PETROLOGIC STUDIES OF THE MALVERN HOWARDITE AND THE MERWEVILLE CHONDRITE, AND A SURVEY ON THE AWARENESS AND LITERACY OF PLANETARY SCIENCES IN SOUTH AFRICAN SCHOOLS AND UNIVERSITIES

by

STEPHAN ADRIAAN BALLOT LAUBSCHER

DISSERTATION

submitted in fulfilment of the requirements for the degree

MASTER OF NATURAL SCIENCE

in

GEOLOGY

in the

FACULTY OF NATURAL SCIENCES

at the

RAND UNIVERSITY

Supervisor: Prof. L.D. Ashwal (RAU) Co-Supervisor: Dr. M. Tredoux (UCT)

September 2000 DECLARATION

I declare that this thesis is my own work. It is being submitted for the degree of Master of Science in the Department of Geology, Rand Afrikaans University, Johannesburg. This thesis has not been submitted for any degree or examination in any other University.

Stephan Adriaan Ballot Laubscher

This l'\\ day of IL 2000 ACKNOWLEDGEMENTS

"Nobody said it would be easy but nobody said it would be this hard" I would like to thank all the following people for their invaluable assistance in the course of this study. In I thank my supervisors Prof. Lew Ashwal (RAU) and Dr. Marian Tredoux (UCT) for their initial support in granting me the opportunity to work on this project and also for their effort and help, to initialize the combined support of the project at NASA in Houston, Texas. I thank the Bloemfontein National Museum and especially Dr. Johan Welman for granting me the use of a piece of the Malvern meteorite and Mr. Johan Loock from The University of the Free State for giving us part of the new unclassified meteorite, Merweville, to analyse and classify. I thank Mr. Mick Rebak and Dr. Rodger Hart from Schonland Research Center respectively, for the cutting of Malvern and help with the INAA, and Dr. Piet Louw from Pelindaba for his help with the irradiation of the samples. I am also grateful to Mr. Jefferson Chaumba of UCT for his help in preparing the samples for XRF analysis. At the Department of Geology, Rand Afrikaans University I thank Dr. Manfred Troesch for answering all my questions on a daily basis in regard to all aspects of meteorites. I thank Mr. Hennie Jonker and Ms. Elsa Maritz for their logistical support as well as their friendliness, and Ms. Nellie Day for her help on the running of the electron microprobe. I thank Prof Bruce Cairncross for his help in photographing the samples, Mike Knoper for his continued help on the use of various computer programmes, Dr. Jan-Marten Huizenga for his help with computers and answering questions and Prof Nic Beukes, ProfJay Barton, Prof Henk Winter, Dr. Andre Smit, Dr. Jens Gutzmer and Dr. Frank Nyame for their support and interest in the study. I also thank Maurice Baloi and Daniel Selepe for cutting and polishing of samples, and Herbert Leteane for making sure the kitchen was always ready for use. I am indebted to the M.Sc and Ph.D. students at RAU Geology with whom I shared numerous discussions about the writing of our theses and less scientific things; they are Herman Dorland, Herman Van Niekerk, Andrea Sanderson, Richard Evans, Angus McIntyre, Riana van den Berg, Mark Le Grange, Quintin Swart, Marcus Schaefer, Mark Roth, Akos Szabo and Bernd Muller. I am grateful to the NRF (National Research Foundation) for granting me funding to do my study. I thank Miss Wilna Crous for her help at the RAU photographic lab with scanning of photographs and the use of their computers. I thank everybody that contributed to the collection of survey data needed for this thesis. They are Ms. Ronel Malan from RAU Dept. of Chemistry for her help in distributing the survey forms at the RAU first year chemistry class, Dr. Marian Tredoux, who collected data from UCT physics first year students and the Protec Programme, Linden, Vorentoe and Raucall High School for their willingness to be part of the survey. I thank the staff at the Transvaal Museum, the Science Museum, MuseumAfrica and the South African Museum in Cape Town for their information on museums in South Africa. I thank the Council for Geoscience for giving me "room" to finish my thesis, and the interest they showed in my topic. I thank Ms. Wilma van der Merwe for helping me with the maps made for this study.

