existed in the published literature. In this sense, the QDF is the only source of characteristic ACKNOWLEDGMENTS quantitative data for many ore minerals, further, it is the only compiled-source of spectral reflectance data In a work of this kind, which relies so heavily on under oil immersion. In the current edition, a international cooperation, it is impossible to thank concerted effort was made to supply data for all of everybody who ha~ contributed to its successful the known tellurides, for as many of the as appearance. We thank all of the contributors of data was practicable (60 species more than QDF2), and to sets, reference to whom is made individually, with fill such'gaps' in species coverage as were noted by their data, in the pages of the File. Especial thanks

* Paradox and Quattro Pro are registered trade marks of Borland International, Inc.

vii go, in this context, to Yves Moelo (BRGM) for enabled us to confirm the identity of many rare compiling the contributions from France. minerals. We are particularly grateful to our many friends, We thank Myra Givans of NHM Publications around the world, who spent their time so selflessly and Ruth Cripwell of Chapman & Hall for their in locating mineral samples in their collections, and gentle encouragement during the gestation of this who either lent, or donated them for investigation: volume. And, for his patience, professionalism and from Austria, Werner Paar (Salzburg); from Belgium, scrupulous attention to detail, we are indebted to Jacques Jedwab (Brussels); from , Gary Dave Williams, who was involved, from the outset, Ansell, Louis Cabri, Don Harris, DeAlton Owens, in constructing the QDF database and who was Andy Roberts (Ottawa); Steve Kissin (Thunder Bay); responsible for turning our computer output into Bob Gait and Joe Mandarino (Toronto); from 'camera-ready' form. , Gunter Grlintmann (Munich); from Finally, we thank Fifi and Hari for their piscine Switzerland, Stefan Graeser (Basel); from the UK, therapy. David Vaughan (Manchester); and from the USA, Pete Dunn (Washington) and Ben Leonard (Denver). The COM owes a particular debt of gratitude to Alan Criddle and Chris Stanley John Francis and Steve Somogyi of the NHM, whose Department of Mineralogy unstinting efforts to obtain satisfactory X-ray data, The Natural History Museum from the often puny samples we were able to extract, London, U.K.

viii BACKGROUND AND INTRODUCTORY NOTES TO QDF3

Since the publication, in 1986, of QDF2, several very Williams from the Museum's employ, he continued useful works have been produced in the of ore as consultant to the editors for this task). The volume mineralogy and ore microscopy: Gerlitz et al. (1989) you are now reading is the product of this made available a computer-based identification collaboration. system for ore minerals (using QDF2 as its source)i Early in the planning of QDF3 (and before all of more traditionally, Tarkian & LieBmann (1991) the production details described above), it was published their guide to the identification of ore worked out what was required to provide a minerals, and Ixer (1990), his atlas of ore textures. substantially improved edition of the File. The importance of colour (and its causes) were dealt Experience in the production of the 2nd edition had with brilliantly and didactically by Andrew Peckett shown that, in the main, authors were reluctant to (1992), and the COM, itself, in collaboration with the supply data in the format required by us - even Mineralogical Association of Canada, produced a when prompted by their COM National volume of 'Short Course Notes' on 'Advanced Representatives. For this reason, for the first time, Microscopic Studies of Ore Minerals', Jambor & data are incorporated in the File which were culled Vaughan (1990). In addition, dozens of papers from the literature for some of the recently described describing the optical properties of new (and 'new' minerals. Some of these data sets, known) minerals have appeared in the mineralogical demonstrably, do not meet the standards of literature (references to which are included in the completeness expected of the QDFi they are included individual data sets of QDF3). Keeping pace with for the reason that they are the only data currently these, are works of nomenclature, e.g., Fleischer & available. As important, was the problem of Mandarino (1991), & Nichols (1991), and acquiring material for investigation (many of the Oark (1993). In descriptive mineralogy, Anthony et data sets in QDF2 and 3 are from work done at the al. (1990) made a valiant effort to bring up to date our NHM). For these reasons, requests were sent to the knowledge of the elements, sulphides and National Representatives to seek and compile data sulphosalts (unfortunately, the optical and for inclusion in the third edition, and lists were widely distributed to individuals, and curators of the compositional data, which they report, are, in most major collections, asking for help in supplying type instances, unrelated). material and species not available within the From the citations it received, and from the collections of the NHM. Acknowledgement for the numerous applications of its data in independently support received is made elsewhere. produced identification schemes, the usefulness of QDF2 was proved. However, production costs were high, largely because of the enormous number of FORMAT OF QDF3 'man-hours' required by traditional editorial Name and fonnula procedures. The COM, recognising this, gave total In the absence (during the period of preparation of editorial control for the production of QDF3 the third edition) of an up-to-date Hey's Index (now (executive as well as scientific) to its Editors. available, see Oark, 1993), the reference works used QDF2 was published for the COM by the British for nomenclature were those of Fleischer & Museum (Natural History), recently renamed the Mandarino (1991) and Nickel & Nichols (1991), both Natural History Museum. A change in publication of which provide mineral names in a form approved policy at the Museum required that a commercial by the IMA's Commission on New Minerals and publisher be sought for the new edition. Chapman Mineral Names (CNMMN). Inevitably, in a number and Hall stepped into the breach, but with the of instances, this meant changing name-endings requirement that they be supplied with (from those used in QDF2), e.g., covelline to covellite, 'camera-ready' copy for their printers. Recognising and adjustment to some spellings, e.g., zinckenite to the importance of continuity in production, the zinkenite. It is stressed that these changes have been Museum authorities supported the COM by made purely to be consistent with one or more of the allowing its editors time to compile the third edition, 'standard' reference lists, and do not necessarily and further assisted in supplying the professional correspond to the personal preferences of the editors. support of Dr David Williams in organising first, the In the period 1986-1992, other nomenclatural computer database, then the preparation of the changes were made by the CNMMN, e.g., camera-ready copy (with the departure of Dr "chloanthite" is no longer approved by them even

ix though it better known, in this form, by ore Peacock Atlas (Berry & Thompson, 1962). These have mineralogists, than by its new name, not been changed, as it is impossible for an editor to nickel-skutterudite. Similarly, "bravoite" is no revise the original data of an author (particularly longer acceptable and has been replaced by when, in the intervening years, the author has died). (nickeloan). In general, we have accepted such For 'newer' minerals, reference is made to the rulings, and have changed the names, adding, e.g., original description. Where original data were also known as "(a.k.a) 'bravoite"'. However, the QDF collected specifically for QDF3, the identity, or is designed as a practical manual for the ore otherwise, of the powder data, with those in the PDF, microscopist, and it is our editorial decision to retain are noted. A not uncommon result of these such widely used names as 'electrum' where, comparisons are discrepancies between the new compositionally and optically, the differs powder data for the mineral and those of the markedly from the end-members, gold and . synthetic material sometimes preferred for reference The conflict between the needs of the practising purposes by the PDF. In numerous cases, data for a mineralogist for a certain amount of imprecision in mineral, now deleted from the PDF, provide a better nomenclature and those who seek end-member match for the QDF mineral than the data in the perfection will, no doubt, continue. Bracketed replacement card. suffixes are used for compositional variants of a species.The formula of a mineral is generally given Reflectance standards as the simplest whole-number proportion of its All of the data in the QDF are relative to one of the elements (except where non-stoichiometry or reflectance standards approved by the COM. These vacancies have needed to be high-lighted). Where are: basal section carbide (R =::: 20%), possible, some information on the valency of the carbide (R =::: 46%), tungsten- carbide cations is also provided. (R =::: 46%), and, for double-beam microscope spectrophotometers only, silicon (R =::: 37%). These, Symmetry approximate, reflectances are for a wavelength of In the main, the symmetry system follows European 546nm and do not take account of the dispersion of (and lUG usage of the trigonal system. the reflectance of the standard. Black glass, formerly Provenance approved by the COM, has been withdrawn as a reflectance standard as it is known to be unstable. While every attempt was made to provide sufficient information to adequately locate the original source Monochromator and photomultiplier of a mineral specimen (including latitudes and The type of monochromatising device used and its longitudes), there remain numerous examples of bandwidth are quoted, where known. Contributors poorly localised minerals. This is unavoidable, when, are expected to have used a bandwidth smaller than as in the past, authors of new minerals have been the wavelength interval of 20nm; for interference forced, for political reasons, to be deliberately filters this will be of the order of 12nm, and, anything obscure about the provenance of their minerals, or, between 4nm and 12nm, for prism and grating quite simply, because the authors could not establish monochromators. The manufacturer of the where exactly their samples came from. photomultiplier, its type, and its international code, Chemical composition are also quoted (if known). Information supplied on Full quantitative analyses, generally obtained with the instruments used in the as is generally an electron microprobe, are given for 90% of the incomplete. entries in the File. Where available, details of the Effective Numerical Aperture standards used, and the operating conditions are listed and summarised. As with all optical measurements, the accuracy of a measured reflectance may be adversely influenced X-ray data by misalignment of the measuring instrument. The The X-ray data entries in QDF3 have been simplified operating manuals provided by the manufacturer of as compared with earlier editions. No purpose was the MSP, together with advice included in Galopin & served by reproducing data available in the PDF of Henry (1W2), Jambor & Vaughan (1990) and Piller the JCPDS, nor was there space to include enough (1m), should, if followed, ensure proper alignment information to unambiguously identify a mineral. of the instrument. However, there remains one Some of the older entries, particularly those retained potential source of instrumental error which is not from QDFl, were identified by reference to the widely recognised, that of the numerical aperture of

x the objective and the related cone angle of the micro-indentation hardness measurements, are load incident beam of light. Since the QDF is expected to dependent, i.e., load-variable, hence, unless all provide data for reference purposes, in this, as in the measurements are made at the same loading (or previous edition, it was hoped that contributors force) they are not directly comparable. In practise, would supply details of the objectives used for this cannot be achieved with minerals, which differ measurement; their magnification; their full enormously in hardness and in grain size. If data (potential) numerical apertures; and the effective were available, they were, of course included in numerical apertures (the aperture actually used) QDF3, but it is admitted that, for many of the more obtained by reducing the Illuminator Aperture recently characterized new minerals, the possibility Diaphragm (lAD). It is worth repeating the of measuring VHN100 values did not exist. We have, procedure used for the calculation of the effective therefore, included VHN data at loadings varying numerical aperture. Knowing the potential from 5g to 200g. Rarely, do these fully reflect the numerical aperture of the objective (quoted by its range in hardness that might be expected for a manufacturer, and usually inscribed on the species which varies anisotropically in its hardness. objective), a graduated Bertrand Lens or an Imaging Similarly, many workers fail to provide qualitative Telescope is introduced (replacing the ocular), and details of the nature of the indentation, nor are the lAD opened fully. The microscope is now a details of the number of indentations, or the number conoscope and the image (an illuminated disc) of grains indented, provided. It is sad, but true, that observed is that of the back focal plane of the VHN values have become of little direct value in objective. The diameter d of the illuminated disc is mineral identification, and this may well be the last measured (using the graduations inscribed on the edition of the QDF in which they are included. That Bertrand lens/Imaging Telescope). Even with very being said, the short-hand for the quality of the low power objectives e.g. x4, it is unwise to use the indentation reported in the File remains: p (perfect), f full numerical aperture for measurement (because of (fractured), sf (slightly fractured), cc (concave), cv the possibility of diffraction from the periphery of (convex) and sg (the somewhat inappropriately the lens), with x40 objectives, with numerical termed, sigmoidal). apertures of 0.65 or more, a full aperture will provide a total cone angle of more than 50° which is Reflectance data unacceptable given that the reflectance measurement All of the reflectance data in the QDF were obtained is supposed to be made at near-normal incidence. with microscope-spectrophotometers (MSP) at This cone angle can be reduced, however, simply by near-normal incidence. closing (reducing the diameter of) the lAD. If the Over twenty years ago, the COM set, as its image of the lAD is observed in the back focal plane minimum requirement, for spectral reflectances, the of the objective as it is closed, and the diameter of the four wavelengths: 470, 546, 589 and 650nm. At the illuminated disc measured d' then the ratio d' / d will time, this was reasonable, however, as QDF2 showed give the effective numerical aperture. It is possible, and QDF3 further proves, in many instances, these for example, to obtain an effective numerical d,ata don't go far enough in enabling the microscopist aperture for measurement of 0.26 from an objective tq confidently distinguish between minerals of of NA 0.65. We labour this point, because modern s~milar composition on the grounds of the dispersion microscope spectrophotometers are capable of great of their reflectance. Though they are useful in measurement precision, and the accuracy of primary sorting and searching routines (Key 1), we measurements can be determined easily, but only if have retained the four-wavelength values in the File the most basic of optical procedures are followed. more as a matter of tradition than for their utility in Many, but not all of the data in QDF3 include these mineral identification. details. With the instrumentation available today, it is a simple matter to measure reflectance curves for a Micro-indentation hardness (Vickers) mineral at intervals of 10 or 20nm, thus providing At a meeting of the Officers of the COM (and at more complete and more reliable diagnostic data. In which, a number of National Representatives were passing, it is worth noting that the Commission on present), held in Ottawa in 1990, it was agreed that New Minerals and Mineral Names have accepted a VHN measurements, though useful, were now of request from the COM that, from 1992, spectral secondary importance to the optical and reflectance data, at an interval of 20nm, from 400 to compositional data in the QDF. The reasons for this 700nm, will be required in the submission of optical decision are easy to understand: VHNs, like other data for new minerals which are opaque, or for

xi transparent minerals where, because their refractive Distribution of optical data in QDF3: indices are so high, they have to be calculated from AIR % OIL % measured reflectances. Isotropic: 204 32.1 164 32.6 Anisotropic: In addition to reflectance values measured in air, Data incomplete (i.e., only one the QDF presents data obtained under oil immersion R spectrum measured) 46 7.2 20 4.0 for more than 500 of its entries (nearly 80%). To be Uniaxial (orientated) 21 3.3 17 3.4 included in the QDF, these data must have been Uniaxial (unorientated) 95 15.0 90 17.9 Biaxial (orientated) 13 2.1 13 2.6 obtained with an immersion oil conforming with the Biaxial (unorientated) 256 40.3 199 39.6 COM recommended specification which is the same TOTAL: 635 503 as the German standard DIN 58.884. Oil produced by Total % of oil data sets with respect to air: 79.2 several manufacturers meet this specification but, in practice, only three, Cargille, Leitz and Zeiss, have This analysis reveals that the optical data in the been used in data submitted to the QDF. Which oil File refer to minerals which vary in their was used is listed in the individual data pages of the crystallographic and optical symmetry (as well as compositionally). Reference to Galopin & Henry File, together with the ambient temperature at which (lW2) and to Peckett (1992), will show that, unless the measurements were made (if known). The the ore microscopist is in a position to measure dispersion of the refractive indices, and the thermal specially cut and optically orientated (hence, coefficients, of these oils vary slightly from crystallographically orientated) sections of a mineral, manufacturer to manufacturer. he, or she, will have to use the somewhat restricted All of the air and oil reflectance data tabulated in facilities of the ore microscope to gain some idea of the QDF are quoted to three significant figures the optical symmetry of the mineral from grains (greater accuracy is currently impossible for data which are randomly orientated in their polished obtained with an MSP because reflectance standards sections. Further, the symbols employed depend on cannot be macroscopically calibrated to better than the optical class of the mineral and whether the data three to four significant figures). Practitioners of available are sufficient to fully characterize it two-media reflectance measurements will know optically. At this point it is worth restating the aims of the (Embrey & Criddle, 1W8) that under some QDF: the various editions have been compiled circumstances it is possible to derive further optical primarily as an aid to the ore microscopist in constants from such measurements, e.g., the identifying the component minerals of a rock or ore refractive indices and absorption coefficients. We do in polished section. In the plane of such sections, the not recommend, however, that the data in the QDF minerals naturally tend to be randomly orientated, be used to calculate these values without reference to and it is from such sections that most of the data the original author/ s of the data. The reasons for this presented here were obtained.Many chemists relate, in the main, to rounding errors for the single and physicists would have preferred more data from set of data as published. When the need exists to crystallographically orientated sections, particularly derive the optical constants from reflectance data, it of biaxial minerals. We can only say that while, in is important that numerous measurements are made some instances, it is feasible to obtain such data, MSP practitioners have not done so for very practical to establish the precision of measurement and to reasons: time, the difficulty in obtaining suitable define limits of error. Many of the data sets included of a given mineral for investigation, and the in the QDF will, of course, be the product of such intrinsic problems associated with measurement at repeated measurement, but the fact remains that it is normal incidence. We would add that, while the not the purpose of the QDF to be a repository of Commission fully recognises the potential of MSP as reflectance-derived optical constants. an aid to the interpretation of electronic bonding and as a 'valence probe' for semiconducting minerals and Symbols for reflectance used in QDF3 materials, until such time as instruments become To the student, the symbols recommended by the widely available for spectral measurement in the UV COM for reflectance data can be quite confusing. and near-IR, little useful information will be Perhaps the best way to understand why there are so obtained for interpretative studies from the many different symbols is to analyse the contents of absorption 'tails' which are the dominant features of QDF3: most of these minerals in the visible spectrum.

xii As an aid to understanding the reflectance same mineral are present in the section, we may be symbols used in the QDF, some graphical examples lucky and find that some are isotropic. These will have been extracted from data entries in the File provide a reflectance spectrum corresponding to Ro. (Figure 1). Alternatively, where all the grains present are anisotropic, unless they crystallised with some Symbol or symbols preferred crystallographic orientation, it is probable R: the symbol used for the single reflectance that their bireflectance will vary. Measurement of spectrum obtained for all orientations from the two or three of the grains, e.g., Figure 1.6 for isotropic section of cubic minerals (Fig. 1.1 for cameronite, should give near-constant values for the henryite). Also, the general abbreviation and symbol reflectance and its dispersion for one vibration for reflectance. Were the mineral to have been direction for these grains. This vibration direction measured in oil, the R symbol would obtain the will give Ro. However, as grain after grain is rotated superscripted prefix im (for immersion), i.e., imR, and to its next extinction position, and its reflectance this is true for all of the other symbols where measured, the reflectance and its dispersion will measurements were made in oil. vary. It will be evident from Figure 1.6 that a range of R': the' following the R indicates that the non-principal sections have been measured. All are reflectance data were obtained on a mineral known assigned the symbol Re', the' to indicate or suspected to be anisotropic but, where for uncertainty. As far as the QDF is concerned, where practical reasons (e.g. the grains were too small), it data have been obtained in this way, in general, only proved impossible to obtain the two curves for the the grain which displays for Re' the most extreme reflectance minimum and maximum. This case has difference from Ro is reported, but we still cannot be not been illustrated since it will evidently not differ sure that this corresponds to the principal vibration from Fig. 1.1. direction for Re. Nevertheless, it is this procedure Rl and R2: where the mineral is obviously anisotropic and measurably bireflectant (e.g., Fig. 1.2 which enables the microscopist to distinguish for weibullite), Rl corresponds to the curve of between uniaxial and biaxial minerals, thus minimum reflectance. These symbols are used where providing an additional parameter for use in mineral it proves impossible to establish whether the mineral identification. is uniaxial or biaxial, a situation that can occur where R a, Rb and R e, or R p, Rm and Rg : in the example there might be only one measurable grain of the illustrated in Figure 1.7 (for chalcostibite), the data mineral in the polished section. Figure 1.2 also shows were obtained on a crystallographically and optically that the two reflectance curves are virtually parallel, orientated mineral. In this case, an orthorhombic, thus indicating that they do not differ in dispersion hence, biaxial mineral. The symbols used are only in their overall reflectance. They will be physically significant, i.e., they correspond to perceived by the eye as varying in intensity but not reflectance data for the principal vibration directions in colour, hence, bireflectant but not pleochroic. By of the mineral, and are the product of lengthy and comparison, Fig. 1.3, clearly illustrates that the careful preparation and orientation of a single mineral wattersite is bothbireflectant and pleochroic crystal. The symbols Rp,m,g are alternative symbols (in this case, in subjective terms, Rl will appear used by some authors. For light-absorbing minerals, bluish and R2 yellowish green). those with orthorhombic symmetry alone, amongst Ro and Re: these symbols for optically uniaxial the optically biaxial minerals, have a direct minerals are applicable to reflectance data obtained relationship between their principal crystallographic from orientated sections of tetragonal, hexagonal and and optical axes. In monoclinic and triclinic minerals trigonal minerals, i.e., from sections of a crystal cut the dispersion of the principal vibration directions and polished so as to provide data for the two varies with wavelength, thus presenting, at present, principal vibration directions, ordinary (0) and an insuperable practical problem for measurement at extraordinary (e). Figures 1.4 and 1.5, for tellurium normal incidence. The best that can be achieved is and , respectively, illustrate the differing measurement of the unique axis b for monoclinic signs of the bireflectance for these materials (used in minerals. In the File, various symbols are used this way, bireflectance is directly analogous to the simply because data have been retained from earlier term for transparent minerals). editions, e.g., jeppeite, a monoclinic mineral, uses the Ro and Re': here we return to what may be symbol Rb together with the more imprecise Rl&2, measured in randomly orientated grains in polished whereas data for other monoclinic minerals, such as, section. Assuming that a number of grains of the , arsenopyrite (cobaltian) and kermesite,

xiii 45~------~ 60~------~ 1 ISOTROPIC 2 ANISOTROPIC BIREFLECTANT 40 55

35 R 50

':J!. a:o 30 45

25 40 henryite weibullite

20~------~------~------~ 35+------~------r------~ 400 500 600 700 400 500 600 700 Lambdanm Lambdanm

35~------~ 75~------~ 3 ANISOTROPIC 4 UNIAXIAL POSITIVE BIREFLECTANT AND PLEOCHROIC 30 70

25 65

a:

15 55 wattersite tellurium (synthetic)

10+------~------~------~ 50+------.------r------~ 400 500 600 700 400 500 600 700 Lambdanm Lambdanm

Figure 1 (part 1)

xiv 40~------~ 45~------~ 5 UNIAXIAL NEGATIVE 6 UNIAXIAL POSITIVE R ,FROM RANDOMLY ORIENTATED e 35 40 SECTIONS

30 35

~o -~.- ... ---.::::::::::;;:::; a: 25

20 25 hematite cameronite

15+------r------~,------~ 20+------.------~r_------~ 400 500 600 700 400 500 600 700 Lambdanm Lambdanm

55r------~ 45r------~ 7 BIAXIAL 8 BIAXIAL ORIENTATED BIREFLECTANT AND PLEOCHROIC 50

40

401..-_----__

35 chalcostibite lapieite

30+------r------r------~ 30+------r------.------~ 400 500 600 700 400 500 600 700 Lambdanm Lambdanm

Figure 1 (part 2)

xv retained from QDFl, use Ra&c in addition to Rb. which have similar reflectances in air. The difference Finally, other variants, retained in QDF3, include in the two reflectances follows from the change from symbols for spectra measured for one or two unity, the nominal of air, to that of vibration directions, and those measured parallel, II the immersion oil, ND = 1.515. Depending on the and perpendicular, -L to a vibration direction. crystallographic orientation of the mineral, and on its Rl and R2: again we return to unorientated electronic configuration, the reflectance in oil may be sections of biaxial minerals, illustrated by Figure 1.B reduced, without appreciable chang~ in dispersion for the orthorhombic mineral, lapieite. With minerals from that in air, or the dispersion of ImR may change of lower symmetry, it is a not too infrequent significantly for one or more of its principal vibration occurrence that Rl values, or the R2 values, or both, directions. A good example of the latter is provided measured on different grains in the same polished ~y covellite, CuS, where the dispersions of Ro and section are differently dispersed. In such instances, ImRo ar~ very similar (Figure 2), but where those of where the reflectance curves cross, the mineral will Re and ImRe are quite different. Qualitatively, for be obviously anisotropic and pleochroic. This both vibration directions in air, covellite appears , together with the bireflectance, will be whitish blue, Ro, and a darker, saturated blue, Re, the more noticeable where grains of the same ~hereas, in oil, it appears blue, imRo and purple, mineral, adjacent to one another, are differently and ImRe. For many years, the term coined by Ramdohr, randomly orientated in the section. 'blaubleibender' covellite, was widely used to indicate a variety of covellite which, for both Reflectance data in two-media vibration directions, remained blue when immersed As noted above, more than 500 of the data sets in the in oil. Today, following the identification by Goble QDF include reflectance data in two-media, and in (1980) of the minerals yarrowite, CU9Ss, and this, the QDF is unique: there is no other publication spionkopite, CU3952s, the data in the QDF, and in which provides reflectance values measured under Figure 2., show that blaubleibender covellite is oil ifnI!lersion. Although it is re-emphasised that the spionkopite, and that yarrowite is intermediate in its Rand ImR data should not be used directly from the optical behaviour between covellite and spionkopite. File f~r the calculation of the optical constants, nand This is but one example of the usefulness of oil k, the ImR values provide a useful additional immersion measurements in mineral identification, parameter for distinguishing between minerals the user of the QDF will find dozens more in its

40~------~ 40~------~ AIR OIL

yarrowite (Ro) 30 30

~20

10

O~------r------~~------~ 400 500 600 700 600 700 Lambdanm Lambdanm

Figure 2.

xvi pages. It is for this reason that Key 3 is included with 45 the other keys for identification. Cu It is also obvious from the above examples that Co + NI + Fe there is a direct link between the chemical cp composition of a mineral and its optical properties, nk 0.6 another example of which is briefly illustrated below. 1.5 Reflectance spectra and chemical composition nk There are so many examples within the QDF of tf.. relationships between reflectance spectra and the a: 35 k composition of groups of isostructural minerals that it is difficult to make a choice as to which ones to demonstrate. Fortunately, Peckett (1992), using many of the data sets from QDF2, has illustrated and 30 5.8 discussed the crystal chemical and structural implications of these relationships for twenty nine krutaite (k), nickeloan krutaite (nk) and mineral groups. One such, the pyrite group, has been cuprian penroseite (cp) widely investigated in terms of molecular orbital and 25+------r------~------~ band theories, providing, amongst other things, a 400 500 600 700 clear explanation of the variation in colour and Lambda nm reflectance of its constituent members. Eighteen or more individual species are recognised in the group Figure 3. including sulphides, selenides, arsenides, antimonides, etc., but, for the sake of simplicity, the example selected for illustration here is a solid quantitative data for minerals in plane-polarized solution between krutaite, CuSez, and penroseite, light, the reader is encouraged to investigate the (Ni,Co,Cu)Sez, Figure 3. The reflectance spectra for theoretical basis of the relationship between these four examples (taken from QDF3) of the two data and those for the same mineral, between crossed minerals, from near-end-member krutaite, through polars, so elegantly expressed by Peckett. to a cuprian penroseite, are plotted and related to From the afore-mentioned, it is clear that it atomic percentage ratios of their Cu to Cu+Ni+Fe would be superfluous to attempt to repeat the contents. An illustration which should suffice to psychological, physiological and physical reasons for show the sensitivity of the reflectance and its colour perception of the specular reflectance of dispersion to a change in chemical composition. minerals, let alone the philological! semantic discrepancies that exist in colour nomenclature Colour and quantitative colour between natives of various 'national' or ethnic In the years that have passed since Piller (1966) made groups. The singular virtue of the OE system of the connection (a 'conceptual leap') between the colour is that it 'codifies' in a rational way, from reflectance spectra of ore minerals and the science of measurement, and in numerical terms, the colour colour, as espoused by the Commission 'values' of a mineral with respect to a 'standard' Internationale de l'Eclairage (OE), the difficulties (statistically average) observer. The OE(1931) system and tedium of manual calculation of colour values used in the QDF is related to the relative power has been largely replaced by the use of computer distributions of two standard illuminants, C, at programmes for personal computers (PCs) which can 6774K, and A, at 2856K, which very roughly translate compute the values directly from the measured to light sources equivalent to a -halogen lamp reflectance spectrum. It was not until 1992, however, (A, between 3,100 and 3,330K) and the same lamp that a text devoted exclusively to a thorough with a blue filter (C, from 5,800K upwards). Using explanation of the colour of ore minerals (Peckett) these values, the measured reflectance spectrum, or appeared. Recognising that the colour of a mineral spectra, and three 'colour matching' functions, depends on its dispersion, Peckett not only deals provide three chromaticity co-ordinates, x, y and z, with its appearance in plane-polarized light but also the first two of which are used, together with an between crossed polars, i.e. its anisotropic rotation 'integrated' reflectance, luminance, or luminous tints, or, as he prefers, anisotropy (polarization) reflectance Y (which, for our purposes, is expressed colours. Though the QDF restricts itself to as a percentage). The first two values are plotted on a

XVll chromaticity diagram (in two dimensions); Y% used: the first used the weighted ordinate method of providing a third dimension. We also include calculation for the sixteen values (or those parameters derived from the x and y values: the interpolated/ extrapolated) for the mineral in dominantwavelengthA.d and the excitation purity question; the second used a programme which read pe%, which, respectively, and in subjective terms, directly from measured reflectances at 31 correspond to the hue (colour) and saturation (the wavelengths (i.e., for data measured at the NHM). intensity of the colour when compared with 'white' What was overlooked was that, although the light, or, more properly, the relative power weighting differences played no significant part, distribution of the illuminantflight source). rounding errors, at different stages in the computer These colour values are undoubtedly useful: not calculation, did - at least for some of the calculations. only do they provide, from the detail of a reflectance Following a fairly thorough investigation of these spectrum, a few parameters useful for coding and discrepancies it emerged that the reported searching a database, but they also provide a quick differences affected only those minerals with very means of assessing the colour and saturation of a low excitation purities. In effect, the differences had mineral. By itself, this may seem no great thing, but no arithmetical or physical significance. For this when, as is often the case, the same mineral can occur reason, and to assist in a wider understanding of the in countless mineral associations, where its application of colour values, a number of figures appearance to the observer is strongly influenced have been prepared to illustrate how the dispersion and altered by the appearance of minerals adjacent to of the reflectance of a mineral influences the it, it is of invaluable assistance, both in identification calculated colour values, but before turning to them and in teaching. it will be helpful to summarise the distribution of the The colour values in the QDF are all calculated colour values for the minerals in QDF3 with respect from computer programmes used at the NHM. to their saturation (Pe%), hue (A.d) and the pure Following the release of QDF2, a number of readers spectral colours with which they are compared at the kindly wrote to the editors pointing out errors in the boundary of the colour diagram. Here, the names of quoted values. Some were real, most were not. When the colours are those used in the dictionary of colour compiling the data for QDF2, two programmes were names (Kelly & Judd, 1W6).

