211 REVIEW Mouse models for inherited endocrine and metabolic disorders Siaˆn E Piret and Rajesh V Thakker Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK (Correspondence should be addressed to R V Thakker; Email:
[email protected]) Abstract In vivo models represent important resources for investigating mutagenesis; conventional, conditional and inducible knock- the physiological mechanisms underlying endocrine and out models; knockin models and transgenic models, and these metabolic disorders, and for pre-clinical translational studies strategies are often complementary. This review describes that may include the assessments of new treatments. In the some of the different strategies that are utilised for generating study of endocrine diseases, which affect multiple organs, mouse models. In addition, some mouse models that have in vivo models provide specific advantages over in vitro models, been successfully generated by these methods for some which are limited to investigation of isolated systems. In human hereditary endocrine and metabolic disorders are recent years, the mouse has become the popular choice for reviewed. In particular, the mouse models generated for developing such in vivo mammalian models, as it has a genome parathyroid disorders, which include: the multiple endocrine that shares w85% identity to that of man, and has many neoplasias; hyperparathyroidism-jaw tumour syndrome; physiological systems that are similar to those in man. disorders of the calcium-sensing receptor and forms of Moreover, methods have been developed to alter the inherited hypoparathyroidism are discussed. The advances expression of genes in the mouse, thereby generating models that have been made in our understanding of the mechanisms for human diseases, which may be due to loss- or gain- of these human diseases by investigations of these mouse of-function mutations.