In the USA I am indebted to Dr. Michael Zolensky for his support of my study at NASA in Houston. Without his willingness to provide funding for my stay in Houston, this study would not have been half as interesting and fun as it turned out to be. I also gratefully acknowledge all his and his wife's friendliness and helpfulness. Dr. Vincent Yang should be thanked for his help and input with the electron microprobe at Johnson Space Center as well as Mary Sue Bell for helping me master the SEM. I thank Dr. Steven Symes, Ronnie and Penny Bernhard, Dr Graham Ryder, Rene Martinez, Dr. Arch Reid, Dr. Justin Wilkinson, Dr. Ben Shuraytz, Dr. Kristin Farry, the 1997 intern students, James Tutor , Betty Hartman and many others for providing friendship and help in making my stay in Houston and Johnson Space Center as pleasant as possible. I thank Aurora Pun of the University of New Mexico who supplied me with copies of her paper long before it was published and hints and comments on related subject material. I thank Dr. Tim McCoy of the Smithsonian Natural History Museum for his time and comments on the workings of a successful meteorite exhibit, i.e. Smithsonian Natural History Museum. I want to acknowledge and thank NASA (National Aeronautics and Space Administration) for providing inspiration and excitement to the public and students the world over, including myself. Lastly, certainly not the least, my parents, brothers and sister and the whole family for being supportive of my every move and believing in me. All my friends allover. Without them most things would not have been possible. This dissertation is dedicated to my parents. Finally, I thank God for being the real goal in life and for how He keeps on showing me how wonderful and inspirational his universe can be. ABSTRACT This dissertation deals with meteorites, but from a few different perspectives. As of 2000, there are 49 known meteorites that have been recovered from South Africa, including the new Merweville chondrite, which is first described and classified here. This represents only about 1.5% of worldwide falls and finds. Perhaps because of the relatively small number of specimens, and a possible resulting drop in interest amongst the scientific community, research on extant South African meteorites has declined in recent years. In this study, new results are presented for two South African meteorites, the Malvern howardite, and the newly recovered Merweville chondrite. In addition, South African public knowledge and awareness of meteorites and planetary sciences is discussed, and remedial recommendations are made. The Malvern howardite is a rare type of polymictbreccia. New petrographic, mineralogical and geochemical studies of clasts reveal an abundance of impact-melt clasts, with lesser amounts of cataclastic, granoblastic and metal and sulphide-rich clasts. The matrix of Malvern is dominated by comminuted pyroxene, very likely derived from mechanical degradation of pre-existing, pyroxene-richimpact-meltclasts. Chondritic clasts, including carbonaceous chondrites, have been reported in similar howardites (e.g. Washougal, Jodzie and Kapoeta); such clasts were searched for, but not found in our specimens of Malvern. Microprobe analyses of pyroxene in the impact

melt clasts show variable compositions (Wo 4 7_9 8 En29 7_70 9 FS70 69_61 ). Equilibration temperatures of coexisting low- and high-Ca pyroxene, using the Wells (1977) geothermometer, range from 965 to 1230°C (mean = 1042°C + 32°C), possibly recording high-energy impact-related magmatic processes. Malvern may have reached such a high temperature that the original chondritic clasts have all been melted, leaving behind only the impact-melts. Refractory Fe-Ni rich metals in Malvern may be the only surviving components from originally-presentchondritic materials; these may have acted as nuclei for the formation of impact melt clasts. A previously unstudied and unclassified meteorite specimen, recovered in 1977 near Merweville in the Province, was obtained for this study. Although partly weathered, petrographic studies reveal the specimen to be an ordinary chondrite. Recognizable chondrules are present, but were not well defined. The matrix is recrystallized indicating that Merweville should be considered a Type 5 chondrite. Chemical analyses of the unweathered portion of the specimen reveal the following results: Fe°/Fe (0.092 ± 0.26), Fe/Si0 2 (0.37 ± 0.60), % Fa (23.3-30.7),and Si02/MgO 1.58-1.64. Elemental ratios (e.g Ca/Si vs Mg/Si, Al/Si vs Mg/Si etc.) of other L chondrites also match the results of Merweville. Based on these observations Merweville is hereby classified as an L5 chondrite. To investigate the social impact of meteorite studies, a survey of Grade 11 and 12 pupils and first year university students in South Africa was undertaken to determine their level of literacy, interest and awareness of meteorites and planetary sciences. Students in Johannesburg and Cape Town were chosen to represent different societal sectors, including school students from disadvantaged and advantaged communities. The results indicate that learners with poor results in awareness and literacy are still very keen on the subject. The advantaged learners outperformed their disadvantaged colleagues in most categories, proving that the discrepancy between them is still a factor and should be dealt with, but only 20% of all students asked have visited a museum before. Based on these results, it is recommended that much more emphasis be put on science and technology in South African schools. Taking learners to science and natural history museums or associated institutions are also very important in generating interest. TABLE OF CONTENTS