C-colour values (air): distribution by dominant wavelength and excitation purity (together with boundary colour names) Excitation purity: <1 >1 >3 >5 >10 >20 >40 % total Lambda nm 0.1 <420 1 Violet 0.8 >420 2 1 Purplish blue 38.4 >460 3 86 149 123 15 3 3 Blue 10.7 >482 5 49 31 7 14 Greenish blue 5.1 >487 11 29 3 8 Blue-green 0.9 >492 6 3 Bluish green 1.2 >497 10 2 Green 2.1 >530 15 5 1 Yellowish green 3.3 >560 7 16 4 6 Yellow-green 8.6 >570 4 19 19 20 16 8 Greenish yellow 14.4 >575 1 19 23 57 38 4 1 Yellow 5.9 >580 9 6 10 19 10 3 2 Yellow orange 2.9 >585 6 10 4 8 1 Orange 0.7 >600 3 2 2 Reddish orange 0.4 >630 2 1 1 Red Complementary wavelengths (non-spectral colours): 0.2 c495 9 6 2 1 Purplish red 1.1 >c525 2 6 2 1 Reddish purple 1.3 >c555 4 6 1 2 Purple Totals: 100 270 249 252 97 21 6 (as percentage): 10.1 27.1 25.0 25.3 9.8 2.1 0.1

xviii Further, a comparison of the these values and the differences, particularly in the enhanced those under oil immersion should serve to illustrate saturation of the colour of a mineral on immersion:

C-colour values (oil): distribution by dominant wavelength and excitation purity (together with boundary colour names) Excitation purity: <1 >1 >3 >5 >10 >20 >40 % % total Lambda nm <420 Violet 1.3 >420 2 4 2 2 1 Purplish blue 45.4 >460 5 23 55 181 99 13 1 Blue 8.6 >482 20 21 26 4 Greenish blue 2.3 >487 3 10 3 3 Blue green 1.1 >492 5 4 Bluish green 1.7 >497 11 3 Green 1.3 >530 4 6 1 Yellowish green 3.0 >560 3 7 7 7 1 Yellow green 8.1 >570 2 9 10 18 21 5 2 Greenish yellow 12.9 >575 2 11 13 28 43 8 2 Yellow 5.1 >580 1 5 5 17 6 7 1 Yellow orange 3.3 >585 1 7 3 11 1 4 Orange 0.2 >600 1 1 Reddish orange 0.1 >630 1 Red Complementary wavelengths (non-spectral colours): 1.0 c495 2 3 1 1 2 Purplish red 1.9 >c525 4 5 1 2 1 3 Reddish purple 1.7 >c555 2 5 2 3 2 Purple Totals: 51 124 123 303 179 41 9 (as percentage): 6.1 14.9 14.8 36.5 21.6 4.9 1.1 The quickest way to see how immersion affects the saturation of the hue of minerals, from these tables, is to note differences between the total 75 percentages for the columns of excitation purity: a far ruthenium ______higher proportion of the oil data (64.1 %) have Pe% greater than 5 % than the corresponding air data (37.3%). It is also noteworthy how, in both media, there are two concentrations, or peak distributions, 50 - around those minerals which appear blue and those khamrabaevite which appear yellow. In effect, few minerals are penroseite known which appear green, red, violet, or one of the daubreellte non-spectral hues, in either medium. To return to individual examples of R spectra, in goldfieldite 25 Figure 4 are plotted dispersion curves for minerals (chromiaQi which have no intrinsic colour, i.e., none of their tomichite (R,) exci~tion purities exceed 0.9%. This means that, if they occupy the full field of the microscope objective, (ferroan) over 99% of their colour attributes will be those of the a light source. For this reason, from the lowest 400 500 600 700 reflector, galaxite atlO.8%Y, to the highest, Lambda nm ruthenium at 69.8%, they should appear grey to white. The Figure also demonstrates that, as Y% Figure 4. increases, the upward inflexion of the ruthenium curve, in the middle of the spectrum, is less

xix 75r------~ 75.------.

50 50

gersdorffite I pyrargyrite (Ro) tP. tP. II: II:

freibergite 25 25

periclase

Or------.------r------~ Or------.------r------~ 400 500 600 700 400 500 600 700 Lambdanm Lambdanm

FigureS. Figure 6. significant (atpe% 0.8) than the downward trend of (blue to greenish blue), and which have excitation tomichite (atpe% 0.3). purities ranging from 9.6 %(cuprostibite) to 43.1 % All of these minerals are likely to be subject to errors in the calculation of their colour values simply (covellite). Certainly, it is true that both of these because their chromaticity co-ordinates are virtually minerals have reflectance curves which trend identical with those of the illuminant. Having said upward from the middle of the spectrum into the that, if the microscope field contained, in addition to galaxite, strongly coloured minerals with higher 75 reflectances, it would appear blue-grey because of the observers visual confusion. Similarly, ruthenium adjacent to a lower reflecting, but yellow reflector, would appear bluish white (there are numerous insizwaite good scientific/ medical terms to account for these confusions and the interested reader is referred to 50 --- Kelly & Judd, 1976 for further enlightenment). gerdorffite II Figure 5 is for minerals which, by themselves, carrollite would have barely perceptible intrinsic colour characteristics, but all of which, in terms of dominant wavelength, are blue. From rutheniridosmine (pe %, 25 1.3) to sphalerite (Pe%, 4.4), they display a generally -- hemusite downward trend in their reflectance from 400nm to murdochite 700nm, but please note again, the influence of the luminance on the saturation: the curve for petzite compared with that of sphalerite suggests that petzite should be bluer, yet petzite, with its higher o reflectance/luminance has a lower excitation purity 400 500 600 700 Lambdanm than sphalerite. There can be no doubt, however, about the colour of the minerals in Figure 6, all of which have Figure 7. dominant wavelengths between 465nm and 480nm

xx 100~------. 50.------~

75

a:"if. 50 a:"if. 25 kiddcreekite

~----'germanite

ulvospinel 25

valleriite (R 0)

o+------.------~------~ O+------,------.------~ 400 500 600 700 400 500 600 700 Lambdanm Lambdanm

Figure 8. Figure 9. red, however, the overall emphasis of their This is indeed the case, and its dominant wavelength dispersions is downwards from 400nm. provides a rare example of a truly red specularly Compared with the earlier figures, Figure 7 reflecting mineral, at 695nm.Finally, in Figure 10 the shows the reverse trend, with R gradually increasing dispersion curves of the most extreme of the purple from blue to red. The dispersion of these minerals is minerals are illustrated: ranging from a Ac of 563 for low to middling, from gersdorffite II at 0.8% pe, to platinum at 4.7% and hemusite at 4.8%, but all have 75.------, dominant wavelengths in the range 573-582nm. A range similar to that of the minerals in Figure 8, 573-586nm, or greenish yellow, through yellow to yellow-orange. The differences are obvious: these minerals are much more strongly dispersed, a fact cuprostibite (Ro) reinforced by the levels of their excitation purities• 50 from pyrite at 10.6% to gold at 39.8%. As demonstrated in the tables of distribution of ~ colour values in the QDF, all of the minerals a:o illustrated in Figures 4-8, fall within the peak colour distributions (blue and yellow). It remains only to illustrate the dispersion and colour values of some of 25 the less common minerals: those whose spectra cannot be directly linked to one of the pure spectral colours, i.e., they are a combination of the two colours, red and blue, a purple mixture which does not appear in the visible spectrum. Figure 9 shows a O+------.------.------~ range of the so-called complementary wavelengths 400 500 600 700 from c506 for kiddcreekite, with an excitation purity Lambdanm of 1.9%, to c562 for fischesserite, with an excitation purity of 4.1 %. The observant will note that the Figure 10. dispersion of germanite appears to be dominated by a high reflectance at the red end of the spectrum.

XXI umangite to 565 for cuprostibite, the corresponding is indicated with the appropriate code. Other details excitation purities values of which range from 14 to included are: a brief specification of the oil used for 40%. immersion measurements; the code name or registration number of the specimen used; a note if Scaling of graphs the specimen was the type specimen of the mineral, As stated in the Preface, all of the graphs in the body and any other relevant information. of the text are drawn to one of four scales of reflectance - 25%, 50%, 75% and 100%, but, with the Keys for identification exception of those minerals which require the full As in QDF2, three keys or indexes are included to 100% to display their dispersion, few have a common provide a simple means of manually comparing data origin at 0 (zero). In every ease, the scale selected is from an unknown sample with data in the File. But one which maximises the information available for for the inclusion of simplified chemical formulae, the dispersion of a mineral and provides some they are identical in layout with those in QDF2. All consistency when comparisons are made by the user. of them are preceded by a brief description of the It is anticipated that some users will copy the graphs sequence of ordering of the data. The first key is to make direct comparisons with the reflectance based on reflectance in air in the wavelength spectra they will have obtained for their own sequence, 546nm, 470nm, 589nm and 650nm. The minerals, hence, some common scaling is desirable. second, for colour values relative to the OE It may be stating the obvious, but comparisons Illuminant C, is based on a sequential means of with the various Figures in this introduction and the identification, starting with Y%, thenld and, finally graphs in the File will show that the user must be pe. Those minerals, for which it proved impossible to conscious of the apparent differences in dispersion calculate colour values, are listed at the beginning of which follow from the use of landscape and portrait the table. The third key includes data in air and, modes. Equally, it is easy to exaggerate or minimise where available, in oil for the wavelengths, 44Onm, the apparent dispersion of a mineral by scaling too 500nm, 600nm and 700nm. All will serve their high, or too low. Because few of the minerals in the purpose as aids to identification, which one the user file possess absorption peaks within the visible prefers will depend largely on the completeness of spectrum, few of the spectral reflectance curves are their data, and on the mineral in question. sharply inflected, most are smooth. Where the reflectance spectra are 'jagged', it is an indication that Species representation they include erroneous data points. In some With every new edition of the QDF, we inch towards instances, spectra have been included where doubts what, in effect, is an unrealisable goal: characteristic exist over their accuracy (in the main, those extracted data for all of the known ore (or opaque) minerals. from the literature for new minerals). The reason for Depending on whose definition one takes, as to what their inclusion is that no other data exist for the constitutes an ore mineral, the species represented in species in question and, as always, it has been the the QDF constitute fewer than 70% of those known QDF policy to seek to improve the quality and (or recognised). Year by year, 'new' minerals are completeness of data from edition to edition but it is described, and it remains a real problem to gain arguably better to have poor data (and to know it) access, either to representative data, or to the mineral than to have none. itself - hence, the unrealisable goal. Equally, the literature is burdened with inadequately Polishing method characterized minerals, many of which entered the It is taken that all contributors took steps to ensure literature before the Commission on New Minerals that their reflectance measurements were made on and Mineral Names (CNMMN) of the IMA set itself specularly reflecting, scratch-free, polished surfaces. the task of ensuring that a mineral name Where they were made available, brief details of the corresponded to a valid mineral species. Even if none polishing procedure are supplied. of this were true, and it proved possible to obtain data for all of the species recognised as ore minerals, Reference and further infonnation there remains the problem of satisfying the specialist This section contains references to data previously mineralogist who requires data for countless published, and to the authorship of data submitted, compositional varieties of a species. As an example, in the first instance, to the QDF. For the latter, the QDF2 was criticised by one reader for not containing year of measurement is included. Where the data 'enough' examples for sphalerite (we trust that this were published in previous editions of the QDF, this criticism will be withdrawn for QDF3). Whatever,

xxii QDF3 could have included many more data for Nickel, E.H. & Nichols, M.e. (1991): Mineral compositional variants of individual species but Reference Manual. Van Norstrand Reinhold, New editorial decisions sometimes have to be taken with York. respect to production costs (and time). It is hoped Palache, e., Berman, H. & Frondel, e. (1946): Dana's that these decisions have provided a good balance System of Mineralogy. Volume I, 7th Edition. John between the possible and the desirable. In any event, Wiley & Sons, New York. it is true to say that QDF3 is the most comprehensive --- (1951): Dana's System of Mineralogy. Volume collection of characteristic data for the ore minerals II, 7th Edition. John Wiley & Sons, New York. available to date. JCPDS Mineral Powder Diffraction File. (published annually by the International Centre for Selected Bibliography Diffraction Data) Swarthmore, Pennsylvania. Stl"UllZ, H. (with e. Tennyson) (1978): Mineralogische The following list is divided into three parts: 1. Tabellen. Akademische Verlags Geselleschaft general mineralogical nomenclature, descriptive Geest & Portig K-G. texts and systematics; 2. texts describing quantitative and qualitative ore mineralogy and related matters 2. and, 3. reflectance-based identification schemes and Cameron, E.N. (1961): are Microscopy. Wiley, New reflectance databases. It is neither a comprehensive York. nor an exhaustive list of reference works, rather it is a Chen, Z., Chen, D. & Zou, X. (1979): Color Indices of listing of those works which a small ore mineralogy ore minerals. Beijing: Geological Press. (in laboratory might expect to include in its library. It Chinese). also includes those works referred to in the Craig, J.R & Vaughan, D.J. (1981): are microscopy Introduction to this Edition. Excluded from the and ore petrography. Wiley, New York. bibliography are the 'ZJ9 references included with the Embrey, P.G. & Criddle, A.J. (1978): Error problems individual data sets within the QDF (and, of course, in the two-media method of deriving optical all references to earlier editions of the File). constants nand k from measured reflectances. Am. Mineral., 63, 853-862. 1. Galopin, R & Henry, N.F.M. (1972): Microscopic Anthony, J.W., Bideaux,. RA., Bladh, K.W. & Study of Opaque Minerals. Cambridge, W. Heffer. Nichols, M.e. (1990): Handbook of Mineralogy: (published since 1975 by McCrone Research Volume 1. Elements, and Sulfosalts. Associates, London). Mineral Data Publishing, Tucson, Arizona. Henry, N.F.M. (1980): IMA/ COM Report on Berry, L.J. & Thompson, RM. (1962): X-ray powder Symbols and Definitions. Can. Mineral., 18, data for ore minerals: the Peacock Atlas. Geol. Soc. 549-551. Amer. Mem., 85. her, RA. (1990): Atlas of Opaque and are Minerals in Cabri, L.J. (ed) (1981): Platinum-Group Elements: Their Associations. Open University Press, Milton Mineralogy, Geology, Recovery. OM Special Keynes. Volume 23. (The Canadian Institute of Mining Jambor,J.L. & Vaughan, D.J. (eds) (1990): Advanced and Metallurgy). Microscopic Studies of are Minerals. MAC/ COM Clark, A.M. (1993):M.H. Hey's Index of Mineral Short Course 17, Mineralogical Association of Species, Varieties and Synonyms. 3rd Edition. Canada. Chapman & Hall, London. Kelly, K.L. and Judd, D.B. (1976): Color-Universal Embrey, P.G. & Fuller, J.P. (1980): A Manual of New Color Language and Dictionary of Color Names. Mineral Names 1892-1978, British Museum National Bureau of Standards. Special (Natural History), University Press, Oxford. Publication 440. Fleischer, M. & Mandarino, J.A. (1991): Glossary of MacAdam, D.L. (1981): Color Measurement: Theme and Mineral Species. The Mineralogical Record Inc., Variation. Springer Series in Optical Sciences Zl, Tucson, Arizona. Springer Verlag, Berlin. Goble, RJ. (1980): sulfides from Alberta: Peckett, A. (1992): The Colours of Opaque Minerals. yarrowite CU9Ss and spionkopite CUa9~8. Can. John Wiley & Sons, Chichester. Mineral., 18, 511-518. Piller, H. (1966): Colour Measurements in Ore Kostov, I. & Minceva-Stefanova. J. (1981): Minerals: Microscopy. Mineralium Deposita, 1,175-192. Crystal Ozemistry, Parageneses and Systematics. --- (1977): Microscope Photometry. Springer Bulgarian Academy of Sciences, Sofia. Verlag, Berlin.

xxiii Ramdohr, P. (1975): Die Erzmineralien und ihre Chinese).Uinshu Kuangwu, Xianweijing Verwachsungen. 4th Edition. Akademie Verlag, Jiangding]. Berlin. Criddle, A.J. & Stanley, c.J. (eds) (1986): The --- (1980): The ore minerals and their intergrowths. Quantitative Data File for Ore Minerals of the 2nd Edition. Pergamon Press, Oxford. Commission on Ore Microscopy of the International Ribbe, P.H. (ed) (1974) ' Mineralogy'. Reviews Mineralogical Association. 2nd Issue. British in Mineralogy, 1 (originally published as Short Museum (Natural History), London. Course Notes, Mineralogical Society of America). Font-Altaba,. M. (ed) (1970): International tables for the Shuey, R.T. (1975): Semiconducting Ore Minerals. microscopic determination of crystalline substances Elsevier, Amsterdam. absorbing in visible light. Provisional Issue. Simpson, P.R. & Hurdley, J. (1984): Role of ore IMAI COM. Departamento Crystalografia y microscopy in identification of gold-containing Mineralogia, University of Barcelona. minerals. Trans. Inst. Min. Metall., 93, Bl47-15I. Gerlitz, C.N., Leonard, B.F. & Criddle, A.J. (1989): Stanton, R.L. (1972): Ore Petrology. McGraw-Hill, QD F Database System. Reflectance of Ore Minerals New York. - a search-and-match identification system for IBM Strens, R.G.J. (1979): Determining the optical compatible microcompu ters using the IMA/COM constants of opaque minerals. Bull. Mineral., 103, Quantitative Data File for ore minerals, second issue. 308-313. U.S. Geol. Survey. Open File Report 89-0306A. Vaug~ D.J. &Craig,J.R. (1978): Mineral Chemistry Henry, N.F.M. (ed) (1977): Commission on Ore of Sulphides. Cambridge University Press, Microscopy: IMA/COMQuantitative Data File Cambridge. (first issue). Applied Mineralogy Group, Wang, S. (1976): Crystallo-optics of opaque minerals. Mineralogical Society of Great Britain and Geological Press, Beijing (in Chinese). Ireland, London. lsaenko, M.P., Borishanskaya,. S.S. & Mans'eva,. 3. E.L. (1972): Identification of the more important ore Atkin, B.P. & Harvey, P.K. (1979): Nottingham minerals in reflected light. Moscow. Izdat. Nedra. Interactive System for Opaque Mineral (in Russian). Identification: NISOMI. Trans. Inst. Min. Metall. KUhnel, R.A., Prins, J.J. & Roorda,. H.J. (1980): The 88,1324-1327. 'Delft' system for ore mineral identification, 1: Bernhardt, H-J. (1982): Ein einfaches Verfahren fur opaque minerals. Delft University Press. die Erzmineral-Diagnose mittels Picot, P. &Jo~ Z. (1977): Atlas des Mineraux Reflexionsspektren. Neues Jb. Mineral. Mh., Metalliques. Mem. B.R.G.M., 90. 241-247. --(1982): Atlas of ore minerals. B.R.G.MI --- (1987): A Simple, Fully-Automated System Elsevier. for Ore ~!1ineral Identification. Mineralogy & Tarkian, M. & Bernhardt, H-J. (1984): A Key Petrology, 36,241-245. Diagram for the Optical Determination of Bezsmertnaya,. M.S. & Chvileva,. T.N. (1976): Platinum-Group Minerals. Tschermaks Min. Pet. Identification of ore minerals in reflected light. Mitt., 33,121-129. Moscow, Acad. Nauk. SSSR. Inst. Mineralogii, Tarkian, M. & Liegmann, W. (1991): A Guidefor Geokhimii i Kristallokhimii Redkikh Elementov Optical and Analytical Identification of Ore (in Russian). Minerals. 2nd revised Edition. Oausthaler Bezsmertnya,. M.S., Loginova,. L.A. & Soboleva,. L.N. Geologischen Abhandlungen 47, Verlag Sven (1969): Microscopic identification of tellurides. von Loga, Koln. Moscow. Izdat. Nauka. (in Russian). Uytenbogaardt, W. & Burke, E.A.J. (1971): Tables for Bowie, S.H.U. & Simpson, P.R. (1978,1980): The microscopic identification of ore minerals. 2nd Bowie-Simpson System for the microscopic Edition. Elsevier, Amsterdam. determination of ore minerals. First Students Issue. Vyal'sov, L.N. (1973): Reflectance Spectra of Ore McCrone Research Associates, London. Minerals. Academy of Science, USSR Institute of Chinese Academy of Geological Sciences, Institute Geology of Ore Deposits, Petrography, of Geological and Mineral Resources. (1978): Mineralogy and Geochemistry, Moscow. (in Microscopic Identification of ore minerals. (in Russian).

xxiv COM wavelength key 1

Only reflectance data in air are presented and these are in the sequence 546, 470, 589, 650nm. Organisation: this is based on ascending order of reflectance at 546nm. Isotropic minerals are listed first, followed by anisotropic or bireflectant minerals. Where two or more isotropic minerals have the same reflectance at 546nm the order is stepped to 470nm and the sequence repeated. If the values are identical at this wavelength also, the order steps to 589nm, then to 650nm. Anisotropic minerals are ordered firstly on the ~ value at 546nm then on increasing bireflectance (Le. the difference between ~ and ~). Where two or more anisotropic minerals have the same ~ value at 546nm and the same bireflectance, the order is stepped in the same way as for isotropic minerals Italicised reflectance data indicate that the mineral is not cubic but that the bireflectance was not measured or not measurable.