Declaration

Acknowledgements

Abstract

CHAPTER 1: AN INTRODUCTION TO METEORITES AND SOUTH AFRICAN

METEORITE STATISTICS

1.1 The information in meteorites 1

1.2 Classification of meteorites 3

1.3 Meteorite falls and finds in South Africa 5

1.4 The South African Meteorite Inventory 7

CHAPTER 2: THE MINERALOGY AND GEOCHEMISTRY OF THE CLASTS IN

THE MALVERN HOWARDITE

2.1 Introduction 9

2.2 Sampling History and Preparation 15

2.3 Analytical methods 16

2.4 Clast Population in Malvern 17

2.5 Petrographic Description of Identified Clast Types 18

2.5.1 Eucrite (Pyroxene + Plagioclase).clasts 18

2.5.1.1 Basaltic textured/coarse grained clasts 18

2.5.1.2 Cataclastic clasts 20.

2.5.1.3 Granoblasticclasts 20 2.5.2 Breccia clasts 21

2.5.2.1 Howardite clasts 21

2.5.2.2 Impact melt-rocks.clasts 22

2.5.2.3 Metal & Sulfide-rich breccia clasts 25

2.5.3. Mineral fragments 26

2.5.4 Matrix 26

2.6 Mineral Compositions as Determined by Electron Microprobe 27

2.7 Pyroxene Thermometry 30

2.8 Discussion 31

2.9 Conclusions 35

CHAPTER 3: THE CLASSIFICATION OF MERWEVILLE, A NEW CHONDRITE

METEORITE FOUND IN SOUTH AFRICA

3.1 Introduction 38

3.2 Sampling History 39

3.3 Experimental Procedure and Analytical Techniques 39

3.3.1 X-ray Fluorescence Method (XRF) 39

3.3.2 Instrumental Neutron Activation Analysis (INAA) 41

3.4 Results 42

3.4.1 Petrographic Descriptiion 42

3.4.2 Major Element Chemistry 43

3.4.3 Instrumental Neutron Activation Analysis (INAA) Results 44

3.4.4 Electron Microprobe Analyses 45 3.5 Chondrite Classification Schemes 46

3.6 Discussion 49

3.6.1 Geochemical Group Classification 49

3.6.2 Petrological Type Classification 51

3.6.3 Geochemical Ratio Classification 52

3.6.4 Effects of Weathering 53

3.7 Conclusions 54

CHAPTER 4: PLANETARY AND MUSEUM AWARENESS SURVEY FOR FINAL

YEAR SCHOOL STUDENTS AND FIRST-YEAR UNIVERSITY STUDENTS

Abstract 55

4.1 Introduction 56

4.2 Methods 57

4.3 Results & Discussion 59

4.3.1 Basic Planetary science question (q. 2-6) 59

4.3.2 Meteorite related questions (q. 7-10) 60

4.3..3 Museum related questions (q. 12-14 and 17) 62

4.3.4 Science and Planetary science questions (q. 18-20) 64

4.4.5 Miscellaneous questions (q. 1, 11, 15 and 16) 66

4.4 Literature Study 68

4.5 Discussion 74

4.6 Conclusion & Recommendations 78 COMBINED REFERENCES 79

APPENDIX A: ELECTRON MICROPROBE DATA OF MINERALS IN MALVERN

APPENDIX B: ELECTRON MICROPROBE DATA OF MINERALS IN MERWEVILLE An Introduction to Meteorites and South African Meteorite Statistics