R% 546nm 470nm 589nm 650nm Page

6-9 6-10 6-9 6-9 Cl1:!(C03)(OH)2 346 6-23 12-28 4-21 7-23 Covellite CuS 117 6-26 6-25 6-27 6-28 Graphite C 211 6-31 9-15 11-38 33-39 Bogdanovite Aus(Cu,FeMTe,Pbh 53 7 7 7 7 MgA~04 527

7 8 7 7 Periclase MgO 428 7-7 7-8 7-7 7-7 A~03 114 7-24 13-29 4-21 6-23 Covellite CuS 116 7-24 13-30 4-21 6-23 Covellite CuS 118 8 8 8 8 Hercynite FeA~04 235

8 8 8 8 Gahnite ZnA~04 182 8-9 8-9 8-9 8-9 Hogbomite (Mg,FeMAI,Ti)SOlO 240 8-11 8-8 8-9 8-29 Vyalsovite FeS.Ca(OH)2·AI(OHh 614 8-13 9-14 8-13 8-13 Cerussite PbC03 79 9 9 9 9 Chlorargyrite AgCI 92

9 10 9 9 Anglesite PbS04 13 9-9 10-10 8-9 8-9 Azurite Cu3(C03MOH)2 32 9-11 10-12 9-11 9-11 Titanite CaTi03 578 9-18 9-16 9-19 8-20 Tochilinite 6Feo.9S.5(Mg,Fe )(OHh 579 9-20 8-15 9-27 8-37 Erdite NaFeS2·2H2O 156

9-26 10-32 9-25 9-24 Aurorite (Mn,Ag,Ca)Mn307·3~O 29 9-27 10-32 9-25 9-24 Cha1cophanite (Zn,Mn,Fe )Mnp7.3~O 83 10 11 10 10 Spinel (ferroan-chromian) MgA~04 528 10-10 10-11 10-10 10-10 CaW04 501 10-10 10-11 10-10 10-to Ingersonite C~MnSb4014 248

10-11 11-12 10-11 10-11 Blatterite (Mn,Mg)2(Mn,Sb,Fe) BOs 52 10-12 11-12 10-12 10-12 Cannonite BiP(OHhS04 73 10-21 11-15 10-23 10-26 Valleriite 4(Fe,Cu)S.3(Mg,AI)(OHh 603

10-25 16-30 7-23 4-23 Yarrowite Cu9Sg 629 11 11 11 10 Galaxite (ferroan) (Mn,Fe,Mg)( AI,Fe)p4 183

11 12 11 11 Microlite (Ca,Na)2Tap6(O,OH,F) 373 11-11 12-12 11-11 11-11 (Zn,Mn)O 631 11-12 11-13 11-12 11-12 Sn02 76 11-12 12-12 11-11 11-11 Filipstadite (Mn,Mg)4SbFeOg 171 11-20 19-29 17-18 22-36 Rickardite C~Tes 480

xxv COM wavelength key continued

R" 546nm 470nm 589nm 650nm Page

11-26 11-18 10-34 10-46 Erdite NaFeS2'~0 157 12 12 12 12 Zincochromite ZnCr20, 632 12 13 12 12 Betalite (Ca,Na,UMTi,Nb,Ta)P6(OH) 45 12 13 12 12 Magnesiochromite (ferroan) MgCrp, 338 12 13 12 12 Bunsenite NiO 66

12 13 12 12 Filipstadite (Mn,Mg),SbFe08 170 12-15 13-14 12-15 11-14 Vonsenite Fe2FeB03 6'11 12-15 13-16 12-15 12-15 Geikielite MgTi03 190 12-18 13-21 11-17 11-17 Lepidocrocite r-FeO.OH 319 13 13 12 12 Bismutite B~(C03)02 49 13 13 13 13 Qandilite (Mg,Fe MTi,Fe,Al)O, 469 13 13 13 13 Thorianite Th02 574 13 14 13 12 Pyrochlore (Ca,Nah Nb206(OH,F) 462 13 15 12 12 Kazakhstanite FesV 3 VI2039(OH)9·9~0 Z19 13-13 14-14 13-13 12-13 Barstowite 3PbC~.PbC03·~0 34

13-14 14-14 13-14 13-14 Baddeleyite zr02 33 13-15 14-17 13-15 13-14 Kentrolite Pb2~S~09 281 13-16 18-19 13-15 17-21 Umangite CUaSe2 596 13-17 14-18 13-16 13-16 Jeppeite (K, BaMTi,Fe)6013 269 13-19 13-20 13-19 13-18 MnO.OH 215

13-20 14-22 13-19 13-18 Mn~O, 223 14 14 13 13 FeCr20, 94 14 14 14 13 MnO 351 14 14 14 14 U02 597 14 15 14 14 Chromite FeCr20, 95

14 15 14 14 Koechlinite B~Mo06 292 14-15 14-15 14-14 13-14 Manganotantalite MnTap6 352 14-17 14-17 15-18 16-19 Nolanite (V,Fe,Fe,Ti)1001,(OHh 396

14-17 14-18 13-16 13-16 Valentinite Sb20 3 602 14-21 15-21 14-20 13-19 MnO.OH 350

15 16 15 14 Mimetite Pbs(AsOJ3C1 376 15 16 15 15 Pyrochlore (Ca,Nah~06(OH,F) 463 15 16 16 18 Ulvospinel TiFe20, 595 15-15 15-16 14-15 14-15 Ixiolite (Ta,Fe,Sn,Nb,Mn),08 263 15-15 15-16 14-15 14-15 Lueshite NaNb°3 333

15-16 15-16 15-16 15-17 Kyzylkumite V2Tia°9 307 15-16 16-17 15-16 15-16 (Fe,Mn)WO, 625 15-17 16-18 15-17 15-17 Ferrotapiolite (Fe,Mn)(Ta,Nb)P6 169 15-18 16-17 15-18 15-19 Mannardite Ba(Ti6V 2)016 353 15-18 16-20 15-18 15-17 PbMoO, 626

15-20 15-24 20-21 20-29 Tugarinovite Mo02 586 15-21 18-23 15-20 14-20 Edgarbaileyite H86S~07 150 15-69 20-43 12-74 11-78 Vulcanite CuTe 613 16 17 16 15 Perotlskite (niobian) CaTi03 431 16 17 16 16 Loparite-(Ce) (Ce,Na,Ca)2(Ti,Nbh06 329

16 17 16 16 Loparite-(Ce) (Ce,Na,Cah(Ti,Nbh06 330 16 17 16 16 Sphalerite Zns 525 16 17 17 17 lotIeringite (Ca,Ce)(Ti,Fe,Cr,Mg)21 038 331 16-16 16-17 16-16 15-16 Ferrotapiolite (Fe,Mn)(Ta,Nbh06 168 16-17 16-19 15-17 15-16 Pyrobelonite PbMn(VO,)(0H) 461 COM wavelength key continued

R" 546nm 470nm 589nm 650nm Page

16-17 17-19 16-16 15-16 Damaraite 3PbO.PbC~ 134 . 16-18 17-18 16-17 16-17 Hawthomeite Ba(TiaCr,F~Fe2Mg)019 224 16-18 17-20 15-17 14-16 a-FeO.OH 202 16-18 17-20 15-17 14-16 Goethite a-FeO.OH 203 16-19 17-19 15-19 15-19 Schollhomite NlIo.3crS2·~0 502

16-19 17-20 16-19 15-18 Marokite C~O, 355 16-19 17-20 16-19 16-19 Hetaerolite Zn~o, 238 16-19 17-20 17-20 18-20 FeTi03 244 16-19 18-21 16-18 15-18 Pyrophanite MnTi03 464 16-20 17-21 16-20 15-20 Hausmannite . Mn~O, 222

16-20 18-22 16-20 15-19 Quenselite PbMn°2(OH) 470 16-22 18-23 16-21 16-21 Fe2Mo30 S 276 16-24 14-24 20-24 25-27 Nukundamite (Cu,Fe),S, 397 16-34 17-37 16-33 17-34 Tungstenite-3R WS2 588 16-38 17-41 15-35 14-32 Klockmannite cuSe 290

16-40 16-33 17-43 17-44 Mackinawite (Fe,Ni);;S 335 17 18 16 16 Perovskife CaTi03 430 17 18 16 16 Sphalerite (Zn,Fe)S 522 17 18 16 16 Sphalerite Zns 523 17 18 17 17 Sphalerite (manganoan-ferroan) (Zn,Fe)S 526

17 18 17 17 Sphalerite ZnS 524 17-17 17-18 17-17 16-17 Ferrocolumbite FeNb20 6 165 17-17 18-18 16-17 16-16 Asisite ~SiOsC~ 27 17-17 18-18 17-17 17-17 Lindsleyite (Ba,Sr) (Ti,Cr,Fe,Mg,Zr)21 038 322 17-18 17-18 17-18 17-18 Tomichite (V,Fe),TiaAs013(OH) 580

17-18 18-19 17-18 17-17 Mathiasite (K,Ca,Sr)(Ti,Cr,Fe,Mg)21 03S 357 17-18 18-19 17-18 17-17 Hemloite (As,Sbh(Ti,V,Fe,Fe,A1hP230H 231 17-18 19-19 17-17 16-17 Armalcolite (Mg,Fe)Tips 20 17-19 15-19 20-20 23-26 Tugarinovite Mo02 587 17-19 18-21 16-19 16-19 Thoreaulite SnT~06 573

17-24 17-25 16-23 15-23 Kamiokite Fe2Mo30 S 275 18 17 19 19 Murdochite PbCu6°s-x(Cl,Br)2x 386 18 18 17 17 Chromite (ferrian) FeCr20, 96 18 18 19 19 Wiistite FeO 627 18 19 17 17 GaIlife: CuGaS2 188

18 19 17 17 Magnesioferrite MgFe20, 339 18-18 19-20 17-17 15-16 Plattnerite Pb02 442 18-19 19-21 17-19 17-18 Montroydite HgO 383 18-19 20-21 18-18 17-18 (Fe,Fe )2(Ti,Fe )05 454 18-19 20-21 18-19 17-18 Derbylite (Fe,Fe,Ti)7Sb013(0H) 138

18-21 20-22 17-20 17-19 Parkinsonite (Pb,Mo,[])sOsC~ 419 18-22 17-19 18-24 19-25 Chvilevaite Na(Cu,Fe,ZnhS2 fJ7 18-22 19-22 19-22 19-22 Delafossite CuFe02 137 18-30 17-30 19-31 21-33 Rasvumite KFe2S3 474 19 16 21 24 MUTunskife: ~C~FeS, 387

19 19 18 18 Franklinite (Zn,Fe,Mn)(Fe,Mn)p, 176 19-20 20-21 18-19 18-19 MnMn6Si012 61 19-20 20-21 18-19 18-19 Eskolaite Cr20 3 161 19-20 20-21 18-19 18-19 Senaite Pb(Ti,Fe,Mn)21 03S 507 19-20 21-21 19-19 18-19 Anatase Ti02 11 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

19-27 24-31 16-25 12-24 Spionkopite CU39S2S 529 20 20 20 20 Magnetite Fe30 4 340 20 20 21 21 Magnetite (chromian) Fe30 4 342 20 20 22 25 Germanite C~6Fe4Ge4S32 193 20 21 18 18 Greenockite CdS 213

20-21 18-19 20-21 21-22 Berdesinskiite V2TiOS 42 20-22 22-23 20-21 20-21 Brookite Ti02 64 20-23 21-25 19-23 19-22 Rutile Ti02 494 20-23 22-29 20-22 19-21 Hg2CIO 563 20-26 22-24 19-23 18-21 Wattersite Hg4HgCr06 620 20-28 21-27 20-27 20-27 Tenorite Cuo 562 20-39 21-45 19-39 19-39 MoS2 378 21 20 21 21 (Mn,Fe,Mg)(Fe,Mn)p4 265

21 21 21 21 Magnetite Fe30 4 341 21 21 21 21 Magnetite (nickeloan) Fe30 4 343

21 24 21 23 Litharge PbO 324 21-23 24-24 20-22 19-21 Deanesmithite Hg2Hg3CrOSS2 136 22 18 25 30 CUSFeS4 54 22 22 22 22 (Mn,Feh03 50 22 24 22 21 Dervillite Ag2AsS2 139

22 24 24 23 Kiddcreekite Cu6SnWSS 286 22 25 22 22 MnS 5 22 26 21 20 AsS 477 22 27 19 17 Digenite Cu~s 141 22-22 23-24 22-22 22-22 Roquesite CuInS2 484

22-22 26-26 21-21 20-20 Wakabayashilite (As,Sb)l1S1S 616 22-23 23-23 22-23 23-23 Pirquitasite Ag2ZnSnS4 437 22-24 23-25 21-23 21-22 Magnetoplumbite Pb(Fe,MnhP19 344 22-25 22-27 23-25 22-24 Paramelaconite C~C~03 414 22-28 24-31 21-24 16-20 Poyarkovite Hg3ClO 452

22-33 21-30 21-32 20-29 Caswellsilverite NaCrS2 77 23 19 24 25 Djerfisherite K6(Cu,Fe,Ni)25S26CI 142 23 20 24 25 Bartonite ~FelOS14 35 23 22 23 22 Bixbyite (Mn,Fe)P3 51 23 23 23 23 Sakuraiite (Cu,Zn,Fe h(In,Sn)S4 497

23 24 22 22 Alabandite MnS 4 23 25 25 24 Kiddcreekite (selenian) Cu6SnWSS 287 23-23 23-24 22-23 21-22 Cuprospinel (Cu,Mg)Fep4 130 23-26 20-23 25-27 28-29 Stannoidite CUs(Fe,ZnhS~S12 534 23-28 27-31 22-27 21-26 Orpiment As2S3 400

23-30 23-33 22-28 21-27 Trechmannite AgAsS2 581 23-31 25-34 22-29 21-27 Romanechite (Ba,Hp)(Mn,Mn)SOlO 483 24 24 23 21 MnS2 221 24 27 23 21 Maghemite r-Fe203 337 24 29 23 22 Galkhaite (Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4S12 187

24-24 25-25 24-24 24-24 Hocartite Ag2FeSnS4 239 24-25 18-19 28-28 32-32 Renierite (Cu,Zn)l1 (Ge,As hFe4S16 478 24-25 25-26 23-24 22-23 Plumboferrite PbFe40 7 443 24-25 26-26 24-26 25-27 Enargite C~AsS4 155 24-26 27-29 23-24 22-23 Hematophanite Pb4Feps(OH,CI) 230 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

24-27 20-22 26-28 28-30 Stannoidite Cl1s(Fe,Znh SnA2 533 24-27 22-25 25-28 28-29 Stannoidite CUg(Fe,ZnhS~S12 532 24-27 26-29 23-27 23-26 Rohaite TlCuSSbS2 482 24-28 29-33 23-26 22-25 Proustite AgaAsSa 453 24-29 26-30 24-28 23-26 HgS 99

24-37 21-34 26-38 28-38 Stembergite AgFe2Sa 536 24-45 23-39 25-47 26-48 Mackinawite (nickelian) (Fe,Ni)9Sg 336 25 20 27 30 Shadlunite (Cu,Fe)g(Pb,Cd)Sg 508 25 24 27 29 Thalfenisite Tl6(Fe,Ni,Cu)2sS26CI 572 25 25 24 22 Trevorite NiFe20, 582

25 25 25 25 Hemusite (antimonian) Cu,C~SnMoSg 233 25 26 25 25 HgS 367 25 28 25 25 Can/ie/dife AggSnS6 71 25-25 26-27 24-25 25-25 Argyrodite AggGeS6 19 25-25 27-30 24-25 25-28 Permingeatite CUa(Sb)Se, 429

25-26 23-24 26-27 27-27 Kuramite CUaSnS, 306 25-26 26-26 24-26 24-25 Kesterite C~ZnSnS, 283 25-27 24-25 26-29 28-30 Luzonite CUaAsS, 334 25-27 29-32 23-25 23-24 Xanthoconite AgaAsSa 628 25-29 26-30 25-28 25-27 Chalcothallite T~(Cu,Fe)6SbS, 87

25-30 26-31 24-29 23-27 Zenzimite Pba(Fe,Mn),Mna°1S 630 25-30 27-32 24-28 23-27 Cinnabar HgS 98 25-30 28-34 24-29 23-28 Kermesite Sb2S20 282 25-32 26-34 24-30 22-28 Crednerite CuMn°2 119 26 25 26 26 Mohite C~SnSa 377 26 25 26 26 Chameanite (Cu,Fe),As(Se,S), 89 26 25 26 27 Hemusite Cu,C~SnMoSg 232 26 28 26 28 Villamaninite (Cu,Ni,Co,Fe)S2 606 26-27 24-26 26-27 26-27 C~FeSnS, 530 26-28 19-19 30-32 33-35 Renierite (Cu,Zn)l1 (Ge,As)2Fe,S16 479

26-28 31-31 25-26 23-24 Cuprite C~O 125 26-30 28-32 25-29 23-26 Hematite a-Fe20 a 228 26-33 28-35 25-31 24-30 Hollandite Ba(Mn,Mn)g016 241 26-34 24-32 28-36 30-38 Argentopyrite AgFe2Sa 17 27 25 27 27 Florensovite Cu(Cr1.sSbo.s)S, 174

27 26 28 28 Chameanite (Cu,Fe),As(Se,S), 88 27 26 28 30 Colusite C~6V 2(As,Sn,Sb)6Sa2 109 27 27 27 27 Mgriite CuaAsSea 368 27 29 26 25 Coronadite Pb(Mn,Mn)g016 113 27 31 25 23 Cuprite C~O 124

27-28 25-26 28-29 29-29 Chatkalite CU6FeS~Sg 90 27-30 20-23 29-35 33-40 Mawsonite Cu6Fe2SnSg 360 27-30 27-31 26-29 27-29 Bukovite T~(Cu,Fe),Se, 65 27-30 28-31 26-29 25-28 Gortdrumite (Cu,Fe)6Hg2Ss 210 27-31 28-33 26-30 23-27 Hematite a-Fe20 a 229 27-31 28-38 26-30 26-29 Stromeyerite AgCuS 539 27-32 26-30 28-35 28-37 Raguinite TlFeS2 472 27-35 30-37 26-35 26-34 Rohaite TlCuSSbS2 481 27-41 26-44 29-41 29-38 Selenium (synthetic) Se 504 28 22 32 36 Vinciennite C~oFe,Sn(As,Sb)~6 607 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

28 25 30 29 Sulvanite C~VS4 546 28 30 27 26 Canjieldife (fell urian) Ag8SnS6 72 28 31 25 21 Berzelianite c~Se 44 28-28 26-27 27-28 27-27 Stannite C~FeSnS4 531 28-29 24-26 28-29 29-30 Petrukite (Cu,Fe,ZnMSn,In)S4 433

28-29 30-31 26-27 25-26 Routhierite CuTlHg2(Sb,Ash S6 487 28-30 30-31 26-28 24-26 Routhierite CuTIHg2(Sb,As h S6 486 28-30 30-31 28-30 30-33 Thalcusite C~_xT~Fel+xS4 571 28-30 30-33 26-28 23-24 Sabatierite Cu6TlSe, 495 28-30 31-33 28-30 28-29 Stephanite AgsSbS4 535 29 24 31 33 -shadlunite (Mn,Pb,Cd}(Cu,Fe )8S8 349 29 24 33 36 Argentopentlandite Ag(Fe,Ni)8S8 . 16 29 27 29 30 Kolarife PbTeC~ 293 29-30 30-34 26-28 25-26 Hutchinsonite (Pb,TlhAssS9 242 29-30 32-33 27-28 26-26 Ag,MnSb2S6 498

29-30 34-35 27-28 25-27 Pyrargyrite Ag3SbS3 456 29-31 32-33 29-30 27-29 Parapierrotite Tl(Sb,As )SS8 415 29-32 32-34 29-31 29-30 Pearceite A~6As2S11 420 29-32 32-36 29-31 28-30 lmiterite Ag2HgS2 246 29-34 34-38 27-32 26-31 Laphamite As2(Se,sh 310

30 27 29 29 Nekrasovite (zincian) C~6v 2(Sn,As,Sb)6S32 390 30 27 31 32 Colusite C~6V 2(As,Sn,Sb)6S32 107 30 30 29 27 Tennantite (plumbian) (Cu,Feh2As4~3 560 30 30 30 29 Argentotennantite (Ag,Cu>s(Zn,Feh(As,Sb)4S13 18 30 30 30 31 Goldfieldite C~2(Te,Sb,As)4~3 208

30 31 29 27 Tennantite (Cu,Fe)12As'~3 557 30 31 30 28 Tennantite (bismuthian) (Cu,Feh2As4~3 558 30 33 29 28 Tiemannite HgSe 575 30 33 31 33 Fischesserite Ag3AuSe2 172 30 33 32 34 Fischesserite Ag3AuSe2 173

30-31 35-35 28-28 26-26 Pyrostilpnite Ag3SbS3 465 30-32 33-34 29-31 28-30 Duranusite As4S 148 30-32 34-36 28-30 27-29 Laffittite AgHgAsS3 308 30-33 33-37 29-31 28-30 Mckinstryite (Ag,CuhS 361 30-42 31-45 31-41 32-40 Berthierite FeSb2S4 43 31 25 33 35 Geffroyite (Ag,Cu,FeMSe,S)8 189 31 27 32 33 Colusite C~6V 2(As,Sn,Sb)6~2 108 31 28 33 33 Radhakrishnaife PbTe3(Cl,Sh 471 31 30 29 26 Tennantite (zincian) (Cu,Fe)12As4S13 561 31 31 30 28 Tennantite (mercurian) (Cu,Fe)12As,S13 559

31 31 31 31 Goldfieldite C~2(Te,Sb,As)4~3 209 31 33 30 28 Acanfhife Ag2S 1 31-31 32-34 31-31 31-32 Lautite CuAsS 316 31-32 32-33 30-31 29-30 Watanabeite Cu4(As,SbhSs 617 31-33 33-34 30-31 29-29 Polybasite (Ag,Cu)16Sb2~1 447

31-35 32-38 31-34 29-32 Chaboumeite (Tl,Pb)23(Sb,As)91~47 81 31-36 28-33 32-36 34-37 Eskebomite CuFeSe2 160 31-38 33-40 30-37 29-35 Cylindrite Pb4FeSn4Sb2~6 132 31-41 33-45 30-39 28-35 Livingstonite HgSb,S8 326 31-48 31-53 30-45 29-42 Stibnite Sb2S3 538 COM wavelength key continued

546nm 470nm 589nm 650nm Page

32 28 33 31 Arsenosulvanite C~(As,V)S, 26 32 31 31 29 Tetrahedrite (argentian) (Cu,Fe)12Sb,5,.3 567 32 31 31 30 Tetrahedrite (argentian) (Cu,Fe>t~b,5,.3 568 32 32 32 32 Giraudite (Cu,Zn,Ag)dAs,Sb),(Se,s)13 199 32 33 32 32 Vaesite (cobaltian) N~ 599

32 34 30 28 Krutaite C~ 303 32-33 34-34 32-33 32-32 Larosite (Cu,Ag)21 (Pb,Bih5,.3 313 32-33 34-35 31-32 30-30 Jalpaite Ag3C~ 266 32-33 35-36 30-31 27-29 Djurleile C~lS16 143 32-34 30-33 33-33 33-33 Cameronite C~AgT~o 70

32-34 34-35 32-33 30-32 Seligmannite CuPbAsSa 505 32-34 35-36 30-33 29-32 Benleonardite Ags(Sb,As)Te2S3 41 32-35 35-38 30-33 28-30 Miargyrite AgSbS2 369 32-39 34-39 31-39 29-36 Vaughanite TIHgSb,~ 604 33 31 32 29 Tetrahedrite (zincian) (Cu,Fe>t2Sb,5,.3 570

33 32 32 31 Tetrahedrite (Cu,Fe)12Sb,5,.3 566 33 32 33 31 Tetrahedrite (mercurian) (Cu,Fe)12Sb,5,.3 569 33 33 33 32 Daubreelite FeCr~, 135 33 34 32 30 Freibergite (Ag,Cu,Fe)12(Sb,As),5,.3 177 33 34 33 33 Hakite (Cu,Hg,Ag)12Sb,(Se,S)13 218

33 34 33 35 Vaesite (cuprian) N~ 600 33 37 31 28 Henryite Cu,A&Te, 234 33-33 37-37 32-32 30-30 C~S 82 33-34 34-36 32-33 31-32 Levydaudite PbsS'7CUa(Bi,SbhS2S 320 33-35 32-36 33-35 32-35 Crookesite C~(TI,Ag)Se, 121

33-35 37-39 31-33 29-31 Weissite CUsTe3 622 33-36 32-34 34-36 33-35 W ittichenite CUaBiS3 623 33-38 28-33 36-41 40-43 Troilite FeS 583 34 32 36 38 Greigite Fe3S, 214 34 33 34 33 Hakite (Cu,Hg,Ag)12Sb,(Se,S)13 219

34 34 34 34 Vaesite (selenian) NiS2 601 34 35 33 32 Cuproiridsite Culr~, 127 34-35 23-25 37-38 39-40 Haycockite Cu,FesSs 225 34-35 35-35 32-34 - 31-32 Aguilarite Ag,SeS 2 34-36 36-37 33-35 32-34 Boumonite PbCuSbS3 57

34-36 36-38 33-34 32-33 Boumonite PbCuSbS3 56 34-37 34-35 34-37 35-38 Lapieite CuNiSbS3 311 34-37 36-39 32-36 30-33 Sartorite PbAs2S, 499 34-40 37-43 33-38 32-36 Pierrotite T~6As,5,.6 435 34-43 35-44 33-43 33-42 Uchucchacuaite AgMnPb3Sbs5,.2 592

34-43 35-45 33-41 32-39 Falkmanite Pbs.,Sb3.6SU 163 35 28 38 40 Isocubanite CuFe2Sa 259 35 34 36 37 Pyrite (nickeloan) (Fe,Ni,Co)~ 460 35-36 35-35 35-36 35-36 Furutobeite (Cu,Ag)6PbS, 181 35-37 37-38 34-36 33-35 Potosiite Pb48S~sFe,.Sb165,.lS 450

35-39 29-34 38-41 41-43 Cubanite-' CuF~Sa 122 35-39 37-41 33-37 31-34 Baumhauerite-2a PbU Ag(As,Sb)lSSa6 37 35-39 37-41--34-38 32-34 Baumhauerite PbaAs,Sg 36 35-40 31-36 37-42 40-43 F~_"S 466 35-40 38-42 34-38 32-35 Liveingite PbgAs13~S 325 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

35-41 38-44 34-40 32-37 Rathite (Pb,TlhAss~O 475 35-42 35-43 35-43 35-43 Junoite Pb3C~Bis(S,Se h6 274 36 24 39 41 Talnakhite Cu9(Fe,Ni)sS16 548 36 26 38 40 Mooihoekite Cu9FegS16 384 36 37 35 33 Krutaite (nickeloan) CuSez 305 36 37 39 37 Coloradoite HgTe 106 36-36 34-37 35-37 33-37 Lapieite CuNiSbS3 312 36-36 37-37 37-37 35-35 Gratonite Pb9As4S1S 212 36-37 37-39 35-37 34-36 Franckeite (Pb,Sn)6FeS~SbzS14 175 36-37 38-39 35-36 34-35 Lengenbachite Pb6(Ag,CuhAs4S13 318

36-37 38-40 34-35 32-34 Naumannite AgzSe 389 36-38 34-36 37-37 35-35 Eucairite AgCuSe 162 36-38 37-39 35-38 34-37 Diaphorite PbzAg3Sb3SS 140 36-39 34-37 37-40 37-41 Cuprobismutite C~OB~2SZ3 126 36-40 32-36 39-42 41-44 Pyrrhotite Fe1_xS 467

36-40 37-40 35-39 34-38 Roschinite Ag19PbloSbS1S96 485 36-40 37-41 35-39 34-37 Freieslebenite PbAgSbS3 178 36-41 32-37 39-43 42-45 Pyrrhotite F~_xS 468 36-41 38-42 36-40 35-39 Andorite AgPbSb3S6 12 36-42 37-44 35-40 32-36 Fiiloppite Pb3SbsS1S 180

36-42 38-43 36-41 35-41 Jaskolskiite Pb2+xCU x(Sb, Bih_xSs 268 36-43 37-44 36-41 34-38 Plagionite PbsSbsS17 438 36-44 38-45 36-43 34-41 Jamesonite Pb4FeSb6S14 267 37 34 39 42 Cattierite CoSz 78 37 35 37 38 Malanite Cu(Pt,Ir)2S4 347

37 36 37 37 Cuprorhodsite CuRhzS4 129 37-38 38-39 35-37 33-36 Criddleite TlAgzA u3SblOS10 120 37-38 38-40 35-37 33-34 Dufrenoysite PbzAs2SS 147 37-38 38-40 35-37 33-36 Aramayoite Ag(Sb,Bi)S2 15 37-39 39-40 34-36 32-34 Tvalchrelidzeite Hg3(Sb,As)S3 589

37-42 37-40 37-42 37-41 Emplectite CuBiSz 153 37-42 38-43 36-41 34-39 Semseyite Pb9SbSS21 506 37-42 39-43 36-41 35-39 Veenite Pbz(Sb,AshSs 605 37-42 39-43 37-41 35-38 Boulangerite PbsSb4S11 55 37-43 38-45 37-43 35-41 Meneghinite Pb13CuS~S24 364

37-44 49-54 37-42 51-53 Cuprostibite C~(Sb,Tl) 131 37-48 39-51 37-46 36-45 Pii.ii.kkonenite SbzAsSz 405 37-49 38-49 37-48 36-47 BizS3 48 38 40 37 36 Cervelleite Ag4TeS 80 38-40 38-41 37-39 36-37 Rayite Pbs(Ag,TI)zSbsS21 476

38-41 40-42 37-40 37-38 Jordanite Pb14As6S23 271 38-42 38-43 37-41 35-39 Zinkenite Pb9SbzzS42 633 38-44 38-44 37-42 36-41 Tintinaite Pb2Fu4(Sb,BihaS69 577 38-44 38-44 37-42 36-41 Zoubekite AgPb4Sb4S10 634 38-44 39-47 36-40 34-38 Chalcostibite CuSbSz 86

38-45 39-45 38-44 36-41 Owyheeite Ag2P~(Sb,Bi)sS20 404 38-48 39-46 43-52 50-58 Breithauptite NiSb 62 38-48 39-46 43-53 50-58 Breithauptite (synthetic) NiSb 63 39 25 41 42 Putoranite C~6--1s(Fe,Ni)lS_19S3Z 455 39 35 42 44 Pyrite (nickelian) FeS2 459 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

39 39 38 37 Krutaite (nickeloan) CuSe2 304 39 41 38 38 Petzite Ag3AuTe2 434 39-41 40-40 39-42 39-43 Hessite Ag2Te 237 39-42 40-43 39-42 37-40 Benavidesite Pb.(Mn,F«:>Sb6~' 39 39-42 40-44 38-41 37-40 Geocronite P~.(Sb,As)6S23 192

39-43 41-45 39-43 38-42 Kirkiite ~OB~As3S19 288 39-44 39-44 38-42 37-40 Dadsonite ~O+xSbl4-xS31_xClx 133 39-46 39-45 39-46 39-45 Aikinite CuPbBiS3 3 39-47 40-46 39-47 38-46 Krupkaite PbCuB~S6 302 40 17 54 59 Bezsmertnovite Au.Cu(Te,Pb) 46

40 40 40 39 Penroseite (cuprian) (Ni,Co,Cu)Se2 423 40-41 41-42 39-41 38-41 Stiitzite Ag2_xTe 540 40-42 41-42 40-42 41-43 Inaglyite C~Pb(Ir,Pt)8~6 247 40-42 43-46 39-41 38-39 Nagyagite PbsAu(Te,Sb),SS-8 388 40-45 40-44 40-45 39-44 Hammarite Pb2C~Bi,S9 220

40-45 43-47 40-44 39-43 Izoklakeite (Cu,Fe)2Pb27(Sb,Bi)lgSS7 264 40-46 41-46 39-45 38-44 Cooperite (Pt,Pd,Ni)S 111 40-47 43-48 38-46 36-44 Cooperite (Pt,Pd,Ni)S 110 40-53 38-49 40-53 40-54 Empressite AgTe 154 41 41 41 42 Penroseite (Ni,Co,Cu)Se2 421

41-46 44-48 41-45 40-45 Cosalite Pb2B~SS 115 42 40 43 44 Penroseite (Ni,Co,Cu)Se2 422 42 44 41 40 Erlichmanite OsS2 159 42-43 40-41 44-44 45-46 Sopcheite Ag.Pd3Te, 519 42-44 42-45 42-43 41-42 Teallite PbSnS2 549

42-45 42-45 41-44 41-45 Neyite P~(Cu,AghBi6S17 392 43 41 45 47 Sopcheite Ag,Pd3Te, 517 43 42 43 45 Carrollite Cu(Co,NihS• 74 43 44 42 41 Erlichmanite OsS2 158 43 45 43 43 Lillianite Pb3B~S6 321

43 46 41 39 Laurite RuS2 315 43 46 42 40 Laurite RuS2 314 43 46 42 42 PbS 184 43-44 42-44 42-44 42-44 Braggite (Pt,Pd,Ni)S 59 43-44 43-43 43-44 43-44 Braggite (Pt,Pd,Ni)S 60

43-45 43-44 44-46 44-47 Konderite C~Pb(Rh,Pt,Ir)8S16 295 43-47 46-50 42-46 41-45 Wittite Pb9B~2(S,Seb 624 43-48 43-49 42-47 41-47 Matildite AgBiS2 358 43-48 45-50 42-47 42-46 Cupropavonite AgPbC~BisSl0 128 43-49 46-51 42-48 41-47 Weibullite Pb6Bi8(S,Se)18 621

43-50 44-53 41-47 40-45 Herzenbergite SnS 236 43-52 43-52 43-52 42-52 Guanajuatite B~Se3 216 44 47 43 43 Galena PbS 185 44-46 41-42 45-47 45-48 Cherepanovite RhAs 91 44-47 44-47 44-47 44-48 Soucekite CuPbBi(S,Seh 520

44-48 45-49 43-47 43-46 Benjaminite (Ag,CuMBi,Pbh~2 40 45 43 45 46 Carrollite (nickelian) Cu(Co,NihS• 75 45 44 47 51 Violarite FeN~S. 608 45-45 33-34 47-47 47-48 CuFeS2 84 45-45 41-42 45-48 46-50 Sopcheite Ag,Pd3Te, 518 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Pilge

45-45 42-42 46-47 50-50 Keithconnite Pd3_xTe 280 45-45 43-44 45-46 46-46 Vysotskite (Pd,Pt)S 615 45-46 45-45 46-46 46-47 Watkinsonite PbC~Bi4(Se,S,Te)s 618 45-47 39-42 47-50 50-52 Donharrisite NisHg3S9 146 45-47 45-46 45-47 44-46 Gladite PbCuBisS9 200

45-47 47-49 44-46 44-45 Galenobismutite PbBi:!S4 186 45-47 47-50 44-46 43-45 Kobellite Pb2(Bi,SbhSs 291 45-50 42-44 48-54 54-63 Cabriite Pd2SnCu 68 45-52 42-46 48-57 55-64 Cabriite Pd2SnCu 67 46 34 48 49 Chalcopyrite CuFeS2 85

46 44 46 46 Palladseite Pd17Se1S 409 46 45 47 48 Tyrrellite (Cu,Co,Ni)3Se4 590 46 46 46 49 Polydymite NiNi:!S4 448 46 47 45 45 Irarsite (Ir,Ru,Rh,Pt)AsS 252 46 48 45 45 Gersdorffite I NiAsS 195

46-48 40-43 48-50 50-52 Tucekite Ni~b2SS 585 46-48 46-46 46-48 47-47 Kashinite (Ir,Rhh S3 277 46-48 46-47 47-48 47-49 Bowieite (Rh,Ir,Pt)2S3 58 46-49 46-49 46-49 46-49 Ikunolite Bi4(S,Seh 243 46-50 41-44 46-50 45-49 (p domeykite) CUaAs 145

46-50 44-45 47-53 49-56 Ferroselite FeSe2 167 46-51 37-44 52-56 59-61 Nickeline NiAs 394 46-52 43-48 48-54 51-57 Luberoite PtSSe4 332 46-63 46-57 45-66 45-67 Niggliite PtSn 395 47 40 49 52 (Fe,Ni)~s 424

47 44 49 50 Pentlandite (rhodian) (Fe,Ni)~s 427 47 44 49 52 Violarite (cobaltian) FeNi:!S4 609 47 44 49 52 Linnaeite (nickelian) CoCo2S, 323 47 45 48 50 Siegenite (cuprian) CoNi:!S4 510 47 45 49 51 Siegenite CoNi:!S4 509

47 46 46 46 Petrovicite PbHgCUaBiSes 432 47 47 48 49 Khamrabaevite (Ti,Fe,V)C 284 47 48 47 47 Ullmllnnite NiSbS 593 47 49 46 47 Ullmllnnite (Ilrsenilln) NiSbS 594 47 49 47 47 Gersdorffite (antimonian) NiAsS 194

47-53 44-48 52-57 59-60 Imgreite NiTe (1) 245 48 46 48 49 Tyrrellite (Cu,Ni,CohSe, 591 48 47 49 49 Platarsite (Pt,Rh,Ru)AsS 439 48 48 47 46 Padmaite PdBiSe 406 48 48 49 49 Gersdorffite II NiAsS 198

48-49 48-48 48-49 48-49 Watkinsonite PbC~Bi4(Se,S,Te)s 619 48-50 46-48 49-51 50-52 Parkerite Nia(Bi,Pbh S2 418 48-50 47-47 51-52 55-56 Maucherite NillAsS 359 48-51 40-46 51-53 53-55 Vozhminite (Ni,CoMAs,Sb)S2 612 48-51 48-49 49-51 49-50 Alloclasite (Co,Fe)AsS 9

48-53 45-49 52-56 59-59 Paolovite Pd2Sn 410 49 40 52 55 Orcelite Nis_xAs2 399 49 42 51 53 Pentlandite (Fe,Ni)9SS 425 49 49 49 48 Platarsite (Pt,Rh,Ru)AsS 440 49-49 48-49 49-49 50-50 Paracostibite CoSbS 411 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

49-50 47-48 49-50 49-51 Skippenite B~Se2Te 514 49-53 47-52 49-53 49-53 Poubaite PbB~Se2(Te,Sh 451 49-55 50-55 48-55 47-54 Laitakarite Bi4(S,Seh 309 49-56 45-52 50-55 48-53 Marcasite FeS2 354 49-58 48-57 49-57 48-56 Paraguanajuatite B~(S,Seh 412

50 45 53 57 Orcelite Nis_xAs2 398 50 46 52 55 Telargpalite (Pd,AghTe 550 50 46 53 57 Tellurupalladinite Pd9Te4 556 50-52 49-53 51-51 51-52 Arsenopyrite (cobaltian) FeAsS 24 50-52 50-51 50-52 50-52 Aleksite PbB~Te2S2 7

50-54 43-44 52-58 54-60 Millerite fJ-NiS 375 50-55 52-57 50-54 49-53 Nevskite Bi(Se,S) 391 50-57 45-45 52-59 54-61 Millerite fJ-NiS 374 50-58 49-58 50-58 48-57 Paraguanajuatite B~(Se,S>a 413 51 44 54 55 Domeykite C"JAs 144

51 45 53 55 Mertieite II Pdg(Sb,Ash 366 51 48 52 54 CoAsS 104 51 50 52 53 Cobaltite CoAsS 105 51 56 49 47 Clausthalite (synthetic) PbSe 101 51-51 51-51 51-51 51-51 Jolliffeite NiAsSe 270

51-55 45-49 55-58 59-62 Plumbopalladinite Pd3Pb2 444 51-55 52-55 51-56 50-55 Joseite Bi4TeS2 272 51-62 47-60 52-61 53-61 Kostovite AuCuTe4 296 52 45 54 56 Pentlandite (cobaltian) (Fe,Ni)~g 426 52 46 54 54 Pyrite FeS2 457

52-52 49-52 52-53 51-54 Arsenopyrite FeAsS 23 52-53 43-45 54-54 56-57 Godlevskite (Ni,FehS6 201 52-56 49-54 52-57 52-57 Kawazulite B~Te2Se 278 52-56 53-56 51-55 51-55 Arsenic As 21 52-57 50-57 53-55 54-54 Gudmundite FeSbS 217

52-57 52-56 52-57 51-56 Ingodite B~TeS 249 53 50 55 57 Suessite (Fe,NihSi 544 53 50 56 57 Majaldte PdNiAs 345 53 52 54 54 Aleksite PbB~Te2S2 6 53-54 47-48 55-56 58-59 Potarite PdHg 449

53-54 47-49 55-57 57-59 Arsenopalladinite Pdg(As,Sbh 22 53-54 51-55 53-54 53-53 Arsenopyrite (cobaltian) FeAsS 25 53-55 48-50 56-57 58-59 Stibiopalladinite PdsSb2 537 53-55 50-51 54-56 56-58 Palladoarsenide Pd2As 408 53-55 54-56 52-55 50-55 Lollingite (cobaltian) FeAs2 328

53-55 55-57 54-55 55-56 Volynskite AgBiTe2 610 53-56 46-46 54-58 56-59 Heazlewoodite N~S2 226 53-56 54-58 52-56 50-55 Lollingite FeAs2 327 53-63 50-60 53-63 53-62 Sylvanite (Au,AghTe4 547 54 46 57 59 Isomertieite Pdu Sb2As2 262

54 47 55 56 Pyrite Fe~ 458 54 53 55 55 Insizwaite Pt(Bi,Sb)2 250 54 54 54 52 Sperrylite PtAs2 521 54 56 53 53 Skutterudite CoAs2-3 515 54 59 51 49 Clausthalite PbSe 100 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

54-54 49-50 56-56 59-59 Genkinite (Pt,Pd)4Sb3 191 54-S5 49-52 56-57 59-60 Palarstanide Pds(Sn,Ash 407 54-S5 54-S7 54-S4 52-53 Safflorite CoAs2 496 54-S5 55-58 53-55 51-54 Clinosafflorite (Co,Fe,Ni)As2 102 54-56 54-54 56-57 58-60 Urvantsevite Pd(Bi,Pbh 598

54-57 50-53 56-58 58-59 Atheneite (Pd,HghAs 28 54-S7 52-55 54-58 S4-58 Sulphotsumoite BiaTe2S S45 55 48 58 60 Isomertieite Pd,.l Sb2As2 261 55 54 55 54 Nickel-skutterudite (Ni,Co,Fe)As3 393 55 54 55 55 Gersdorffite II NiAsS 197

55 57 55 54 Skutterudite COAS2~ 516 55-60 52-57 56-61 57-61 Krennerite (argentian) (Au,Ag)Te2 301 55-61 52-58 55-60 55-60 Tetradymite B~Te2S 564

56 51 57 60 Chromferide F;.sCrO.5_x 93 56 55 56 57 Maslovite PtBiTe 356

56 56 56 57 Michenerite (Pd,Pt)BiTe 370 56 57 56 57 Michenerite (antimonian) (Pd,Pt)BiTe 372 56-57 54-55 57-58 58-59 Moncheite (Pt,Pd)(Te,Bi)2 379 56-59 51-55 58-61 60-62 Montbrayite (Au,SbhTe3 382 56-59 52-54 59-62 61-64 Kitkaite NiTeSe 289

56-59 54-56 57-60 58-61 Froodite PdB~ 179 56-59 SS-57 57-60 56-61 Joseite-B Bi4T~S 273 56-63 54-61 56-63 55-63 Moncheite (Pt,Pd)(Te,Bih 380 57 50 60 61 pentlandite CogSs 103 57 56 57 58 Michenerite (Pd,Pt)BiTe 371

57 57 57 57 Gersdorffite II NiAsS 196 57-58 54-55 59-60 61-61 Polarite Pd(Bi,Pb) 446 57-61 56-61 57-61 57-59 NiAs2 473 57-62 54-56 61-66 64-69 Melonite NiT~ 362 58 52 60 60 Maldonite A~Bi 348

58 58 58 58 Fe 257 58 59 59 59 Iron (nickelian) Fe 258 58-58 54-55 60-61 62-64 Melonite (palladian-bismuthian) NiTe2 363 58-69 58-68 58-68 55-66 Tellurium (synthetic) Te 5S4 59 56 61 62 Ferchromide Cr3Fe1_x (x-0.6) 164

59 57 60 61 Polarite Pd(Pb,Bi) 445 59 57 60 61 Ferronickelplafinum Pt2FeNi 166 59-60 59-59 59-61 58-61 Pararammelsbergite NiAs2 416 59-61 57-59 59-61 60-62 Moncheite (palladian) (Pt,Pd)(Te,Bih 381 59-62 54-59 59-63 59-63 Krennerite AuT~ 300

59-63 54-55 61-65 62-66 Cu6As 8 60 49 67 73 Gold (palladian) Au 207 60 55 62 64 Zvyagintsevite (Pd,Pt,Auh(Pb,Sn) 635 60 58 60 60 Insizwaite Pt(Bi,Sbh 251

60 59 61 62 Aurostibite AuSb2 30

60-63 53-56 62-66 64-69 Sudburyite (Pd,Ni)Sb 542 60-63 53-56 62-66 64-69 Stumpflite Pt(Sb,Bi) 541 60-63 59-62 60-63 59-63 Dyscrasite Ag3Sb 149 60-67 54-62 62-70 64-72 Bi 47 60-67 59-66 60-66 58-64 Tellurium Te 552 COM wavelength key continued

R% 546nm 470nm 589nm 650nm Page

60-70 60-70 60-69 59-67 Tellurium (synthetic) Te 553 61 62 61 63 Seiniijokife (Fe,Ni)(Sb,As h 503 61-63 54-55 63-66 65-69 Sudburyite (nickelian) (Pd,Ni)Sb 543 61-68 55-63 62-68 63-68 Calaverite AuTe2 69 62-62 64-65 60-60 57-60 Osmium (iridian) Os 402

62-62 64-65 60-61 60-60 Osmium Os 401 62-63 55-56 64-65 68-68 Kotulskite (bismuthian) Pd(Te,Bi) 299 62-64 61-63 62-65 63-66 Tsumoite BiTe 584 62-65 62-63 62-66 63-67 Rucklidgeite (Bi,PbhTe4 488 62-66 61-64 62-68 63-69 Hedleyite B~Te3 227

62-66 63-64 63-67 64-68 Tellurobismuthite B~Te3 555 63 60 65 66 Awaruite NiaFe 31 63 66 61 59 CupaIife (Cu,Zn)AI 123 63-66 62-65 63-68 65-70 Merenskyite (Pd,Pt) (Te,Se,Bi)2 365 63-67 61-65 64-68 63-68 Tellurantimony Sb2Te3 551 63-68 56-59 65-71 67-73 Kotulskite Pd(Te,Bi) 297 64 62 65 65 Tefraferroplafinum PtFe 565

64-66 63-65 64-67 65-68 Pilsenite Bi4Te3 436 64-66 66-67 62-65 61-65 Osmium (iridian) (Os,Ir) 403 65 56 92 99 Copper Cu 112 65 62 66 68 Isoferroplatinum (Pt,Pdh(Fe,Cu) 260 65 66 64 62 Rufheniridosmine (Os,Ir,Ru) 490 67 68 66 64 Rufheniridosmine (Os,Ir,Ru) 489 68-74 59-62 69-76 69-77 Kotulskite Pd(Te,Bi) 298 70 66 71 72 Platinum Pt 441

70 70 69 67 Rufhenium Ru 491 70 70 69 69 Ph 317 70-71 70-71 69-71 68-70 Ruthenium (iridian) Ru 492 71 68 68 63 Altaite PbTe 10 71 69 72 74 Iridium Ir 253

72 65 74 76 Kolymite C~Hg6 294 72 69 74 76 Belendorfjife C~Hg6 38 72-73 70-71 72-73 70-72 Ruthenium (synthetic) Ru 493 72-74 66-67 76-77 79-79 Schachnerite A~.lHgo.9 500 73 71 74 74 Iridium Ir 254

73 72 75 77 Iridium (ruthenian) Ir 256 74 71 74 75 Iridium Ir 255 74-78 74-77 73-77 70-75 Antimony Sb 14 76-76 71-76 74-79 70-80 CuA~ 285 77 36 88 94 Gold Au 204

79-80 72-74 81-82 83-84 Paraschachnerite Ag3Hg2 417 81 38 91 95 Gold (argentian) Au.94Ag.06 206 82 78 84 84 Moschellandsbergite Ag2Hg3 385 82-88 78-85 82-88 81-87 Sn 576 84 46 90 93 Gold (argentian) Au.80Ag.20 205 86 80 88 88 Silver (antimonian) Ag 512

89 63 92 93 Electrum Au.64Ag.36 152 90 76 92 93 Electrum Au.47 Ag.53 151 93 88 94 95 Silver Ag 511 99 95 >99 99 Silver (synthetic) Ag 513 Colour value key 2

Only colour values in air are presented and these are relative to the C illuminant. Organisation: is in ascending order of luminance (Y%). Isotropic minerals are listed first. Where two or more minerals have the same luminance they are ordered from the lowest to highest excitation purity (P e%). Where these are also the same they are ordered from the lowest to highest dominant wavelengths (Ad).

Y% Ad Pe% Formula Page

Aleksite PbBi2Te2S2 6 Chromferide Fe1.5CrO.5-x 93 Cuproiridsite Culr2S4 127 Cuprorhodsite CuRh2S4 129 Duranusite AS4S 148

Falkmanite Pb5.4Sh3.65t 1 163 Hakite (Cu,Hg,Agh2Sb4(Se,sh3 218 Hakite (Cu,Hg,Agh2Sb4(Se,sh3 219 lmiterite Ag2HgS2 246 Kashinite (Ir,Rh)253 277

Malanite Cu(Pt,Ir12S4 347 Poyarkovite ~CIO 452 Putoranite CUl6-18(Fe,Nih8-19532 455 Talnakhite CU9(Fe,Ni)8st6 548 Thalcusite CU3_xTI2Fe1 +xS4 571

Urvantsevite Pd(Bi,Pb)2 598 6-9 463-483 10-4 Malachite CU2(C03)(OH)2 346 6-23 476-474 42-13 Covellite CuS 117 6-27 c497-581 1-5 Graphite C 211 7 475 1 Spinel MgAl204 527

7 468 3 Periclase MgO 428 7-7 463-461 2-2 Corundum Al203 114 7-24 477-476 41-13 Covellite CUS 116 7-24 476-476 43-15 Covellite CUS 118 8 468 2 Hercynite FeAl204 235

8 476 2 Gahnite ZnAI~4 182 8-9 460-463 3-2 Hogbomite (Mg,Fe)2(Al,Ti)5otO 240 8-11 491-629 1-15 Vyalsovite FeS.Ca(OH)2·AI(OH)3 614 8-13 469-475 2-3 Cerussite PbC03 79 9 589 2 Chlorargyrite AgCI 92

9 480 4 Anglesite PbS04 13 9-9 479-475 6-6 Azurite CU3(C03)2(OH)2 32 9-18 480-579 4-10 Tochilinite 6FeO.9S.5(Mg,Fe )(OH)2 579 9-21 579-591 14-21 Erdite NaFeS2·2H20 156 9-26 475-475 5-13 Aurorite (Mn,Ag,Ca)Mn307 .3H20 29

9-27 475-477 5-12 Chalcophanite (Zn,Mn,Fe)Mn407 .3H20 &l 10 477 3 Spinel (ferroan-chromian) MgAl204 528 10-10 469-469 3-3 Ingersonite Ca3MnSb4014 248 10-10 472-472 3-3 Scheelite CaW04 501 10-11 470-473 3-4 Titanite CaTi03 578

xxxviii Colour value key continued

Y% Ad Pe% Formula Page

10-12 473-477 3-2 Blatterite (Mn,Mgh(Mn,Sb,Fe)B05 52 10-12 475-475 3-3 Cannonite Bi20(OH)2S04 73 10-21 466-578 2-25 Valleriite 4(Fe,Cu)S.3(Mg,Al)(OH)2 603 10-25 480-478 37-12 Yarrowite CU9S8 629 10-28 492-603 3-18 Erdite NaFeS2·2H20 157

10-31 c:497-581 32-41 Bogdanovite AU5(Cu,Fe)3(Te,Pb)2 53 11 497 1 Galaxite (ferroan) (Mn,Fe,Mg)(Al,Fe)204 183 11 474 2 Mic:rolite (Ca,Na)2Ta206(O,OH,F) 373 11-11 475-475 6-6 :ite (Zn,Mn)O 631 11-12 473-474 2-2 Filipstadite (Mn,Mg)4SbFe08 171

11-12 476-476 2-2 Cassiterite Sn02 76 12 470 3 Zinc:oc:hromite ZnCr204 632 12 475 3 Filipstadite (Mn,Mg)4SbFe08 170 12 480 3 Magnesioc:hromite (ferroan) MgCr204 338 12 474 4 Bunsenite NiO 66

12 479 4 Betafite (Ca,Na,U)2(Ti,Nb,Ta)206(OH) 45 12-15 468-469 4-4 Geikielite MgTi03 190 12-15 481-c:498 6-<1 Vonsenite Fe2FeB03 611 12-18 476-478 9-9 Lepidoc:roc:ite r-FeO.OH 319 13 468 2 Qandilite (Mg,Fe)2(Ti,Fe,Al)04 469

13 474 3 Thorianite Th02 574 13 482 3 Bismutite Bi2(C03)02 49 13 472 5 Pyroc:hlore (Ca,Nah Nb206(OH,F) 462 13 475 11 Kazakhstanite Fe5V3VI2039(OH)9·9H20 279 13-13 477-476 4-4 Barstowite 3PbC12·PbC03·H20 34

13-14 474-472 2-2 Baddeleyite Zr02 33 13-15 473-474 5-7 Kentrolite Pb2Mn2Si209 281 13-17 474-475 5-4 Jeppeite (K,Bah(Ti,Fe)6Ot3 269 13-19 478-474 2-4 Groutite MnO.OH 215 13-20 479-478 3-6 Hausmannite MnMn204 223

14 469 3 Uraninite U02 597 14 478 3 Chromite FeCr204 94 14 469 4 Koec:hlinite Bi2Mo06 292 14 474 4 Manganosite MnO 351 14 477 4 Chromite FeCr204 95

14-15 475-475 3-3 Manganotantalite MnTa206 352 14-16 c:563-466 16-10 Umangite CUJSe2 596 14-17 474-475 4-4 Valentinite Sb203 602 14-20 485-484 3-4 Manganite MnO.OH 350 14-68 477-575 24-34 Vulc:anite CuTe 613

15 475 3 Pyroc:hlore (Ca,Na)2Nb206(OH,F) 463 15 474 4 Mimetite Pb5(As04)JCl 376 15-15 475-475 3-4 Ixiolite (Ta,Fe,Sn,Nb,Mn)408 263 15-15 475-475 4-4 Lueshite NaNb03 333 15-16 598-586 1-1 Kyzylkumite V2Ti309 307

15-16 472-468 4-4 Wolframite (Fe,Mn)W04 625 15-17 475-492 4-1 Ferrotapiolite (Fe,Mn)(Ta,Nb)206 169 15-18 470-591 2-2 Mannardite Ba(Ti6V2)Ot6 353 15-18 609-c:504 2-2 Nolanite (V,Fe,Fe,TihoOt4(OH)2 396 15-18 476-477 4-5 Wulfenite PbMo04 626 Colour value key continued

Y% Ad Pe% Formula Page

15-21 473-476 11-6 Edgarbaileyite Hg65i2O, 150 16 c504 3 Ulvospinel TiFe204 595 16 474 4 Loparite-(Ce) (Ce,Na,Ca)2(Ti,Nb)206 329 16 474 4 Loparite-(Ce) (Ce,Na,Cah(Ti,Nb)206 330 16 474 4 Perovskite (niobian) CaTi03 431

16 475 4 Sphalerite znS 525 16-16 474-473 3-2 Ferrotapiolite (Fe,Mn)(Ta,Nbh06 168 16-17 480-476 4-6 Pyrobelonite PbMn(V04)(OH) 461 16-17 475-472 5-9 Damaraite 3PbO.PbC12 134 16-18 476-475 3-3 Hawthomeite Ba(Ti3Cr~e2Fe2Mg)ot9 224

16-18 476-476 8-9 Goethite a-FeO.OH 202 16-18 476-476 8-10 Goethite a-FeO.OH 203 16-19 488-565 2-3 SchOllhomite Nao.3CrS2·H20 502 16-19 477-477 4-3 Hetaerolite ZnMn204 238 16-19 469-458 5-5 Marokite CaMn204 355

16-19 474-475 7-6 Pyrophanite MnTi03 464 16-20 478-478 5-2 Hausmannite MnMn204 222 16-20 477-476 6-6 Quenselite PbMn°2(OH) 470 16-21 c530-468 28-21 Rickardite CU7Te5 480 16-22 476-478 5-4 Kamiokite Fe2Mo308 276

16-24 484-485 4-3 Kamiokite Fe2Mo308 275 16-34 c564-474 1-4 Tungstenite-3R WS2 588 16-37 4S7-484 6-6 Klockmannite CuSe 290 16-41 c495-576 1-15 Mackinawite (Fe,Ni)9S8 335 17 458 3 Loveringite (Ca,Ce)(Ti,Fe,Cr,Mg)21 038 331

17 474 4 Perovskite CaTi03 430 17 475 4 Sphalerite (Zn,Fe)S 522 17 475 4 Sphalerite Zns 523 17 475 4 Sphalerite ZnS 524 17 476 4 Sphalerite (manganoan-ferroan) (Zn,Fe)S 526

17-17 475-475 1-2 Ferrocolumbite FeNb206 165 17-17 475-475 4-4 Lindsleyite (Ba,Sr)(Ti,Cr,Fe,Mg,Zr)210 38 322 17-17 476-475 5-6 Asisite Pb7Si08C12 27 17-17 476-476 6-5 Armalcolite (Mg,Fe)Ti205 20 17-18 c504-589 <1-1 Tomichite (V,Fe)4Ti3Asot3(OH) 580

17-18 473-474 3-3 Hemloite (As,Sb)2(Ti,V,Fe,Fe,Alh20230H 231 17-18 475-474 5-4 Mathiasite (K,Ca,Sr)(Ti,Cr,Fe,Mg)21 038 357 17-18 486-481 5-8 Plattnerite Pb02 442 17-19 474-474 4-5 Thoreaulite SnTa206 573 17-20 c537-c553 3-2 Ilmenite FeTi03 244

17-24 592-612 15-1 Nukundamite (Cu,Fe)4S4 397 18 490 1 Chromite (ferrian) FeCr204 96 18 597 1 Wiistite FeO 627 18 485 2 Franklinite (Zn,Fe,Mn)(Fe,Mn)204 176 18 475 4 Gallite CuGaS2 188

18 582 5 Murdochite PbCU608-x(Cl,Br)2x (where x 0.5) 386 18 477 6 Magnesioferrite MgFe204 339 18-19 484-478 4-5 Montroydite HgO 383 18-19 476-475 6-6 Derbylite (Fe,Fe, Ti)7Sbot3(OH) 138 18-19 477-478 7-7 Pseudobrookite (Fe,Fe )2(Ti,Fe )05 454 Colour value key continued

Y% A.d Pe% Formula Page

18-20 476-481 6-5 Parkinsonite (Pb,Mo,[J)808CI2 419 18-20 643-467 10-11 Tugarinovite Mo02 586 18-20 594-c497 11-3 Tugarinovite Mo02 587 18-22 639-581 1-12 Chvilevaite Na(Cu,Fe,Zn)2S2 97 18-27 481-479 20-10 Spionkopite CU39S28 529

19 485 6 Greenockite CdS 213 19-20 477-482 4-4 Eskolaite Cr203 161 19-20 476-476 5-5 Senaite Pb(Ti,Fe,Mn)210 38 507 19-20 477-478 5-5 Braunite MnMn65i012 61 19-20 476-476 6-5 Anatase Ti02 11

19-22 c498-570 1-1 Delafossite CuFe02 137 19-30 585-c498 6-2 Rasvumite KFe2SJ 474 20 c560 1 Magnetite Fe304 340 20 593 1 Magnetite (chromian) Fe304 342 20 580 15 Murunskite K2Cu3FeS4 387

20-21 577-577 6-7 Berdesinskiite V2Ti05 42 20-22 475-476 5-5 Brookite Ti02 64 20-23 475-476 6-5 Rutile Ti02 494 20-23 474-469 7-19 Terlinguaite Hg2CIO 563 20-25 476-534 9-4 Wattersite Hg4HgCr06 620

20-27 473-525 3-1 Tenorite CuO 562 20-39 480-468 4-7 Molybdenite MoS2 378 21 454 1 Magnetite Fe304 341 21 474 1 Magnetite (nickeloan) Fe304 343 21 572 3 Jacobsite (Mn,Fe,Mg)(Fe,Mn)204 265

21 695 3 Germanite CU26Fe4Ge4S32 193 21 480 15 Digenite CU9S5 141 21-23 476-487 9-4 Deanesmithite Hg2Hg3Cr05S2 136 22 487 1 Bixbyite (Mn,Feh03 50 22 471 6 Alabandite MnS 5

22 478 6 Dervillite Ag2AsS2 139 22 403 7 Litharge PbO 324 22 477 11 Realgar AsS 477 22-22 469-469 4-3 Roquesite CulnS2 484 22-22 477-477 10-10 Wakabay ashilite (As,Sb)11st8 616

22-23 c557-c567 1-1 Pirquitasite Ag2ZnSnS4 437 22-23 483-484 3-3 Cuprospinel (Cu,Mg)Fe204 130 22-24 481-480 4-4 Magnetoplumbite Pb(Fe,Mnh2ot9 344 22-25 584-477 1-5 Paramelaconite CU2Cu203 414 22-32 496-567 1-8 Caswellsilverite NaCrS2 77

23 559 <1 Sakuraiite (Cu,Zn,Fe )J(In,Sn)S4 497 23 556 1 Bixbyite (Mn,Fe)203 51 23 c506 2 Kiddcreekite Cu65nWS8 286 23 485 4 Hauerite MnS2 221 23 475 5 Alabandite MnS 4

23 577 10 Bartonite K3Fe10st4 35 23 577 13 Djerlisherite K6(Cu,Fe,Ni)25S26CI 142 23 586 16 Bornite CU5FeS4 54 23-28 474-473 10-8 Orpiment AS2SJ 400 23-29 483-476 5-9 Trechmannite AgAsS2 581 Colour value key continued

Y% Ad Pe% Formula Page

23-30 480-479 6-9 Roman~chite (Ba,H20)(Mn,Mn)5otO 483 24 c538 2 Kiddcreekite (selenian) C\J6SnWS8 287 24 486 4 Trevorite NiFe~4 582 24 482 8 Maghemite r-Fe203 337 24 478 10 Galkhaite (Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4st2 187

24-24 466-468 3-2 Hocartite Ag2FeSnS4 239 24-25 482-481 4-5 Plumboferrite PbFe4D7 443 24-25 477-481 9-8 Hematophanite Pb4Fe308(OH,Cl) 230 24-26 474-c508 4-1 Enargite CU3AsS4 155 24-26 580-577 14-10 Stannoidite CU8(Fe,Zn)3Sn25t2 534

24-27 473-474 6-5 Rohaite TICu5SbS2 482 24-27 581-576 10-9 Stannoidite CU8(Fe,Zn)J5n25t2 532 24-27 578-577 15-14 Stannoidite CU8(Fe,Zn)J5n2st2 533 24-28 473-475 12-11 Proustite AgJAsSJ 453 24-31 482-485 5-5 Crednerite CuMn°2 119

24-31 476-483 6-5 Cinnabar HgS 99 24-37 579-576 11-7 Stembergite AgFe2S3 536 24-45 584-577 4-11 Mackinawite (nickelian) (Fe,Ni)9S8 336 25 566 1 Hemusite (antimonian) CU4Cu2SnMoS8 233 25 472 3 Metacinnabar HgS 367

25 579 18 Shadlunite (Cu,Fe)8(Pb,Cd)S8 508 25-25 469-470 4-4 Argyrodite AgsGeS6 19 25-25 583-582 19-21 Renierite (Cu,Znh1(Ge,As)2Fe4st6 478 25-26 488-485 1-1 Kesterite CU2ZnSnS4 283 25-26 478-452 5-8 Permingeatite CI13(Sb)Se4 429

25-26 579-576 7-6 Kuramite CuJ5nS4 306 25-27 476-476 11-11 Xanthoconite AgJAsSJ 628 25-28 471-482 3-4 Chalcothallite Tl2(Cu,Fe)65bS4 87 25-28 598-586 4-6 Luzonite CU3AsS4 334 25-29 481-481 3-4 Zenzenite PbJ(Fe,Mn)4Mn3ot5 630

25-29 476-481 6-6 Cinnabar HgS 98 25-30 476-477 7-7. Kermesite Sb2~O 282 26 585 1 Chameanite (Cu,Fe )4As(Se,S)4 89 26 573 2 Mohite CU2SnSJ 377 26 573 5 Hemusite CU4Cu2SnMoS8 232

26 471 6 C,anfieldite, AgsSn% 71 26 588 6 Thalfenisite T16(Fe,Ni,Cu)25S26Cl 572 26 480 11 Cuprite CU20 124 26-27 572-571 7-4 Stannite CU2FeSnS4 530 26-27 477-482 12-8 Cuprite Cu~ 125

26-30 481-485 3-3 Gortdrumite (Cu,Fe )6Hg2Ss 210 26-30 483-483 6-5 Hematite a-Fe203 228 26-32 481-482 5-5 Hollandite Ba(Mn,Mn)8ot6 241 27 584 <1 Mgriite CI13AsSe3 368 27 586 2 Chameanite (Cu,Fe)4As(Se,S)4 88

27 462 4 Villamaninite (Cu,Ni,Co,Fe)~ 606 27 480 5 Coronadite Pb(Mn,Mn)8ot6 113 27 573 6 Florensovite Cu(Crt.5Sbo.5)S4 174 27 583 6 Colusite CU26V 2(As,Sn,Sb)6SJ2 109 27 487 10 Berzelianite CU2Se 44 Colour value key continued

Y% Ad Pe% Fonnula Page

27-28 566-565 6-5 Stannite CU2FeSnS4 531 27-28 577-578 6-6 Chatkalite CU6FeSn2S8 90 27-28 482-483 7-6 Routhierite CuTlHg2(Sb,As)2% 487 27-28 583-580 21-24 Renierite (Cu,Zn)l1 (Ge,As )2Fe4S}6 479 27-29 482-483 7-6 Routhierite CuTIHg2(Sb,As )2S6 486

27-30 548-489 1-2 Bukovite T12(Cu,Fe)4Se4 65 27-30 482-483 8-9 Sabatierite CU6TlSe4 495 27-30 580-581 14-30 Mawsonite CU6Fe2SnS8 360 27-31 470-473 4-13 Stromeyerite AgCuS 539 27-31 482-484 6-5 Hematite a-Fe203 229

27-33 580-592 3-5 Raguinite TlFeS2 472 27-35 475-482 6-2 Rohaite TICu5SbS2 481 27-35 579-580 9-7 Argentopyrite AgFe2S3 17 28 479 5 Canfieldite (tellurian) Ag8SnS6 72 28-29 481-481 4-3 Petrukite (Cu,Fe,Zn)3(Sn,In)S4 433

28-29 478-480 8-9 Samsonite A&4MnSb2S6 498 28-30 483-479 7-9 Hutchinsonite (Pb,TI)2As5~ 242 28-30 472-478 11-11 Pyrargyrite A&3SbS3 456 28-31 474-478 6-5 Stephanite Ag5SbS4 535 28-41 599-474 4-5 Selenium (synthetic) Se 504

29 577 4 Kolarite PbTeC12 293 29 568 7 Nekrasovite (zincian) CU26V 2(Sn,As,Sb)6532 390 29 570 8 Sulvanite CU3VS4 546 29 581 20 Vinciennite CU10Fe4Sn( As,Sb )S}6 607 29-32 469-481 5-3 Pearceite A&16As2S}1 420

29-34 480-478 9-9 Laphamite AS2(Se,S)3 310 30 502 <1 Argentotennantite (Ag,Cu)8(Zn,Fe)2( As,Sb)4S}3 18 30 547 1 Goldfieldite CU12(Te,Sb,As)4S}3 208 30 485 2 Tennantite (bismuthian) (Cu,Fe)12As4S}3 558 30 487 3 Tennantite (plumbian) (Cu,Fe)12As4S}3 560

30 492 3 Tennantite (zincian) (Cu,Fe)12As4S}3 561 30 485 4 Tennantite (Cu,Fe)12As4S}3 557 30 474 7 Tiemannite HgSe 575 30 579 8 Colusite CU26V2(As,Sn,Sb)6532 107 30 577 16 Manganese-shadlunite (Mn,Pb,Cd)(Cu,Fe)8S8 349

30 580 17 Argentopentlandite Ag(Fe,Ni)gS8 16 30-30 479-480 10-10 Pyrostilpnite A&3Sb53 465 30-31 481-480 5-4 Parapierrotite Tl(Sb,As )5S8 415 30-32 480-479 9-8 Laffittite AgHgAs53 308 30-33 478-478 7-8 Mckinstryite (Ag,Cu)2S 361

31 c495 <1 Goldfieldite CU12(Te,Sb,As )4S}3 209 31 497 1 Tetrahedrite (argent ian) (Cu,Feh2Sb4S}3 568 31 502 1 Tetrahedrite (argentian) (Cu,Fe)12Sb4S}3 567 31 491 2 Tennantite (mercurian) (Cu,Fe )12As4S}3 559 31 c562 4 Fischesserite A&3AuSe2 172

31 483 5 Ag2S 1 31 c551 5 Fischesserite A&3AuSe2 173 31 578 9 Colusite CU26V2(As,Sn,Sb)6532 108 31 577 10 Radhakrishnaite PbTe3(CI,S)2 471 31 577 18 Geffroyite (Ag,Cu,Fe)9(Se,S)8 189 Colour value key continued

Y% Ad Pe% Fonnula Page

31-31 c566-470 2-4 Lautite CuAsS 316 31-32 487-486 2-2 Watanabeite CU4(As,SbhS5 617 31-32 479-487 5-3 Polybasite (Ag,CuhG5b2St1 447 31-32 481-480 9-7 Djurleite CU31St6 143 31-34 480-480 8-8 Miargyrite AgSbS2 369

31-35 481-480 4-5 Chabourneite (Tl,Pb)23(Sb,As )91 St 47 81 31-36 577-574 8-8 Eskebornite CuFeSe2 160 31-37 479-481 5-4 Cylindrite Pb4FeSII4Sb2St6 132 31-40 482-483 5-7 Livingstonite HgSb4S8 326 31-42 c548-480 2-4 Berthierite FeSb2S4 43

31-47 494-482 1-7 Stibnite Sb2S3 538 32 c566 <1 Giraudite (Cu,Zn,Ag)12(As,Sb)4(Se,S)13 199 32 457 1 Vaesite (cobaltian) NiS2 599 32 509 1 Tetrahedrite (zincian) (Cu,Fe h2Sb4St3 570 32 541 1 Tetrahedrite (Cu,Feh2Sb4St3 566

32 483 6 Krutaite CuSe2 303 32 479 9 Henryite CU4A~Te4 234 32 573 9 Arsenosulvanite CU3(As,V)S4 26 32-33 467-468 3-3 Larosite (Cu,Agb(Pb,BihSt3 313 32-33 478-482 5-5 Jalpaite A~CuS2 266

32-34 480-483 3-3 Seligmannite CuPbAsS3 505 32-34 479-478 4-4 Levyclaudite Pb8Sn7Cu3(Bi,Sb )3S28 320 32-34 480-483 7-4 Benleonardite Ag8(Sb,As )Te253 41 32-34 574-564 8-3 Cameronite CU7AgTe10 70 32-39 480-485 5-2 Vaughanite TIHgSb457 604

33 492 <1 Daubreelite FeCr2S4 135 33 561 1 Tetrahedrite (mercurian) (Cu,Fe)12Sb4St3 569 33 c551 2 Vaesite (cuprian) NiS2 600 33 485 3 Freibergite (Ag,Cu,Fe )12(Sb,As )4St3 177 33-33 480-480 7-7 Chalcocite CU2S 82

33-34 480-478 9-8 Weissite CU5Te3 622 33-35 520-469 <1-1 Crookesite CU7(Tl,Ag)Se4 121 33-35 573-570 2-2 Wittichenite CU3BiS3 623 33-35 487-492 3-2 Aguilarite Ag4SeS 2 33-37 482-482 6-5 Sartorite PbAs2S4 499

34 c513 <1 Vaesite (selenian) NiS2 601 34-35 480-480 4-5 Bournonite PbCuSbS3 56 34-35 576-575 28-26 Haycockite CU4Fe5S8 225 34-36 480-484 4-2 Bournonite PbCuSbS3 57 34-37 553-572 1-6 Lapieite CuNiSbS3 311

34-38 479-475 5-7 Pierrotite Tl2Sb6As4St6 435 34-38 481-483 6-5 Baumhauerite-2a Pbt1 Ag(As,Sbh8S36 37 34-39 580-578 15-11 Troilite FeS 583 34-43 480-484 3-2 Uchucchacuaite AgMnPb3Sb5St2 592 35 590 2 Pyrite (nickeloan) (Fe,Ni,Co)S2 460

35 486 3 Krutaite (nickeloan) CuSe2 305 35 581 5 Greigite Fe3S4 214 35-36 c517-573 <1-2 Furutobeite (Cu,Ag)6PbS4 181 35-36 486-573 3-5 Lapieite CuNiSb53 312 35-36 481-481 4-3 Potosiite Pb48Sn18Fe7Sbt6St15 450 Colour value key continued

Y% Ad Pe% Formula Page

35-36 485-478 5-6 Naumannite Ag2Se 389 35-39 480-480 3-3 Freieslebenite PbAgSbSJ 178 35-39 481-482 4-4 Baumhauerite PbJAs4~ 36 35-39 481-483 6-5 Liveingite Ph9As13S28 325 35-40 580-577 10-9 Pyrrhotite Fe1_xS 466

35-41 481-483 6-5 Rathite (Pb,Tl}JAs5StO 475 35-42 450-c506 <1-<1 Junoite PbJCu2Bi8(S,Seh6 274 36 576 18 Isocubanite CuFe2SJ 259 36 575 26 Mooihoekite CU9Fe9st6 384 36-36 456-439 2-1 Gratonite Ph9As4St5 212 36-37 481-482 3-3 Franckeite (Pb,Sn)6FeSn2Sb2St4 175 36-37 479-481 3-4 Lengenbachite Ph6(Ag,Cu)2As4st3 318 36-37 574-552 4-3 Eucairite AgCuSe 162 36-38 481-481 3-2 Diaphorite Pb2AgJSb3S8 140 36-38 484-480 4-4 Aramayoite Ag(Sb,Bi)S2 15

36-38 483-482 4-5 Dufrenoysite Pb2As2S5 147 36-38 481-483 5-3 Criddleite TIAg2Au3SbtOStO 120 36-38 481-490 7-4 Tvalchrelidzeite HgJ(Sb,As)SJ 589 36-39 576-578 4-4 Cuprobismutite CU10Bi12~ 126 36-39 577-575 17-12 Cubanite CuFe2SJ 122

36-40 483-486 2-2 Roschinite Agt9PbtOSb51 ~6 485 36-41 479-484 3-2 Andorite AgPbSbJS6 12 36-41 485-483 3-5 Fiiloppite PbJSbsSt5 180 36-42 488-484 2-4 Plagionite Pb5SbsSt7 438 36-42 477-477 3-2 Jask61skiite Pb2+xCUx(Sb,Bih_xS5 268

36-42 483-482 3-3 Semseyite Ph9Sb8S21 506 36-44 483-487 3-2 Jamesonite Pb4FeSb6St4 267 37 598 2 Coloradoite HgTe 106 37-39 486-483 1-2 Rayite Pb8(Ag,Tl)2SbsS21 476 37-41 481-483 4-3 Veenite Pb2(Sb,As)2S5 605

37-41 580-578 10-9 Pyrrhotite Fe1_xS 467 37-42 558-568 1-5 Emplectite CuBiS2 153 37-42 481-484 3-3 Boulangerite Pb5Sb4St1 55 37-42 484-485 3-3 Zinkenite Ph9Sb22S42 633 37-42 580-578 10-9 Pyrrhotite Fe1_xS 468

37-43 484-487 2-2 Zoubekite AgPb4Sb4StO 634 37-43 480-481 2-3 Meneghinite Pbt3CuSh7S24 364 37-43 485-485 4-7 Chalcostibite CuSbS2 86 37-47 472-478 4-5 paJikkonenite Sb2AsS2 405 37-49 488-507 1-1 Bismuthinite Bi2SJ 48

38 482 4 Cervelleite Ag4TeS 80 38 585 6 Cattierite COS2 78 38-40 478-479 3-3 Jordanite Pbt4As6S23 271 38-43 485-488 2-2 Tintinaite Pb22CU4(Sb,Bi)30%9 577 38-44 480-487 3-2 Owyheeite Ag2Ph7(Sb, Bi)sS20 404

39 491 1 Krutaite (nickeloan) CuSe2 304 39 473 4 Petzite AgJAuTe2 434 39-41 464-587 2-3 Hessite Ag2Te 237 39-42 487-492 2-1 Benavidesite Pb4(Mn,Fe )Sb6St 4 39 39-42 482-481 2-3 Geocronite Pbt 4(Sb,As )6523 192 Colour value key continued

Y% Ad Pe% Formula Page

39-43 481-485 3-3 Dadsonite PbtO+xSbt4-x531-xC1x 133 39-43 482-480 3-3 Kirkiite PbtOBiJAs3st9 288 39-46 489-566 1-2 Aikinite CuPbBi53 3 39-47 483-565 2-1 Krupkaite PbCuBi3S6 302 39-47 481-486 6-2 Cooperite (Pt,Pd,Ni)S 110

40 499 <1 Penroseite (cuprian) (Ni,Co,Cu)Se2 423 40 581 8 Pyrite (nickelian) FeS2 459 40-41 482-479 3-1 Stiitzite Ag2_xTe 540 40-42 c561-c504 1-1 Inaglyite CU3Pb(Ir,Pt)85t6 247 40-42 478-479 5-6 Nagyagite Pb5Au(Te,Sb)~5_8 388

40-45 503-565 <1-1 Hammarite Pb2Cu2B459 220 40-45 485-488 3-1 Cooperite (Pt,Pd,Ni)S 111 40-45 477-478 4-3 Izoklakeite (Cu,Fe)2Pb27(Sb,Bih9S57 264 40-45 c565-465 11-10 Cuprostibite CU2(Sb,Tl) 131 40-50 c496-598 5-5 Breithauptite NiSb 62

40-52 573-572 3-6 Empressite AgTe 154 41 596 1 Penroseite (Ni,Co,Cu)Se2 421 41-46 474-473 5-3 Cosalite Pb2Bi2S5 115 41-50 c496-599 5-5 Breithauptite (synthetic) NiSb 63 42 482 3 Erlichmanite OsS2 159

42 582 3 Penroseite (Ni,Co,CU)Se2 422 42 477 7 Laurite RuS2 315 42 581 51 Bezsmertnovite AU4Cu(Te,Pb) 46 42-44 548-488 1-1 Teallite PbSnS2 549 42-45 490-483 1-1 Neyite Pb7(Cu,Ag)2Bi65t7 392

42-48 492-490 1-1 Matildite AgBiS2 358 42-49 483-482 4-5 Herzenbergite SnS 236 43 484 2 Erlichmanite OsS2 158 43 580 2 Carrollite Cu(Co,Ni)2S4 74 43 469 3 Lillianite Ph3Bi2S6 321 43 472 5 Galena PbS 184 43 480 5 Laurite RuS2 314 43-43 584-573 4-7 Sopcheite A84Pd3Te4 519 43-44 528-567 <1-1 Braggite (Pt,Pd,Ni)S 59 43-44 567-571 1-2 Braggite (Pt,Pd,Ni)S 60

43-45 600-589 1-1 Konderite CU3Pb(Rh,Pt,Ir)85t6 295 43-47 480-480 4-3 Wittite PbgBi12(S,Se)27 624 43-48 478-484 3-3 Cupropavonite AgPbCu2Bi5stO 128 43-49 480-481 4-3 Weibullite Pb6Bi8(S,Seh8 621 43-52 506-570 <1-<1 Guanajuatite Bi2Se3 216

44 472 5 Galena PbS 185 44 579 5 Sopcheite A84Pd3Te4 517 44-45 574-574 25-24 Chalcopyrite CuFeS2 84 44-46 577-577 5-6 Cherepanovite RhAs 91 44-47 478-c554 1-<1 Soucekite CuPbBi(S,Se)3 520

44-48 482-489 2-2 Benjaminite (Ag,Cu)3(Bi,Pb)75t2 40 45 578 3 Carrollite (nickelian) Cu(Co,Ni)2S4 75 45 573 24 Chalcopyrite CuFeS2 85 45-46 573-573 2-2 Watkinsonite PbCu2B4(Se,S,Te)8 618 45-46 578-576 3-2 Vysotskite (Pd,Pt)S 615 Colour value key continued

Y% Ad Pe% Formula Page

45-46 584-582 5-6 Keithconnite Pd3_xTe 280 45-46 572-581 6-8 Sopcheite A84Pd3Te4 518 45-47 491-554 <1-1 Gladite PbCuBi5Sg 200 45-47 482-483 2-3 Galenobismutite PbBi2S4 186 45-47 479-479 3-4 Kobellite Pb2(Bi,Sb )2S5 291

45-48 578-578 11-10 Donharrisite Ni8H~Sg 146 45-49 569-571 7-8 Domeykite (fl domeykite) CU3As 145 45-64 504-576 <1-9 Niggliite PtSn 395 46 563 1 Petrovicite PbHgCu3BiSe5 432 46 584 1 Polydymite NiNi2S4 448

46 482 2 Irarsite (Ir,Ru,Rh,Pt)AsS 252 46 472 3 Gersdorffite I NiAsS 195 46 571 3 Palladseite Pd17Se15 409 46 576 3 Tyrrellite (Cu,Co,NibSe4 590 46 585 4 Violarite FeNi2S4 608

46-48 574-575 2-2 Bowieite (Rh,Ir,Pt)253 58 46-48 578-576 10-8 Tucekite Ni9Sb2S8 585 46-49 480-582 1-<1 Ikunolite B4(S,Se)3 243 46-51 582-582 4-8 Ferroselite FeSe2 167 46-51 587-582 6-12 Cabriite Pd2SnCu 68

46-54 588-582 6-11 Cabriite Pd2SnCu 67 47 475 1 Ullmannite NiShS 593 47 c497 1 Khamrabaevite (Ti,Fe,V)C 284 47 474 2 Ullmannite (arsenian) NiShS 594 47 476 2 Gersdorffite (antimonian) NiAsS 194

47 580 4 Siegenite (cuprian) CoNi2S4 510 47 583 5 Siegenite CoNi2S4 509 47 579 6 Pentlandite (rhodian) (Fe,Ni)9S8 427 47 582 6 Violarite (cobaltian) FeNi2S4 609 47 578 12 Pentlandite (Fe,Ni)9S8 424

47-53 578-577 7-8 Luberoite Pt5Se4 332 48 528 1 Padmaite PdBiSe 406 48 579 1 Gersdorffite II NiAsS 198 48 589 1 Platarsite (Pt,Rh,Ru)AsS 439 48 574 3 Tyrrellite (Cu,Ni,Co)3Se4 591

48 580 7 Linnaeite (nickelian) CoCo2S4 323 48-49 567-572 1-2 Watkinsonite PbCu2Bi4(Se,S,Te)8 619 48-50 620-573 <1-2 Alloclasite (Co,Fe)AsS 9 48-50 578-577 4-4 Parkerite Ni3(Bi,Pb)2S2 418 48-52 577-576 13-9 Vozhminite (Ni,Co)4(As,Sb)S2 612

48-52 583-582 16-12 Nickeline NiAs 394 49 536 <1 Platarsite (Pt,Rh,Ru)AsS 440 49 576 13 Pentlandite (Fe,Ni)9S8 425 49 576 17 Orcelite Ni5_xAs2 399 49-49 582-569 1-<1 Paracostibite CoSbS 411

49-50 571-571 4-4 Skippenite Bi2Se2Te 514 49-51 586-583 5-6 Maucherite Ni11As8 359 49-53 574-569 2-2 Poubaite PbBi2Se2(T e,S)2 451 49-54 594-581 7-9 Imgreite NiTe (7) 245 49-55 483-541 2-<1 Laitakarite B4(S,Se)3 309 Colour value key continued

Y% Ad Pe% Formula Page

49-55 573-566 6-6 Marcasite FeS2 354 49-57 554-488 1-1 Paraguanajuatite Bi2(S,Se)3 412 50 582 8 Orcelite Ni5_xAs2 398 50-52 571-574 1-1 Aleksite PbBi2Te2S2 7 SO-52 578-475 2-2 Arsenopyrite (cobaltian) FeAsS 24

50-54 588-581 7-8 Paolovite Pd2Sn 410 50-55 478-480 2-3 Nevskite Bi(Se,S) 391 50-55 575-575 13-19 Millerite P-NiS 375 50-56 575-574 11-18 Millerite P-NiS 374 50-58 560-554 2-1 Paraguanajuatite Bi2(Se,S)3 413

51 583 2 Cobaltite CoAsS 105 51 581 4 Cobaltite CoAsS 104 51 477 7 Clausthalite (synthetic) PbSe 101 51 579 7 Telargpalite (Pd,Ag)3Te 550 51 582 7 Telluropalladinite Pd9Te4 556

51 580 8 Mertieite II Pd8(Sb,Ash 366 51-51 576-575 1-1 Jolliffeite NiAsSe 270 51-55 489-570 1-1 Joseite B4TeS2 272 51-61 575-567 7-3 Kostovite AuCuTe4 296 52 576 10 Pyrite FeS2 457

52 576 11 Pentlandite (cobaltian) (Fe,Ni)9S8 426 52 577 11 Domeykite CU3As 144 52-52 574-574 17-14 Godlevskite (Ni,Fe)7% 201 52-53 576-579 5-2 Arsenopyrite FeAsS 23 52-55 580-579 10-9 Plumbopalladinite Pd3Pb2 444

52-56 476-483 2-1 Arsenic As 21 52-56 583-495 3-1 Gudmundite FeSbS 217 52-56 574-572 4-4 Kawazulite Bi2Te2Se 278 52-57 505-564 <1-1 Ingodite Bi2TeS 249 52-63 571-570 4-4 Sylvanite (Au,Ag)2Te4 547

53 478 7 Clausthalite PbSe 100 53-54 577-484 2-1 Arsenopyrite (cobalt ian) FeAsS 25 53-54 577-578 10-9 Potarite PdHg 449 53-55 478-574 2-4 Lollingite (cobaltian) FeAs2 328 53-55 578-576 5-6 Palladoarsenide Pd2As 408

53-55 579-578 8-9 Arsenopalladinite Pd8(As,Sbh 22 53-56 478-573 6-3 Lollingite FeAs2 327 53-56 573-573 14-16 Heazlewoodite Ni3S2 226 54 493 <1 Sperrylite PtAs2 521 54 478 2 Skutterudite CoAs2-3 515

54 574 3 Insizwaite Pt(Bi,5b)2 250 54 578 6 Suessite (Fe,NihSi 544 54 578 7 Majakite PdNiAs 345 54 573 11 Pyrite Fe~ 458 54 578 11 Isomertieite Pd11Sb2As2 262

54-54 514-480 <1-3 Safflorite CoAs2 496 54-55 c553-420 2-2 Volynskite AgBiTe2 610 54-55 479-494 4-1 Clinosafflorite (Co,Fe,Ni)As2 102 54-55 579-579 7-7 Genkinite (Pt,Pd)4SbJ 191 54-55 579-581 8-6 Palarstanide Pd5(Sn,As)2 407 Colour value key continued

Y% Ad Pe% Formula Page

54-55 578-576 9-8 Stibiopalladinite Pd5Sb2 537 54-57 573-575 2-3 Sulphotsumoite Bi3Te2S S45 55 559 1 Nickel-skutterudite (Ni,Co,Fe )As3 393 55 575 1 Gersdorffite II NiAsS 197 55 483 2 Skutterudite CoAS2-3 516

55-57 578-575 6-6 Atheneite (Pd,Hg)3As 28 55-60 575-571 3-3 Tetradymite Bi2Te2S 564 55-60 574-573 6-4 Krennerite (argentian) (Au,Ag)Te2 301 56 488 <1 Michenerite (Pd,Pt)BiTe 370 56 c541 <1 Michenerite (antimonian) (Pd,Pt)BiTe 372

56 583 1 Maslovite PtBiTe 356 56 578 11 Isomertieite Pd11Sb2As2 261 56-57 576-576 4-3 Moncheite (Pt,Pd) (Te,Bi)2 379 56-59 576-578 4-4 Froodite PdBi2 179 56-60 576-577 2-3 Joseite-B B4Te2S 273

56-60 584-578 6-8 Kitkaite NiTeSe 289 56-63 569-572 2-2 Moncheite (Pt,Pd)(Te,Bi)2 380 57 575 <1 Gersdorffite II NiAsS 196 57 576 2 Michenerite (Pd,Pt)BiTe 371 57-59 577-576 8-6 Montbrayite (Au,Sb)2Te3 382

57-61 583-492 <1-<1 Rammelsbergite NiAs2 473 58 571 <1 Iron Fe 257 58 575 8 Maldonite AU2Bi 348 58 575 11 Cobalt pentlandite C09S8 103 58-59 581-585 5-5 Melonite (palladian-bismuthian) NiTe2 363

58-59 577-577 6-5 Polarite Pd(Bi,Pb) 446 58-62 573-573 6-5 Krennerite AuTe2 300 58-63 591-580 4-9 Melonite NiTe2 362 58-68 506-498 <1-1 Tellurium (synthetic) Te 554 59 614 <1 Iron (nickelian) Fe 258

59 577 3 Polarite Pd(Pb,Bi) 44S 59 578 3 Ferronickelplatinum Pt2FeNi 166 59 579 4 Ferchromide Cl3Fe1_x (x-0.6) 164 59-60 530-580 <1-2 Pararammelsbergite NiAs2 416 59-61 575-575 2-2 Moncheite (palladian) (Pt,Pd) (Te,Bi)2 381

59-63 577-576 7-9 Algodonite CU6As 8 60 575 2 Insizwaite Pt(Bi,5b)2 251 60 577 7 Zvyagintsevite (Pd,Pt,A U)3(Pb,Sn) 635 60-63 561-572 1-2 Dyscrasite A83Sb 149 60-64 576-577 10-10 Stumpflite Pt(Sb,Bi) 541

60-64 576-578 10-10 Sudburyite (Pd,Ni)Sb 542 60-66 546-538 1-1 Tellurium Te 552 60-67 577-578 8-7 Bismuth Bi 47 60-69 560-495 1-1 Tellurium (synthetic) Te 553 61 c559 2 Seinajokite (Fe,Ni)(Sb,As )2 503

61 577 2 Aurostibite AuSb2 30 61-62 483-479 4-3 Osmium (iridian) Os 402 61-63 576-578 10-11 Sudburyite (nickelian) (Pd,Ni)Sb 543 61-67 574-573 8-6 Calaverite AuTe2 69 62 481 4 Cupalite (Cu,Zn)AI 123 Colour value key continued

Y% Ad Pe% Fonnula Page

62 581 16 Gold (palladian) Au 207 62-62 483-483 2-3 Osmium Os 401 62-63 579-576 8-10 Kotulskite (bismuthian) Pd(Te,Bi) 299 62-65 582-577 <1-2 Rucklidgeite (Bi,Pb)3Te4 488 62-65 584-580 1-2 Tsumoite BiTe 584

62-67 577-578 2-3 Hedleyite Bi7Te3 227 63-66 602-579 <1-2 Tellurobismuthite Bi2Te3 555 63-67 647-589 1-2 Merenskyite (Pd,Pt )(Te,Se, Bi)2 365 63-67 573-575 2-3 Tellurantimony Sb2Te3 551 63-69 575-574 11-13 Kotulskite Pd(Te,Bi) 297

64 574 3 Tetraferroplatinum PtFe 565 64 576 5 Awaruite Ni3Fe 31 64-66 484-484 3-1 Osmium (iridian) (Os,Ir) 403 64-67 576-578 1-2 Pilsenite Bi4Te3 436 65 486 2 Rutheniridosmine (Os,Ir,Ru) 490

65 580 4 Isoferroplatinum (Pt,Pd)3(Fe,Cu) 260 66 490 1 Rutheniridosmine (Os,Ir,Ru) 489 67-74 573-573 11-15 Kotulskite Pd(Te,Bi) 298 69 499 <1 Lead Pb 317 69 528 2 Altaite PbTe 10

70 497 1 Ruthenium Ru 491 70 576 5 Platinum Pt 441 70-71 503-565 <1-1 Ruthenium (iridian) Ru 492 71 582 2 Iridium Ir 253 72 574 8 Kolymite CU7Hg6 294

72-73 517-572 <1-3 Ruthenium (synthetic) Ru 493 73 575 3 Iridium Ir 254 73 579 4 Belendorffite CU7Hg6 38 73-74 578-578 8-7 Schachnerite Agl.lHgO.9 500 74 583 2 Iridium (ruthenian) Ir 256

74 575 3 Iridium Ir 255 74 588 22 Copper Cu 112 74-77 500-535 1-1 Antimony Sb 14 75-77 491-578 2-5 Khatyrkite CuAl2 285 76 578 40 Gold Au 204

79-SO 578-577 7-7 Paraschachnerite A83Hg2 417 SO 577 41 Gold (argent ian) Au.94Ag.06 206 81-88 569-568 3-3 Tin Sn 576 82 576 4 Moschellandsbergite Ag2H83 385 83 574 37 Gold (argentian) Au.SOAg.20 205

86 574 6 Silver (antimonian) Ag 512 88 573 27 Electrum AU.64Ag.36 152 90 572 16 Electrum AU.47Ag.53 151 93 574 4 Silver Ag 511 99 571 4 Silver (synthetic) Ag 513 Air and Oil data 440-700nm key 3

Organisation: is in ascending order starting at 440nm, isotropic first then anisotropic. For isotropic minerals where the reflectance at 440nm is the same for two or more minerals, the sequence is transferred to the ascending order at 500nm and so on. For anisotropic minerals the sequence starts at 440nm with the minimum reflectance* and is in order of increasing bireflectance at that wavelength. Where two or more minerals have identical values for Rl and R2 at 440nm the sequence progresses to 500nm and so on. Where all the values is air for an isotropic or anisotropic mineral are the same as for another, the oil values are used; they follow the sequence described above.

*Note: This key, unlike Key 1, takes into account changes in the sign of bireflectance, i.e. crossing of the Rl and

R2 spectra. As noted above, R440 always starts with the lower of the two reflectances whether this be Rl or R2• Whichever one it happens to be is continued as the first value for the other three wavelengths (e.g. Millerite, pages 374-375 where R440 = R2)

R% imR % 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Mgriite 26 26 CU3AsSe3 368 Talnakhite 30 40 42 CU9(Fe,Ni)8~6 548 Putoranite 30 41 41 CU16_18(Fe,Nih8-1~2 455 Cuproiridsite 34 33 32 CuIr2S4 127 Cuprorhodsite 36 37 37 CuRh2S4 129

Malanite 36 37 38 Cu(Pt,Irh S4 347 Aleksite 53 54 55 PbBi2Te2~ 6 Malachite 6-10 6-10 6-9 6-9 CU2(C03)(OHh 346 Graphite 6-25 6-25 6-28 6-30 <1-14 <1-14 1-16 1-17 C 211 Spinel 7 7 7 7 <1 <1 <1 <1 MgAl204 527

Erdite 7-15 7-12 9-27 10-27 NaFe~.2H20 156 Periclase 8 8 7 7 1 1 1 1 MgO 428 Gahnite 8 8 8 8 1 1 1 1 ZnAl20 4 182 Hercynite 8 8 8 8 1 1 1 1 FeAl204 235 Corundum 8-8 7-7 7-7 7-7 1-1 1-1 1-1 1-1 Al20 3 114

Vyalsovite 8-12 8-8 8-11 8-25 FeS.Ca(OHbAI(OHh 614 Chiorargyrite 9 9 9 10 AgCI 92 Hogbomite 9-9 8-9 8-9 8-9 1-1 1-1 1-1 1-1 (Mg,Fe h( AI, Tils010 240 Cerussite 9-14 8-14 8-13 8-13 PbC03 79 Tochilinite 9-15 9-17 8-19 8-21 6Feo.9S.5(Mg,Fe )(OHh 579

Anglesite 10 9 9 9 PbS04 13 Azurite 10-11 10-10 8-9 9-9 CU3(C03h(OHh 32 Scheelite 10-11 10-10 10-10 10-10 2-2 1-2 1-1 1-1 CaW04 501 Titanite 10-12 10-12 9-11 9-11 1-2 1-2 1-2 1-2 CaTi03 578 Erdite 10-27 11-17 10-37 11-35 2-15 2-9 1-24 2-20 NaFe~.2H20 157

Aurorite 10-34 9-29 9-25 9-23 1-18 1-14 1-11 1-10 (Mn,Ag,Ca)Mn30 7·3H2O 29 Chalcophanite 10-34 9-30 9-25 9-23 1-19 1-15 1-11 1-9 (Zn,Mn,Fe )Mn407.3H20 83 Spinel (ferroan-chromian) 11 10 10 10 2 2 1 1 MgAl204 528 Galaxite (ferroan) 11 11 11 10 2 2 2 2 (Mn,Fe,Mg)( AI,Fe h O 4 183 Ingersonite 11-11 10-10 10-10 10-10 2-2 1-2 1-1 1-2 Ca3MnSb4014 248

li Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page:

Blatterite 11-12 10-12 10-11 10-11 2-2 2-2 1-2 1-2 (Mn,Mgh(Mn,Sb,Fe)BOs 52 Cannonite 11-13 11-12 10-12 10-11 2-3 2-2 2-2 2-2 Bi20(OHhS04 73 Cassiterite 11-13 11-12 11-12 10-12 2-3 2-2 2-2 2-2 Sn02 76 Valleriite 11-13 11-17 10-23 10-27 2-6 2-9 2-13 2-15 4(Fe,Cu)S.3(Mg,Al)(OHh 603 Bogdanovite 11-15 7-17 14-39 45-36 Aus(Cu,Feh(Te,Pbh 53

Microlite 12 12 11 11 2 2 2 2 (Ca,NahTa206(O,OH,F) 373 Filipstadite 12-12 12-12 11-11 11-11 2-2 2-2 2-2 2-2 (Mn,Mg)4SbFeOs 171 Zincochromite 13 12 12 12 ZnCr204 632 Betafite 13 12 12 12 2 2 2 1 (Ca,Na,Uh(Ti,Nb,Tah06(OH) 45 Bunsenite 13 12 12 12 3 3 2 2 NiO 66

Bismutite 13 13 12 12 Bi2(C03)02 49 Filipstadite 13 13 12 12 3 3 2 2 (Mn,Mg)4SbFeOs 170 Magnesiochromite (ferroan) 13 13 12 12 3 3 2 2 MgCr204 338 Zincite 13-13 12-12 11-11 11-11 3-3 2-2 2-2 2-2 (Zn,Mn)O 631 Vonsenite 13-15 13-14 11-15 10-14 3-4 2-4 2-4 1-4 Fe2FeB03 611

Geikielite 13-17 12-16 12-15 12-15 3-5 2-4 2-4 3-5 MgTi03 190 Groutite 13-21 13-19 13-19 12-18 3-8 3-7 3-6 3-6 MnO.OH 215 Pyrochlore 14 13 13 12 3 3 3 2 (Ca,Nah~06(OH,F) 462 Qandilite 14 13 13 13 3 3 3 3 (Mg,Feh(Ti,Fe,Al)04 469 Thorianite 14 13 13 13 3 3 3 3 Th02 574

Chromite 14 14 13 13 333 3 FeCr204 94 Barstowite 14-14 13-14 13-13 12-13 3-4 3-3 3-3 3-3 3PbC12·PbC03·H20 34 Baddeleyite 14-14 14-14 13-14 13-14 3-3 3-3 3-3 3-3 zr02 33 Nolanite 14-18 14-17 15-18 17-20 4-6 4-6 4-6 6-8 (V,Fe,Fe,Tiho014(OHh 396 Lepidocrocite 14-22 12-20 11-17 10-16 3-9 2-7 2-5 2-5 y-FeO.OH 319

Hausmannite 14-22 14-21 13-19 12-18 3-9 3-8 3-7 3-6 MnMn20 4 223 Nukundamite 14-24 14-24 20-24 29-30 5-12 6-12 12-12 19-19 (Cu,Fe)4S4 397 Covellite 14-30 10-26 3-21 25-22 4-16 2-12 3-9 28-10 CuS 117 Manganosite 15 14 13 13 4 3 3 3 MnO 351 Uraninite 15 14 14 14 U02 597

Murunskite: 15 17 22 25 K2Cu3FeS4 387 Be:zsme:rtnovite: 15 21 56 58 AU4Cu(Te,Pb) 46 Manganotantalite 15-16 14-15 14-14 13-14 4-4 3-4 3-4 3-4 MnTa206 352

Kyzylkumite 15-16 15-16 15-16 V2Ti30 9 307 Kentrolite 15-18 13-16 13-15 12-14 4-5 3-4 3-4 3-4 P~Mn2Si209 281

Valentinite 15-18 14-17 13-16 13-16 4-6 3-5 3-5 3-4 S~03 602 Jeppeite 15-18 14-17 13-16 13-16 4-6 3-5 3-5 3-5 (K,Bah(Ti,Fe)6013 269 Manganite 15-22 15-21 14-20 13-19 4-8 4-8 3-7 3-6 MnO.OH 350 Covellite 15-31 11-27 4-21 22-23 5-16 2-13 2-8 25-10 CUS 116 Covellite 15-32 11-28 4-21 23-23 4-17 2-13 2-8 27-10 CuS 118

Kazakhstanite: 16 14 12 12 Fes V3 V 12039(OH)9·9H20 279 Chromite 16 15 14 13 4 4 3 3 FeCr204 95 Koe:chlinite: 16 15 14 14 Bi2Mo06 292 Mime:tite: 16 15 15 15 Pbs(As04hCl 376 Pyrochlore 16 15 15 15 5 5 5 4 (Ca,Nah~06(OH,F) 463

Ulvospinel 16 15 16 18 5 4 5 6 TiFe204 595 Lueshite 16-16 15-15 14-15 14-14 5-5 4-4 4-4 4-4 NaNb03 333 biolite 16-17 15-16 14-15 14-15 4-5 4-4 4-4 4-4 (Ta,Fe,Sn,Nb,Mn)40S 263 Mannardite 16-17 15-17 15-18 15-19 4-5 4-5 4-6 4-6 Ba(T4V2)016 353 Schollhomite 16-17 16-19 15-19 15-19 Nao.3C~.Hp 502 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Tugarinovite 16-20 16-19 21-21 31-25 6-9 6-8 12-11 21-15 Mo02 587 Mackinawite 16-30 16-37 17-43 18-45 5-20 5-25 6-31 6-31 (Fe,Ni)gSs 335 Loparite-(Ce) 17 17 16 16 5 5 4 4 (Ce,Na,Cah(Ti,Nbh06 330 Murdochite 17 17 19 19 6 6 7 7 PbCu60s_x(Cl,Brhx 386 Ferrotapiolite 17-17 16-16 15-16 15-16 5-5 4-5 4-5 4-4 (Fe,Mn)(Ta,Nbh06 168

Ferrotapiolite 17-17 16-18 15-17 15-16 5-5 4-6 4-5 4-5 (Fe,Mn) (Ta,Nbh06 169 Wolframite 17-18 16-17 15-16 15-16 5-6 4-5 4-5 4-5 (Fe,Mn)W04 625 Ferrocolumbite 17-18 17-18 17-17 16-17 5-6 5-6 5-5 5-5 Fe~06 165 Tomichite 17-18 17-18 17-18 17-18 5-5 5-6 5-6 5-6 (V,Fe)4Ti3As013(OH) 580 Berdesinskiite 17-18 19-19 20-21 20-22 6-6 7-8 8-9 9-9 V2TiOS 42

Pyrobelonite 17-19 16-18 15-17 14-16 5-6 4-6 4-5 4-4 PbMn(V04)(OH) 461 Wulfenite 17-20 16-19 15-18 14-17 PbMo04 626 Mawsonite 17-21 23-24 36-30 42-34 8-10 13-13 25-17 28-21 CU6Fe2SnSS 360 Kamiokite 17-25 17-25 16-23 15-23 5-11 5-11 4-10 4-10 Fe2Mo30S 275 Tugarinovite 17-28 15-22 21-20 37-23 Mo02 586

Rasvumite 17-31 18-29 20-31 21-34 7-20 7-17 8-18 9-20 KFe2~ 474 Tungstenite-3R 17-37 17-36 17-33 17-33 5-22 5-20 5-19 5-18 W~ 588 Klockmannite 17-41 17-40 14-35 18-30 7-26 7-24 6-20 12-15 CuSe 290 Perovskite (niobian) 18 17 16 15 554 4 CaTi03 431 Loparite-(Ce) 18 17 16 16 555 5 (Ce,Na,Cah(Ti,Nbh06 329

Sphalerite 18 17 16 16 6 5 5 4 ZnS 525 Perovskite 18 17 16 16 6 5 5 5 CaTi03 430 Sphalerite 18 17 16 16 6 5 5 5 (Zn,Fe)S 522 Sphalerite 18 17 16 16 6 5 5 5 ZnS 523 Loveringite 18 17 17 17 (Ca,Ce )(Ti,Fe,Cr,Mgb 03S 331

Chromite (ferrian) 18 18 17 17 5 5 5 5 FeCr204 96 Wiistite 18 18 19 20 7 7 7 8 FeO 627 Bornite 18 19 26 33 6 8 14 19 CUSFeS4 54 Djerfisherite 18 21 24 26 K6(Cu,Fe,Nihs~6Cl 142 Shadlunite 18 22 28 31 (Cu,Fe MPb,Cd)Ss 508

Chvilevaite 18-18 20-17 24-18 27-19 Na(Cu,Fe,Znh~ 97 Renierite 18-18 20-20 29-29 34-34 8-8 10-10 16-17 20-20 (Cu,Zn)11(Ge,AshFe4~6 478 Hawthorneite 18-19 17-18 16-17 16-17 6-6 5-6 5-5 5-5 Ba(Ti3Cr4Fe2Fe2Mg)019 224 Hemloite 18-19 17-18 17-18 17-17 6-7 6-6 5-6 5-6 (As,Sbh(Ti,V,Fe,Fe,Alh20230H 231 Haycockite 18-19 28-30 38-38 40-40 10-11 18-18 25-24 26-25 CU4FesSs 225

Ilmenite 18-20 16-19 17-20 19-21 5-7 5-7 5-7 6-8 244 Stannoidite 18-20 22-24 26-28 30-31 8-9 10-12 14-15 17-17 CUs(Fe,ZnhSn2~2 533 Damaraite 18-21 17-18 16-16 15-16 6-8 5-6 4-5 4-4 3PbO.PbC12 134 Goethite 18-21 17-19 15-17 14-16 6-8 5-6 4-5 4-5 202 Hetaerolite 18-21 17-20 16-19 15-19 5-7 5-7 4-7 4-6 238

Hausmannite 18-21 17-20 16-20 15-20 6-8 5-8 4-7 4-7 222 Stannoidite 18-21 21-24 25-27 31-30 7-9 10-12 13-14 17-16 CU8(Fe,ZnhSn2~2 534 Thoreaulite 18-22 17-20 16-19 16-18 6-9 5-7 5-7 5-6 SnTa206 573 Quenselite 18-23 17-21 16-19 15-18 6-9 5-8 4-7 4-6 PbMn02(OH) 470 Kamiokite 18-23 17-23 16-21 16-22 Fe2Mo30S 276

Yarrowite 18-31 14-28 6-22 9-23 6-18 4-14 1-9 12-10 CugSs 629 Sphalerite (manganoan- ferroan) 19 18 17 16 6 6 5 5 (Zn,Fe)S 526 Sphalerite 19 18 17 17 6 6 5 5 ZnS 524 Gallite 19 18 17 17 7 6 5 5 CuG~ 188 Franklinite 19 19 18 17 6 6 6 5 (Zn,Fe,Mn)(Fe,MnhO, 176 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Bartonite 19 21 24 25 8 10 11 12 K3FeloSi4 35 Asisite 19-19 18-17 17-16 16-15 6-6 6-5 5-5 5-4 P~Si08C12 27 Lindsleyite 19-19 18-18 17-17 17-17 6-7 6-6 5-5 5-5 (Ba,Sr)(Ti,Cr,Fe,Mg,Zrb 0 38 322 Renierite 19-19 22-21 33-31 36-35 8-8 11-10 20-18 22-21 (Cu,Zn)l1 (Ge,AshFe4St6 479 Armalcolite 19-20 18-18 17-17 16-17 6-7 6-6 5-5 5-5 (Mg,Fe)Ti20s 20

Mathiasite 19-20 18-18 17-17 16-17 6-7 6-6 5-6 5-6 (K,Ca,Sr)(Ti,Cr,Fe,Mgb 0 38 357 Marokite 19-21 17-19 16-19 15-18 6-8 5-6 5-6 4-6 CaMn20 4 355 Plattnerite 19-21 18-19 17-17 14-15 6-8 6-7 5-5 3-4 Pb02 442 Delafossite 19-21 18-22 19-22 20-23 6-8 6-9 6-9 7-9 CuFe02 137 Montroydite 19-21 19-20 17-19 16-18 7-8 7-8 5-6 5-6 HgO 383

Goethite 19-22 17-20 15-17 14-16 6-9 5-7 4-5 4-4 a-FeO.OH 203 Pyrophanite 19-22 17-20 16-18 15-18 6-8 5-7 4-6 4-6 MnTi03 464 Edgarbaileyite 19-24 16-22 14-20 14-19 7-10 5-8 4-7 3-7 Hg6Si20 7 150 Magnetite 20 20 20 20 9 9 9 8 Fe304 340 Jacobsite 20 20 21 20 7 8 8 7 (Mn,Fe,Mg) (Fe,Mnh04 265

Magnetite (chromian) 20 20 21 20 8 8 8 8 Fe304 342 Mooihoekite 20 31 39 40 9 17 24 25 CU9Feg5,.6 384 Umangite 20-21 16-18 14-16 29-19 8-8 5-6 7-6 21-9 CU3Se2 596 Stannoidite 20-23 22-26 26-28 31-30 9-11 10-13 13-14 17-16 CU8(Fe,ZnhSn2St2 532 Sternbergite 20-32 22-35 26-38 28-38 8-20 10-22 13-24 14-23 AgFe2~ 536

Magnesioferrite 21 19 17 17 8 6 5 6 MgFe204 339 Germanite 21 20 23 27 9 8 11 14 CU26Fe4Ge4~2 193 Greenockite 21 21 18 17 5 6 5 4 CdS 213 Magnetite 21 21 21 20 9 8 8 8 Fe304 341 Vinciennite 21 24 33 38 9 12 20 24 CUlOFe4Sn(As,Sb)St6 607

Manganese-shadlunite 21 27 31 35 (Mn,Pb,Cd)(Cu,Fe )858 349 Geffroyite 21 28 34 37 (Ag,Cu,Fe )g(Se,S)8 189 Eskolaite 21-21 21-20 19-18 19-18 8-7 8-7 7-6 7-6 Cr203 161 Derbylite 21-22 19-20 17-19 17-18 7-8 6-7 5-6 5-6 (Fe,Fe,Ti)7SbOdOH) 138 Pseudobrookite 21-22 19-20 18-18 17-17 8-9 7-7 6-6 5-5 (Fe,Feh(Ti,Fe)Os 454

Senaite 21-22 19-21 18-19 18-19 8-8 7-7 6-7 6-6 Pb(Ti,Fe,Mnb 0 38 507 Parkinsonite 21-22 19-22 17-19 17-19 7-9 6-8 5-7 5-6 (Pb,Mo'[])808CI2 419 Braunite 21-22 20-21 18-19 18-18 8-8 7-7 6-7 6-6 MnMn6Si012 61 Molybdenite 21-46 21-42 19-39 19-39 10-33 9-28 7-24 7-24 Mo~ 378 Magnetite (nickeloan) 22 21 21 21 998 8 Fe304 343

Bixbyite 22 22 22 22 9 9 9 8 (Mn,Feh03 50 Bixbyite 22 22 23 22 9 9 9 8 (Mn,Fe h03 51 Argentopentlandite 22 26 33 39 12 15 21 26 Ag(Fe,Ni)8Ss 16 Anatase 22-22 20-20 19-19 18-18 8-8 7-7 6-6 6-6 Ti02 11 Kuramite 22-23 24-25 26-27 28-28 10-10 11-12 13-13 14-14 CU3SnS4 306

Wattersite 22-24 26-21 23-19 21-18 10-10 13-8 9-6 8-6 Hg4HgCr06 620 Stannite 22-25 25-27 26-27 27-28 11-13 13-14 13-14 13-14 CU2FeSnS4 530 Caswellsilverite 22-26 22-32 21-32 18-29 NaC~ 77 Tenorite 22-27 21-28 20-27 20-26 9-13 8-13 7-13 7-12 562 Paramelaconite 22-28 22-26 22-24 22-23 9-13 9-12 9-10 9-9 414

Sakuraiite 23 23 23 23 9 9 9 9 (Cu,Zn,Fe h(In,Sn)S4 497 Florensovite 23 26 27 26 CU(Crl.5SbO.S)S4 174 Brookite 23-24 21-23 20-21 19-21 9-10 8-9 7-8 7-8 Ti02 64 Pirquitasite 23-24 22-23 23-23 22-21 9-10 9-9 9-10 8-8 Ag2ZnSnS4 437 Rutile 23-25 21-24 19-23 18-22 9-11 7-10 7-9 6-9 Ti02 494 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Petrukite 23-25 26-27 29-30 29-30 11-12 13-14 15-15 15-15 (Cu,Fe,Znh(Sn,In)S4 433 Vulcanite 23-31 18-57 12-75 15-79 9-22 6-49 3-67 10-72 CuTe 613 Argentopyrite 23-31 25-33 28-36 31-39 11-19 13-20 15-22 17-24 AgFe25:3 17 Mackinawite (nickelian) 23-36 23-42 25-47 27-49 10-25 11-29 12-34 14-35 (Fe,Ni)~ 336 Thalfenisite 24 27 Tl6(Fe,Ni,Cuhs~6Cl 572

Kiddcreekite 24 23 24 22 10 9 10 9 CU6SnWSg 286 Hemusite (antimonian) 24 25 25 25 10 11 11 12 CU4Cu2SnMoSg 233 Hemusite 24 26 26 27 10 12 12 13 CU4Cu2SnMoSg 232 Sulvanite 24 31 30 26 11 17 15 12 CU3VS4 546 Cuprospinel 24-24 23-24 22-23 20-21 10-11 10-10 9-9 8-8 (Cu,Mg)FeP4 130

Chatkalite 24-25 26-27 28-29 28-29 CU6FeSn2SS 90 Stannite 24-25 27-28 27-28 27-27 11-12 13-14 13-13 13-13 CU2FeSnS4 531 Magnetoplumbite 24-26 23-24 21-23 20-21 10-11 9-10 8-9 7-8 Pb(Fe,Mnh2019 344 Deanesmithite 24-26 24-23 21-20 20-19 11-13 11-9 8-7 8-7 Hg2H&CrOs~ 136 Luzonite 24-26 24-25 27-29 29-30 12-12 12-12 14-15 15-16 CU3AsS4 334

Rickardite 24-33 15-25 20-18 48-29 10-18 5-11 15-8 40-18 CU7TeS 480 Terlinguaite 24-38 21-26 19-21 19-20 10-22 8-11 7-8 6-7 Hg2CIO 563 Dervillite 25 24 22 20 Ag2As~ 139 Hauerite 25 24 22 21 11 10 9 8 Mn~ 221 Kiddcreekite (selenian) 25 24 25 24 10 10 11 10 CU6SnWSS 2ff7

Mohite 25 26 26 26 CU2Sn5:3 377 Colusite 25 26 29 29 12 12 15 15 CU26V2(As,Sn,Sb)65:32 109 Nekrasovite (zincian) 25 29 29 28 11 15 14 13 CU26V2(Sn,As,Sb)65:32 390 Isocubanite 25 31 38 41 15 20 25 28 CuFe25:3 259 Roquesite 25-25 23-23 22-22 22-23 10-11 9-9 9-9 9-9 Culn~ 484

Kesterite 25-26 26-26 24-25 25-25 11-12 12-12 11-11 11-11 CU2ZnSnS4 283 Chalcopyrite 25-26 39-40 47-48 48-49 CuFe~ 84 Plumboferrite 25-27 24-26 23-24 21-22 11-12 10-11 9-10 8-9 443 Cubanite 25-30 32-37 38-41 42-44 17-23 21-27 26-29 29-31 CuFe25:3 122 Poyarkovite 25-31 23-30 20-24 H&CIO 452

Spionkopite 25-32 22-30 15-24 9-24 12-19 8-15 4-11 2-11 CU3~S 529 Trechmannite 25-36 23-32 22-28 20-26 11-20 10-16 8-13 7-12 AgAs~ 581 Litharge 26 22 21 23 PbO 324 Alabandite 26 23 22 22 11 9 9 8 MnS 5 Alabandite 26 24 22 22 10 10 9 9 MnS 4

Chameanite 26 25 26 26 (Cu,Fe)4As(Se,S)4 89 Trevorite 26 26 23 21 12 11 10 8 NiFe204 582 Colusite 26 28 32 31 13 15 17 17 CU26V 2( As,Sn,Sb )65:32 107 Colusite 26 29 32 31 13 15 18 17 CU26 V2(As,Sn,Sb)65:32 108 Radhakrishnaite 26 29 33 34 PbTe3(CI,Sh 471

Arsenosulvanite 26 30 32 30 13 16 18 16 CU3(As,V)S4 26 Chalcopyrite 26 40 48 48 19 30 35 34 CuFe~ 85 Hocartite 26-26 24-25 24-24 24-24 12-12 11-11 10-10 10-10 Ag2FeSnS4 239 Enargite 26-27 26-26 26-24 27-26 12-13 12-12 12-11 13-12 CU3AsS4 155 Bukovite 26-30 27-31 26-29 30-31 Tl2(Cu,Fe)4Se4 65

Troilite 26-31 30-36 37-41 42-44 16-20 19-24 25-28 29-31 FeS 583 Raguinite 26-32 26-29 28-35 29-39 12-18 13-16 14-21 14-24 TlFe~ 472 Crednerite 26-34 25-33 23-30 21-27 12-19 11-18 10-15 8-12 CuMn02 119 Romanechite 26-36 24-33 22-29 21-27 12-20 11-18 9-14 8-12 (Ba,H20)(Mn,Mn)SOlO 483 Realgar 27 24 21 19 13 10 8 7 AsS 477 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Metacinnabar 27 26 25 25 13 12 11 11 HgS 367 Chameanite 27 27 28 29 (Cu,Fe)4As(Se,S)4 88 Kolarife 27 28 29 30 PbTeCl2 293 Wakabayashilite 27-27 24-24 21-21 20-20 12-12 10-10 8-8 7-7 (As,Sb)l1~S 616 Argyrodite 27-28 25-26 24-25 25-25 13-13 11-12 11-11 11-11 AgsGeS6 19

Chalcothallite 27-30 26-29 25-27 25-27 TI2(Cu,Fe)6Sb54 87 Eskebomite 27-30 30-34 33-36 34-39 15-19 17-22 19-23 20-25 CuFeSe2 160 Cinnabar 27-31 25-29 23-27 22-26 12-16 11-14 10-13 9-11 HgS 99 Cameronite 27-31 31-34 33-33 34-32 16-19 18-20 20-19 20-18 CU7AgTelO 70 Zenzenite 27-32 26-30 24-28 23-27 12-17 12-16 10-14 9-12 Pba(Fe,Mn)4Mn3Dts 630

Selenium (synthetic) 27-47 26-42 30-40 28-37 14-32 12-26 16-25 13-21 Se 504 Digenite 28 25 19 15 13 11 7 4 Cu~ 141 Hematophanite 28-29 26-28 22-24 21-22 13-14 11-13 9-10 8-9 Pb4Fe30S(OH,CI) 230 Rohaite 28-30 25-28 23-27 22-26 TlCusSb~ 482 Permingeatite 28-31 26-27 24-25 28-30 16-19 14-15 12-14 15-18 CU3(Sb)Se4 429

Gortdrumite 28-31 27-31 26-29 25-28 13-16 13-16 11-14 11-13 (Cu,Fe)6Hg25s 210 Cinnabar 28-33 26-32 24-28 22-26 13-17 11-16 10-13 9-12 HgS 98 Hollandite 28-35 27-34 25-31 23-28 14-21 13-19 11-16 10-14 Ba(Mn,Mn)S016 241 Maghemite 29 26 22 20 14 12 9 7 y-Fe203 337 Galkhaite 29 27 23 21 14 12 9 8 (Cs,TI)(Hg,Cu,ZnMAs,Sb)4~2 187

CanJieldife 29 27 25 25 14 12 11 11 AgsSnS6 71 Villamaninite 29 27 26 30 16 14 14 18 (Cu,Ni,Co,Fe)~ 606 Coronadife 29 28 26 24 Pb(Mn,Mn)S016 113 Thalcusite 29-31 30-31 28-30 32-36 CU3_x Tl2Fel +xS4 571 Hematite 29-32 28-31 25-29 22-25 14-17 13-16 11-14 9-11 a-Fe203 228

H;ematite 29-33 28-32 25-29 22-25 15-18 13-17 11-14 9-11 a-Fe203 229 Orpiment 29-34 25-29 22-27 21-25 14-18 11-15 9-12 8-12 As25a 400 Pyrrhotite 29-34 32-38 37-42 41-44 17-22 20-25 25-29 28-31 Fel_xS 466 Kermesite 29-35 26-32 24-29 23-28 14-19 12-16 10-14 9-13 S~~O 282 Argentotennantite 30 30 30 28 (Ag,Cu)g(Zn,Feh(As,Sb)'~3 18

Berzelianite 30 31 24 19 15 16 10 6 CU2Se 44 Tennantite (zincian) 30 31 28 25 15 16 13 11 (Cu,Feh2As4~3 561 Stromeyerite 30-42 27-34 26-29 27-29 15-26 13-18 12-14 13-14 AgCuS 539 CanJieldife (fellurian) 31 29 27 26 16 15 13 12 AgsSnS6 72 Tennantite (plumbian) 31 30 29 25 16 15 14 11 (Cu,Fe)12As4~3 560

Goldfieldite 31 30 30 31 17 16 16 16 CudTe,Sb,As)4~3 208 Tennantite 31 31 28 26 16 16 14 12 (Cu,Feh2As4~3 557 Tennantite (bismuthian) 31 31 29 27 16 15 14 13 (Cu,Feh2As4~3 558 Tennantite (mercurian) 31 31 30 27 17 16 15 12 (Cu,Feh2As4~3 559 Tetrahedrite (argentian) 31 31 31 27 16 16 16 13 (Cu,Feh25b4~3 567

Tetrahedrite (argentian) 31 31 31 28 16 16 16 14 (Cu,Fe)12Sb4~3 568 Goldfieldite 31 31 31 31 16 16 16 16 CU12(Te,Sb,As )'~3 209 Routhierite 31-31 30-30 26-27 25-25 CuTlHg2(Sb,AshS6 4f!7 Routhierite 31-32 30-31 26-27 24-25 16-17 15-16 12-12 10-11 CuTIHg2(Sb,As h S6 486 Cuprite 31-33 30-29 25-24 23-22 16-17 15-14 11-10 9-9 CU20 125

Xanthoconite 31-34 27-30 23-25 22-24 15-18 12-15 9-11 8-10 AgaAs5a 628 Sabatierite 31-34 30-32 25-27 21-22 CU6TlSe4 495 Pyrrhotite 31-34 34-38 39-42 43-46 18-21 21-25 26-29 30-32 Fel_xS 467 Hutchinsonite 31-35 29-32 26-28 24-25 16-19 14-17 12-13 10-11 (Pb,TlhAss~ 242 Pyrrhotite 31-35 34-39 39-44 43-47 19-23 21-26 26-31 30-33 Fel_xS 468 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Rohaite 31-37 28-36 26-35 24-34 TICusSb~ 481 Stibnite 31-53 31-51 30-45 29-40 16-40 16-37 15-30 15-25 Sb:z5:3 538 Cuprite 32 30 24 22 15 14 11 9 CU20 124 Tetrahedrite (zincian) 32 32 31 27 17 17 16 13 (Cu,Fe)12Sb4St3 570 Tetrahedrite 32 32 32 30 17 17 17 15 (Cu,Feh2Sb4St3 566

Giraudite 32 32 32 31 (Cu,Zn,Agh2(As,Sb)4(5e,Sh3 199 Greigite 32 33 36 39 19 20 23 25 Fe3S4 214 Stephanite 32-33 30-32 28-30 28-28 18-18 15-17 13-15 14-14 AgsSbS4 535 Watanabeite 32-33 32-32 30-31 28-29 17-18 17-18 15-16 14-15 CU4(As,SbhSs 617 Wittichenite 32-34 33-35 33-36 32-35 18-20 18-20 19-20 18-19 CU3Bi5:3 623

Proustite 32-35 27-30 23-26 22-25 16-19 12-15 9-12 9-11 A~As5:3 453 Berthierite 32-46 30-44 31-41 31-38 17-30 15-28 16-25 16-23 FeSb:zS4 43 Vaesite (cobaltian) 33 32 32 33 19 18 18 19 Ni~ 599 Tetrahedrite (mercurian) 33 32 33 29 18 17 17 14 (Cu,Feh2Sb4St3 569 Acanthite 33 33 29 26 18 17 14 12 Ag2S 1

Daubreelite 33 33 33 32 19 18 18 17 FeCr2S4 135 Hakite 33 34 34 (Cu,Hg,Agh2Sb4(5e,Sh3 219 Polybasite 33-33 32-34 30-31 27-28 18-18 16-18 15-16 12-13 (Ag,Cuh6Sb:zStl 447 Parapierrotite 33-34 31-32 28-30 26-28 18-20 17-19 14-16 12-14 Tl(Sb,As)sSs 415 Pearceite 33-34 31-33 29-31 27-29 18-19 16-18 14-16 13-14 Ag16As2Stl 420

Samsonite 33-35 31-32 27-28 25-26 18-19 16-17 13-13 11-11 Ag4MnSb:zS6 498 Lautite 33-35 31-33 31-31 32-31 18-20 16-17 16-16 17-16 CuAsS 316 Lapieite 33-35 36-35 37-34 40-38 19-20 22-20 22-20 25-24 CuNiSb5:3 311 Crooke site 33-36 33-35 33-35 31-35 18-21 18-20 18-20 17-20 CU7(Tl,Ag)5e4 121 Cuprobismutite 33-36 35-38 37-40 37-41 21-24 22-25 23-26 23-26 CUloBi12~3 126

Lapieite 33-37 35-37 37-34 40-32 20-23 23-22 23-19 27-17 CuNiSb5:3 312 Imiterite 33-38 31-34 29-31 28-29 Ag2H~ 246 Chaboumeite 33-39 32-37 30-34 27-30 18-23 17-21 15-18 13-15 (Tl,Pbb(Sb,As)91St47 81 Livingstonite 33-44 32-44 30-38 27-34 18-29 17-28 15-23 13-18 HgSb45s 326 Fischesserite 34 31 32 36 A~AuSe2 173

Fischesserite 34 32 32 35 19 17 17 20 A~Au5e2 172 Vaesite (cuprian) 34 33 33 36 20 19 20 22 Ni~ 600 Krutaite 34 34 30 28 21 20 16 16 Cu5e2 303 Freibergite 34 34 32 29 19 18 16 14 (Ag,Cu,Fe )dSb,As )4St3 177 Hakite 34 34 34 (Cu,Hg,Agh2Sb4(5e,Sh3 218

Vaesite (selenian) 34 34 34 35 20 20 20 20 Ni~ 601 Orcelite 34 45 53 55 Nis_x As 2 399 Eucairite 34-34 35-38 37-36 34-33 19-20 20-23 22-21 19-18 AgCuSe 162 Larosite 34-35 33-33 32-33 33-32 20-21 18-18 17-18 18-17 (Cu,Agb(Pb,BihSt3 313 Seligmannite 34-35 33-35 31-33 29-31 19-20 18-19 16-18 14-16 CuPbAs5:3 505

Duranusite 34-37 31-33 29-31 27-29 As4S 148 Mckinstryite 34-39 32-35 29-31 27-28 19-23 17-20 14-16 13-14 (Ag,CuhS 361 Laphamite 34-40 32-36 27-32 26-30 19-24 17-20 12-16 12-16 As2(5e,Sh 310 Cylindrite 34-40 33-39 30-36 28-34 19-25 17-23 15-21 14-19 Pb4FeSn4Sb:zSt6 132 Tiemannite 35 32 29 28 21 17 15 14 Hg5e 575

Pyrite (nickeloan) 35 34 36 38 20 20 21 23 (Fe,Ni,Co)~ 460 Cattierite 35 35 39 43 20 21 26 29 Co~ 78 Pyrite (nickelian) 35 37 42 47 Fe~ 459 Gold (argent ian) 35 53 92 95 26 47 89 94 AU.94Ag.06 206 Gold (argentian) 35 65 91 93 28 59 88 91 Au.soAK20 205 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Jalpaite 35-35 34-33 31-31 29-29 20-20 19-18 16-16 14-15 Ag3Cu~ 266 Furutobeite 35-35 34-36 35-36 34-36 20-20 19-21 20-21 19-21 (CU,Ag)6PbS, 181 Aguilarite 35-35 35-35 32-34 30-31 20-20 20-20 17-18 15-16 Ag,SeS 2 Laffittite 35-37 33-34 28-30 26-29 AgHgAs~ 308 Levyclaudite 35-37 34-35 31-33 30-32 20-21 19-20 18-19 17-19 PbSSn7Cu3(Bi,Sbh~s 320

Vaughanite 35-40 33-39 30-39 28-34 19-24 18-24 16-23 14-19 TlHgSb,~ 604 Junoite 35-43 35-42 35-43 35-42 P~Cu2Bis(S,Seh6 274 Falkmanite 35-46 35-43 33-41 31-37 Pb5.,S~.6S11 163 Gold 36 45 90 95 26 38 86 93 Au 204 Pyrostilpnite 36-36 33-34 28-28 25-26 20-20 18-18 13-13 11-11 A~Sb~ 465

Benleonardite 36-36 35-34 32-30 31-28 21-21 20-19 17-15 16-14 Ags(Sb,As)Te2~ 41 Pyrargyrite 36-37 32-33 26-28 24-26 20-21 16-18 12-13 10-11 A~Sb~ 456 Djurleite 36-37 34-35 29-31 25-28 21-22 19-19 14-16 11-13 CU31~6 143 Emplectite 36-38 38-41 37-42 37-40 21-23 22-26 22-27 21-24 CuBi~ 153 Godlevskite 36-38 47-49 55-54 58-57 27-29 37-39 43-43 47-46 (Ni,FehS6 201

Miargyrite 36-39 34-37 30-32 27-29 20-23 18-20 15-17 12-14 AgSb~ 369 Boumonite 36-39 35-37 33-34 30-31 22-24 20-22 18-19 16-16 PbCuSb~ 56 Donharrisite 36-39 41-44 48-50 51-53 24-27 29-32 35-38 38-40 NisH~S9 146 Millerite 36-39 48-47 58-53 61-54 27-29 39-36 47-40 49-42 f3-NiS 375 Uchucchacuaite 36-44 35-44 33-42 31-40 AgMnP~Sb5~2 592

Krutaite (nickeloan) 37 36 34 32 23 23 20 19 CuSe2 305 Coloradoite 37 36 39 36 22 21 24 20 HgTe 106 Pentlandite 37 43 50 54 26 30 37 41 (Fe,Ni)gSs 424 Boumonite 37-37 35-37 33-35 31-32 21-22 20-21 18-20 16-17 PbCuSb~ 57 Potosiite 37-38 36-37 34-36 32-34 22-23 21-22 19-20 17-19 Pb48SnlSFe7S~6~15 450

Sartorite 37-40 35-38 32-35 29-32 22-24 21-23 17-20 15-17 PbAs2S, 499 Sopcheite 37-40 43-41 44-44 46-48 24-26 29-27 30-30 32-35 Ag,Pd3Te4 519 Roschinite 37-41 36-40 35-39 33-36 Ag19P~oSb51 S96 485 Naumannite 37-41 38-39 33-35 31-33 23-25 23-23 18-20 16-18 Ag2Se 389 Baumhauerite 37-42 36-40 34-37 31-34 22-26 20-24 18-21 15-18 P~As4S9 36

Vozhminite 37-43 44-49 51-53 54-57 (Ni,CoMAs,Sb)~ 612 Nickeline 37-44 40-46 54-57 62-64 23-29 26-33 42-44 51-52 NiAs 394 Fiiloppite 37-45 37-43 35-39 30-34 22-30 21-28 19-24 15-19 P~SbS~5 180 Plagionite 37-45 37-44 35-41 31-36 21-30 21-28 20-25 16-20 Pb5Sbs~7 438 Bismuthinite 37-48 38-49 37-48 36-45 23-32 23-34 22-32 21-30 Bi2~ 48

Pentlandite 38 45 52 54 28 34 40 42 (Fe,Ni)gSs 425 Chalcocite 38-38 36-36 31-32 29-29 22-22 20-20 17-17 15-14 CU2S 82 Gratonite 38-38 36-36 37-37 33-33 23-22 21-20 21-21 18-18 Pb9As4~5 212 Lengenbachite 38-39 37-38 35-36 32-33 23-24 21-23 20-20 17-18 Pb6(Ag,CuhAs'~3 318 Franckeite 38-39 37-38 35-37 33-35 23-24 22-23 20-21 18-19 (Pb,Sn)6FeSn2S~~, 175

Heazlewoodite 38-39 50-52 54-58 57-60 30-30 39-42 42-48 45-50 Ni3~ 226 Diaphorite 38-40 37-39 35-37 33-36 22-24 21-24 20-22 18-21 P~Ag3Sb3SS 140 Millerite 38-40 51-48 60-52 63-55 31-32 44-38 51-41 54-43 f3-NiS 374 Baumhauerite-2a 38-41 36-40 33-36 30-33 22-26 20-24 17-21 15-17 P~lAg(As,Sbhs~6 37 Aramayoite 38-41 38-39 35-37 32-34 23-25 22-24 19-21 16-19 Ag(Sb,Bi)~ 15

Rayite 38-41 38-40 37-38 35-37 Pbs(Ag,TlhSbsSn 476 Freieslebenite 38-42 37-41 35-39 33-36 24-28 22-26 20-23 18-21 PbAgSb~ 178 Andorite 38-42 37-42 36-40 34-38 23-27 22-27 20-24 19-22 AgPbS~S6 12 Pierrotite 38-43 36-42 33-38 31-35 22-27 20-25 17-21 15-19 Tl2Sb6As4~6 435 Rathite 38-44 37-43 33-39 30-35 23-28 21-27 18-23 15-19 (Pb,TlhAs5~O 475 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Semseyite 38-44 37-43 35-41 32-38 22-29 22-28 20-26 17-22 Pb~bsS:!l 506 Jask61skiite 38-44 37-43 36-41 34-39 23-29 21-27 20-26 19-24 P~+xCux(Sb,Bih_xSs 268 Jamesonite 38-45 37-45 35-43 33-39 22-30 22-30 20-27 17-23 Pb4FeSb6~4 267 Empressite 38-46 39-51 40-53 39-54 23-32 24-37 25-39 24-40 AgTe 154 Henryite 39 35 30 26 23 20 16 12 CU4A&Te4 234

Krutaite (nickeloan) 39 39 38 37 25 25 24 22 CuSe2 304 Criddleite 39-40 38-39 35-37 33-34 25-26 23-25 21-23 19-20 TlAg2Au3S~oSio 120 Sopcheite 39-40 45-43 46-48 47-51 27-28 31-30 32-35 33-38 Ag4Pd3Te4 518 Weissite 39-41 36-37 31-33 26-30 23-25 21-22 16-18 13-16 CUSTe3 622 Dufrenoysite 39-41 37-40 35-36 31-32 23-26 22-24 19-21 16-17 P~AS2Ss 147

Tvalchrelidzeite 39-41 40-39 36-34 32-31 23-26 24-23 20-18 17-16 H&(Sb,As)~ 589 Tucekite 39-41 42-46 48-50 52-53 26-29 29-33 35-37 39-40 Ni~~Sg 585 Domeykite (f3 domeykite) 39-41 44-47 46-50 44-48 27-29 32-35 32-36 30-33 CU3As 145 Liveingite 39-42 37-41 34-38 30-33 23-27 21-26 18-22 15-18 Pb9As13S:!S 325 Benavidesite 39-42 40-43 38-41 36-38 Pb4(Mn,Fe )Sb6~4 39

Zinkenite 39-44 38-43 36-41 33-37 24-29 23-28 21-25 18-22 Pb~~2S42 633 Zoubekite 39-44 38-44 37-42 34-38 AgPb4Sb4~O 634 Tintinaite 39-44 38-44 37-42 34-39 P~2CU4(Sb,BihoS69 577 Meneghinite 39-45 38-44 36-42 34-39 24-30 23-29 21-27 19-23 P~3CuSb;S:!4 364 Aikinite 39-45 40-46 39-46 38-44 25-31 25-32 24-31 23-29 CuPbBi~ 3

Chalcos tibite 39-46 40-47 35-40 33-38 24-31 24-31 19-23 18-22 CuSbS:! 86 Cervelleite 40 39 37 35 24 23 21 19 Ag4TeS 80 Penroseite (cuprian) 40 40 40 39 26 26 25 25 (Ni,Co,Cu)Se2 423 Penroseite 40 41 43 44 26 27 29 30 (Ni,Co,Cu)Se2 422

Sopcheite 40 42 45 49 Ag4Pd3Te4 517

Hessite 40-41 40-40 42-39 44-39 25-26 25-24 27-24 28-24 Ag2Te 237 Cherepanovite 40-41 42-44 45-47 45-48 RhAs 91 Veenite 40-43 38-42 36-40 33-37 24-28 23-27 21-25 18-21 P~(Sb,AshSs 605 Jordanite 40-43 39-41 37-40 35-37 25-28 24-26 22-24 20-22 P~4As6S:!3 271 Boulangerite 40-44 38-43 36-40 34-37 26-30 24-29 22-26 20-22 PbsSb4~1 55

Geocronite 40-44 39-43 38-41 35-38 25-29 24-28 22-25 20-23 P~4(Sb,As)6~ 192 Hammarite 40-44 40-44 40-45 39-43 25-29 25-29 25-29 23-27 P~Cu2Bi4S9 220 Owyheeite 40-45 39-45 37-43 35-39 25-30 23-30 22-28 19-24 Ag2Pb;(Sb,Bi)sS:!o 404 Krupkaite 40-46 40-47 39-47 38-45 25-32 24-32 23-32 22-29 PbCuBi3S6 302 Penroseite 41 41 42 43 27 26 27 28 (Ni,Co,Cu)Se2 421

Pentlandite (cobaltian) 41 48 54 57 32 37 43 45 (Fe,Ni)~S 426 Inaglyite 41-42 40-42 40-42 41-43 CU3Pb(Ir,Pt)s~6 247 Stiitzite 41-42 41-41 41-39 41-37 27-27 26-26 26-24 26-22 Ag2_xTe 540 Teallite 41-44 42-44 42-43 40-41 28-31 28-30 27-28 25-26 PbSnS:! 549 Dadsonite 41-45 39-44 38-41 35-37 25-31 24-29 22-25 18-22 P~o+xS~4-x~l-xClx 133

Luberoite 41-45 44-50 49-55 52-58 28-33 32-38 36-42 39-46 PtSSe4 332 Kirkiite 41-46 40-45 38-42 37-41 P~oBi3As3~9 288 Breithauptite 41-47 37-45 45-53 54-61 27-33 23-32 32-42 41-49 NiSb 62 Piiakkonenite 41-52 38-50 37-46 36-45 S~AsS:! 405 Petzite 42 40 38 38 27 25 23 22 A&AuTe2 434

Carrollite 42 42 44 45 28 28 29 31 Cu(Co,NihS4 74 Carrollite (nickelian) 42 44 46 47 29 30 32 33 Cu(Co,Nih S4 75 Linnaeite (nickelian) 42 45 50 54 30 32 37 41 CoCo2S4 323 Domeykite 42 48 54 55 30 35 42 42 CU3As 144 Keithconnite 42-42 43-43 47-48 54-53 Pd3_xTe 280 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Cabriite 42-42 43-46 49-56 60-69 29-30 30-34 36-45 49-60 Pd2SnCu 68 Braggite 42-43 43-44 42-44 42-44 27-28 27-29 27-29 27-29 (Pt,Pd,Ni)S 59 Braggite 42-43 43-44 43-44 42-44 27-28 27-29 28-29 27-29 (Pt,Pd,Ni)S 60 Neyite 42-45 42-45 41-45 40-44 Pb;(Cu,AghBi6~7 392 Cooperite 42-46 41-46 39-45 36-44 26-31 26-31 24-30 21-29 (Pt,Pd,Ni)S 111

Breithauptite (synthetic) 42-47 37-45 45-54 54-61 27-34 23-32 32-42 41-49 NiSb 63 Matildite 42-48 43-49 42-47 39-46 28-34 28-34 26-32 24-31 AgBi~ 358 Guanajuatite 42-52 43-52 42-52 41-51 28-38 28-38 27-38 26-36 Bi2Se3 216 Violarite 43 44 48 54 31 32 35 42 FeNi2S4 608 Palladseite 43 45 46 46 29 31 31 32 Pd17Se1S 409

Pentlandite (rhodian) 43 45 49 51 31 33 36 38 (Fe,Ni)~s 427 Violarite (cobaltian) 43 45 50 55 30 32 37 42 FeNi2S4 609 Pyrite 43 48 54 55 26 36 41 42 Fe~ 457 Pyrite 43 51 55 56 29 37 41 42 Fe~ 458 Vysotskite 43-43 44-45 45-46 45-46 28-29 30-30 31-31 30-31 (Pd,Pt)S 615

Konderite 43-45 42-45 44-46 45-47 CU3Pb(Rh,Pt,Ir)S~6 295 Cabriite 43-45 43-48 49-58 61-70 Pd2SnCu 67 Ferroselite 43-45 44-47 48-54 50-57 29-30 30-33 33-40 35-43 FeSe2 167 Marcasite 43-47 46-55 50-55 47-51 29-34 32-41 34-40 31-36 FeS2 354 Cooperite 43-48 42-48 37-46 35-43 27-32 26-33 22-30 19-28 (Pt,Pd,Ni)S 110

Erlichmanite 44 43 41 38 28 27 25 22 Os~ 159 Erlichmanite 44 43 42 40 28 28 26 25 Os~ 158 Siegenite 44 45 49 53 31 32 36 40 CoNi2S4 509 Tyrrellite 44 46 47 48 31 32 33 34 (Cu,Co,NihSe4 590 Siegenite (cuprian) 44 46 48 51 31 33 35 38 CoNi2S4 510

Mertieite II 44 47 53 58 Pds(Sb,Ash 366

Orcelite 44 47 53 59 Nis_xAs2 398 Isomertieite 44 49 57 61 31 36 45 48 PdllS~As2 262 Electrum 44 78 93 94 38 73 90 91 AU.64Ag.36 152 Watkinsonite 44-45 45-46 46-47 46-47 PbCU2Bi4(Se,S,Te)s 618

Potarite 44-45 49-50 55-56 60-62 32-33 38-38 44-44 49-51 PdHg 449 Kashinite 44-46 47-46 47-46 46-47 (Ir,Rhh~ 277 Plumbopalladinite 44-47 48-51 55-58 63-66 Pd3P~ 444 Izoklakeite 44-48 42-46 40-44 38-43 28-33 26-31 24-28 23-27 (Cu,FehP~(Sb,Bih~S7 264 Soucekite 44-48 44-47 44-47 43-48 CuPbBi(S,Seh 520

Kostovite 44-58 49-61 52-61 53-61 32-46 36-49 39-49 40-48 AuCuTe4 296 Petrovicite 45 46 46 46 PbHgCu3BiSes 432 Polydymite 45 46 46 53 34 34 33 41 NiNi2S4 448 Tyrrellite 45 47 48 49 33 34 35 36 (Cu,Ni,CohSe 4 591 Padmaite 45 48 46 51 PdBiSe 406

Telargpalite 45 48 52 57 (Pd,AghTe 550

Telluropalladinite 45 48 54 60 Pd9Te4 556 Gladite 45-46 45-47 45-47 43-44 30-32 30-32 29-31 27-29 PbCuBisS9 200 Imgreite 45-46 45-50 53-57 64-63 33-34 32-38 42-46 53-52 NiTe (?) 245 Bowieite 45-46 46-47 47-48 47-49 30-31 31-32 32-33 32-34 (Rh,Ir,Pth~ 58

Skippenite 45-46 48-50 49-51 49-51 Bi2Se2Te 514 Nagyagite 45-47 42-44 39-40 36-37 30-32 27-29 24-25 21-22 PbsAu(Te,Sb)4SS-8 388

Paolovite 45-47 46-50 53-57 63-61 Pd2Sn 410 Parkerite 45-47 47-49 49-51 51-53 33-36 35-37 36-39 38-40 Ni3(Bi,Pbh~ 418 Stibiopalladinite 45-47 50-52 56-57 61-59 32-34 38-40 44-44 49-46 PdsS~ 537 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Cupropavonite 45-49 44-50 42-47 41-46 30-35 29-35 27-31 26-30 AgPbCu2Bis~o 128 Benjaminite 45-49 45-49 43-47 43-45 31-34 30-34 28-32 27-30 (Ag,Cuh(Bi,Pbh~2 40 Niggliite 45-53 46-60 45-66 45-69 31-42 32-49 31-55 31-58 PtSn 395 Herzenbergite 45-54 44-51 41-47 39-43 30-40 28-36 25-31 24-28 SnS 236 Lillianite 46 44 43 43 PbaBi2S6 321 Isomertieite 46 51 59 61 33 38 46 49 261 Cobalt pentlandite 46 54 60 62 36 43 48 49 103 Maucherite 46-46 47-48 52-53 57-58 32-32 33-34 39-39 45-45 NinAss 359 Arsenopalladinite 46-47 49-51 55-57 59-60 33-33 36-38 43-45 46-48 Pds(As,Sbh 22 Cosalite 46-50 43-47 41-45 40-45 32-36 29-33 26-31 25-30 P~Bi2Ss 115

Weibullite 46-52 45-51 42-48 41-47 32-38 30-36 27-33 26-32 Pb6Bis(S,Sehs 621 Laurite 47 45 42 39 Ru~ 314 Irarsite 47 46 45 44 31 31 30 28 (Ir,Ru,Rh,Pt)AsS 252 Platarsite 47 47 49 50 (Pt,Rh,Ru)AsS 439 Majakite 47 51 56 59 PdNiAs 345

Gold (palladian) 47 52 68 77 35 41 59 69 Au 207 Watkinsonite 47-47 48-48 48-49 48-49 PbCU2Bi4(Se,S,Te)s 619 Ikunolite 47-48 46-49 46-49 45-48 32-35 32-35 31-35 30-34 Bi4(S,Seh 243 Galenobismutite 47-49 46-48 44-46 43-45 32-34 31-33 29-30 28-29 PbBi2S4 186 Wittite 47-50 45-49 42-46 41-45 31-35 30-34 26-31 25-30 Pb9BidS,Seb 624

Palarstanide 47-50 51-53 56-57 60-61 Pds(Sn,Ash 407 Poubaite 47-51 48-53 49-53 49-53 PbBi2Se2(Te,Sh 451 Paraguanajuatite 47-58 49-58 49-57 46-55 35-46 35-45 34-43 32-41 Bi2(S,Seh 412 Galena 48 45 42 42 34 30 27 27 PbS 184 Khamrabaevite 48 47 48 50 33 33 34 36 (Ti,Fe,V)C 284

Gersdorffite II 48 48 49 49 33 34 34 34 NiAsS 198 Platarsite 48 49 49 47 34 34 34 32 (Pt,Rh,Ru)AsS 440 Cobaltite 48 49 53 54 33 35 38 40 CoAsS 104 Suessite 48 51 55 58 36 39 43 45 (Fe,NihSi 544 Genkinite 48-48 51-52 57-57 60-60 35-35 38-39 44-44 47-47 (Pt,Pd)4Sba 191

Alloclasite 48-49 48-50 49-51 49-50 34-34 33-35 34-36 34-35 (Co,Fe)AsS 9 Paracostibite 48-49 48-50 50-49 51-51 34-35 34-35 35-35 36-37 CoSbS 411

Palladoarsenide 48-49 51-53 55-56 58-59 Pd2As 408 Kobellite 48-51 46-49 44-46 43-45 35-37 32-34 30-31 28-30 P~(Bi,SbhSs 291 Arsenopyrite 48-52 50-52 53-52 52-51 33-37 35-37 39-37 39-37 FeAsS 23

Kawazulite 48-52 50-55 52-57 52-56 35-39 37-42 38-43 37-42 Bi2Te2Se 278 Paraguanajuatite 48-57 50-58 50-58 47-55 34-44 35-45 34-44 31-40 Bi2(Se,sh 413 Sylvanite 48-58 52-62 53-63 54-62 35-46 39-50 39-51 41-50 (Au,AghTe4 547 Laurite 49 45 41 38 33 29 25 23 Ru~ 315 Galena 49 45 43 43 34 30 27 27 PbS 185 Gersdorffite I 49 47 45 46 35 32 31 32 NiAsS 195 Ullmannite (arsenian) 49 48 46 47 35 33 32 33 NiSbS 594 Gersdorffite (antimonian) 49 48 47 47 35 34 32 33 NiAsS 194 Ullmannite 49 48 47 48 35 34 32 33 NiSbS 593 Aleksite 49-50 50-51 50-52 50-52 35-37 36-38 36-38 35-37 PbBi2Te2~ 7

Atheneite 49-51 52-55 56-58 58-59 36-38 39-42 44-45 45-46 (Pd,HghAs 28 Urvantsevite 49-51 54-53 57-56 61-60 Pd(Bi,Pbh 598 Stumpflite 49-52 57-60 62-67 65-71 Pt(Sb,Bi) 541 Arsenopyrite (cobaltian) 49-53 50-52 51-51 52-51 35-40 36-38 36-37 37-36 FeAsS 24 Mo~tbrayite 49-53 54-57 59-61 61-62 37-41 41-45 47-49 49-50 (Au,SbhTe3 382 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page sudburyite 49-53 56-59 62-67 64-71 38-42 45-48 51-57 53-61 (Pd,Ni)sb 542 Krennerite (argentian) 49-55 54-59 56-61 57-61 37-43 41-47 44-49 44-49 (Au,Ag)Te2 301 Cobaltite 50 50 52 53 35 35 37 38 CoAss 105 Chromferide 50 53 58 61 Fel.5CrO.5_x 93 Maldonite 50 55 60 60 37 42 48 48 AU2Bi 348 sudburyite (nickelian) 50-52 57-58 64-67 66-70 39-41 46-48 53-57 55-61 (Pd,Ni)sb 543 Laitakarite 50-54 50-55 48-55 46-52 37-41 36-41 34-40 31-37 Bi4(s,Seh 309 Gudmundite 50-56 50-57 53-55 54-52 36-44 37-44 40-41 41-38 Fesb5 217 Insizwaite 51 54 55 57 Pt(Bi,sbh 250 Copper 51 59 96 99 42 50 95 98 Cu 112

Jolliffeite 51-51 51-51 51-51 51-51 37-38 37-37 38-38 37-37 NiAsSe 270 Kotulskite 51-52 60-64 66-71 69-75 Pd(Te,Bi) 297 Kotulskite (bismuthian) 51-54 59-58 66-65 69-70 Pd(Te,Bi) 299 Arsenopyrite (cobalt ian) 51-55 52-55 53-53 53-52 36-41 37-40 38-39 38-37 Fe AsS 25 Krennerite 51-56 57-61 59-63 59-63 39-44 45-49 47-51 46-51 AuTe2 300

Bismuth 51-60 56-64 62-70 64-73 40-50 44-53 51-59 53-63 Bi 47 Calaverite 51-60 58-65 62-68 63-68 39-49 46-54 50-58 51-57 AuTe2 69 Zvyagintsevite 52 57 62 65 40 45 51 53 (Pd,Pt,Auh(Pb,sn) 635 Kitkaite 52-52 56-53 63-59 66-63 40-39 44-40 51-47 54-51 NiTese 289 Polarite 52-53 55-56 59-60 62-62 39-41 43-45 47-48 49-50 Pd(Bi,Pb) 446

Algodonite 52-53 58-56 66-61 67-63 42-42 48-44 55-50 57-52 CU6As 8 Kotulskite 52-53 63-69 69-76 70-77 42-44 53-59 59-68 59-68 Pd(Te,Bi) 298 Joseite 52-54 52-55 51-55 49-54 38-41 37-41 36-41 34-40 Bi4Te~ 272 sulphotsumoite 52-54 53-56 54-58 54-58 Bi3Te25 545 Moncheite 52-54 55-56 57-58 58-59 39-40 41-42 43-44 44-45 (Pt,Pd)(Te,Bih 379

Froodite 52-54 55-57 57-60 59-63 PdBi2 179 Ingodite 52-56 52-57 52-57 50-55 38-43 38-43 37-43 36-41 Bi2Tes 249 Cuprostibite 52-57 46-50 40-43 63-56 37-43 32-35 29-30 52-43 CU2(5b,Tl) 131 Tetradymite 52-57 53-59 55-60 54-60 38-44 39-46 41-47 39-46 Bi2Te2s 564 Nickel-skutterudite 53 55 55 53 40 42 41 38 (Ni,Co,Fe )AS3 393

Nevskite 53-58 51-56 50-54 49-52 Bi(se,s) 391 Lollingite (cobalt ian) 53-58 54-55 55-52 54-49 39-44 40-41 41-37 40-34 FeAs2 328 Lollingite 53-60 54-56 56-51 53-48 38-46 40-42 42-36 39-33 FeAs2 327 sperrylite 54 54 54 51 39 39 38 36 PtAs2 521 Gersdorffite II 54 54 55 55 40 40 41 40 NiAss 197

Michenerite 54 56 57 59 42 44 45 47 (Pd,Pt)BiTe 371 Melonite (palladian- bismuthian) 54-55 56-55 60-62 64-66 NiTe2 363 Arsenic 54-56 52-56 51-55 50-55 40-43 38-42 36-42 36-41 As 21 Melonite 54-56 58-55 66-62 71-66 43-44 47-43 56-50 61-55 NiTe2 362 safflorite 54-57 54-56 54-53 52-52 39-44 40-42 39-39 37-37 CoAs2 496

Moncheite 54-60 55-62 56-63 54-62 (Pt,Pd)(T e, Bih 380 Polarite 55 56 60 62 Pd(Pb,Bi) 445 Ferchromide 55 57 61 63 Cr3Fel_x (x-0.6) 164 Joseite-B 55-56 55-58 57-61 56-60 41-43 41-45 42-47 41-46 Bi4Te25 273 Clinosafflorite 55-59 56-56 55-52 53-50 41-45 41-42 40-38 38-35 (Co,Fe,Ni)As2 102 skutterudite 56 55 53 52 41 40 38 37 CoAs2-3 515 skutterudite 56 56 54 53 43 42 40 38 CoAs2-3 516 Michenerite 56 56 56 57 (Pd,Pt)BiTe 370 Maslovite 56 56 56 58 PtBiTe 356 Ferronickelplatinum 56 58 60 63 Pt2FeNi 166 Air and Oil data 44O-700nm key continued

R% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Volynskite 56-57 54-56 55-55 55-56 43-45 40-42 41-41 42-42 AgBiTe2 610 Michenerite (antimonian) 57 56 56 58 (Pd,Pt)BiTe 372 Gersdorffite II 57 57 57 57 44 43 43 43 NiAsS 196 Insizwaite 57 59 60 60 44 46 48 47 Pt(Bi,Sbh 251 Moncheite (palladian) 57-58 58-60 59-61 60-62 (Pt,Pd)(Te,Bih 381

Rammels bergite 57-61 56-61 57-61 57-58 44-49 43-48 43-48 43-45 NiAs2 473 Clausthalite (synthetic) 58 54 49 47 46 40 34 32 PbSe 101 Iron 58 58 58 59 45 45 45 46 257 Aurostibite 58 60 61 61 46 47 48 48 30 Awaruite 58 61 65 66 46 50 53 55 31

Pararammelsbergite 58-58 59-59 59-61 57-61 45-46 46-46 45-48 44-48 NiAs2 416 Dyscrasite 58-60 60-62 60-63 60-63 47-49 48-51 47-51 47 -52 A&Sb 149 Tellurium (synthetic) 58-68 58-69 58-68 53-64 46-58 46-58 44-56 39-51 Te 554 Iron (nickelian) 59 59 59 60 46 46 46 47 Fe 258 Tellurium 59-65 60-67 60-66 55-61 48-54 48-55 47-54 41-48 Te 552

Tellurium (synthetic) 59-70 60-70 60-69 57-65 48-60 47-58 46-56 42-52 Te 553 Tetraferroplatinum 60 63 65 65 PtFe 565 Electrum 60 84 93 93 55 80 90 90 151 Hedleyite 60-63 61-65 62-68 64-69 49-53 50-54 51-57 52-58 B~Te3 227 Tellurantimony 60-64 62-66 64-68 63-68 50-54 51-56 52-57 50-56 Sb2Te3 551

Isoferroplatinum 61 63 66 70 (Pt,Pdh(Fe,Cu) 260 Kolymite 61 69 74 78 CU7Hg6 294 Tsumoite 61-62 62-63 63-65 63-66 49-52 49-52 50-54 51-55 BiTe 584 Claus thalite 62 57 51 48 49 43 36 33 PbSe 100 Rucklidgeite 62-63 62-64 62-66 63-67 50-52 50-53 50-55 51-55 (Bi,PbhTe4 488

Tellurobismuthite 62-64 63-65 63-67 65-68 51-53 50-53 51-55 53-57 Bi2Te3 555 Pilsenite 63-64 64-65 65-67 65-68 50-52 51-53 52-55 52-56 Bi4Te3 436

Schachnerite 63-65 69-70 76-77 81-81 52-54 58-60 66-68 72-73 Ag1.l HgO•9 500 Seintijokite 64 61 61 65 (Fe,Ni)(Sb,As h 503 Platinum 64 68 71 73 53 57 61 63 Pt 441

Merenskyite 64-65 62-65 64-68 67-73 (Pd,Pt )(Te,Se, Bih 365 Osmium 64-65 63-64 60-61 59-60 Os 401 Altaite 65 71 67 59 55 61 55 46 PbTe 10 Osmium (iridian) 65-65 64-64 59-60 56-62 53-54 51-52 45-47 42-51 Os 402 Rutheniridosmine 66 66 63 62 54 54 50 48 (Os,Ir,Ru) 490

Osmium (iridian) 66-67 65-67 62-65 60-66 54-55 53-55 49-53 47-53 (Os,Ir) 403 Cupalite 67 65 60 57 (Cu,Zn)AI 123 Rutheniridosmine 67 68 65 63 55 56 53 50 (Os,Ir,Ru) 489 Belendorffite 68 70 74 77 59 60 64 67 CU7Hg6 38 Lead 69 70 69 70 59 59 58 59 Pb 317 Iridium 69 70 73 74 Ir 253 Iridium 69 72 74 75 58 61 64 65 Ir 254 Ruthenium (iridian) 69-69 70-71 69-71 67-70 Ru 492 Ruthenium (synthetic) 69-72 71-71 73-72 71-68 57-62 60-60 63-61 60-57 Ru 493 Ruthenium 70 71 69 65 58 59 57 52 Ru 491 Iridium 70 72 74 75 58 61 64 65 Ir 255 Paraschachnerite 70-71 75-76 82-83 85-86 60-62 66-68 74-76 78-79 A&Hg2 417 Khatyrkite 70-76 73-77 79-73 80-68 CuAl2 285 Iridium (ruthenian) 71 72 75 78 Ir 256 Antimony 73-76 75-78 72-77 68-74 64-68 65-70 62-68 56-65 Sb 14 Air and Oil data 44O-700nm key continued

R% imR% 440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Moschellands bergite 76 80 84 85 67 71 77 78 Ag2Hg3 385 Silver (antimonian) 76 83 88 88 70 77 83 84 Ag 512 Tin 76-82 81-87 82-88 80-85 68-76 73-81 75-82 72-80 Sn 576 Silver 86 91 94 96 84 88 92 94 Ag 511 Silver (synthetic) 92 98 >99 99 88 95 99 98 Ag 513