CHAPTER 1

AN INTRODUCTION TO METEORITES AND SOUTH AFRICAN METEORITE

STATISTICS

INTRODUCTION

1.1 The information in meteorites

Meteorites are meteoroids that have survived their passage through the atmosphere and

fell on the Earth's surface. The name meteorite is derived from a Greek word meaning 'present in the air'. A meteorite is generally named after a city or geographical feature near where it fell or was found (Glass, 1982). "Until the Apollo astronauts returned samples from the moon, meteorites were our only samples of extraterrestrial material. Most meteorites are nearly a billion years older than any rocks found on Earth and some meteorites appear to have survived virtually unchanged since their formation nearly 4.6 billion years ago" (Glass, 1982, p90).

Meteorites have played, and continue to play, a unique role in the understanding of the early history of the solar system. The most numerous of meteorites (the chondrites) have quasi- solar compositions that mark them as rocks that formed during or shortly after the birth of the solar system, with very little alteration thereafter (Dodd, 1981). Even the chemically evolved iron, stony-iron, and achondritic stony meteorites formed, with very few exceptions, long before the oldest known terrestrial and lunar rocks. Meteorites are, quite simply, the only known survivors of the first steps in the 4.6-billion-year trek from dust to us (Dodd, 1981). Meteorites are believed to be fragments of planetary material (mostly from the asteroid belt) and have been used as analogues for the bulk composition of the Earth. (Glass, 1982). An Introduction to Meteorites and South African Meteorite Statistics

The mineralogy of meteorites is simple when compared to terrestrial rocks; only about

80 minerals have been identified in meteorites as compared with over 2000 minerals found in terrestrial rocks. Most of the common minerals found in meteorites are also commonly found on

Earth. However, 24 minerals found in meteorites have not been found in terrestrial rocks (Glass,

1982). None of the strictly "meteorites only" minerals were found, although a unknown mineral was found (see Chapter 3).

Friction between a falling meteoroid and air causes a very rapid and intense heating of its surface. A thin surface layer is melted and stripped off, producing a cloud of finely dispersed particles (sprayed droplets are frequently observed on the surface of meteorites). A large part of the mass of a meteorite may be removed in this manner, leaving behind a characteristic fusion rim of dark, partially vitrified material. In fact, the smaller meteoroids are completely destroyed and thus never fall to the surface to be collected as meteorites. The total mass that is lost from a meteoroid ranges from a few percent to one hundred percent. The interior portions of meteoroids larger than a few grams in mass can generally survive the flight through the Earth's atmosphere without their chemistry being affected (Wood, 1979a).

Studies indicate that most of the extraterrestrial material that falls on the Earth's surface is microscopic or dust-sized particles (Glass, 1982). These fine-grained extraterrestrial particles are called extraterrestrial, or cosmic dust. Extraterrestrial dust includes particles stripped from the surface of meteorites during their passage through the atmosphere (ablation droplets) and micrometeorites. Micrometeorites are particles that have survived their flight through the Earth's atmosphere as a result of their small size, i.e. they didn't produce enough friction to initiate

`burning' at the surface (they are generally less than 100 iim in diameter (Glass, 1982)). Scientists believe that about 27 metric tons of meteoritic dust fall on Earth every day (Worldbook, 2000).

2 An Introduction to Meteorites and South African Meteorite Statistics

1.2 The Classification of Meteorites

The classification of meteorites (Table 1) is based on their bulk composition

(mineralogical and chemical) and internal structure (or texture). The two main groups of meteorites are the irons and stones. The irons, as their name implies, are ± 90 % composed of Fe alloyed with 6-16 % Ni (Dodd, 1981). The stones are composed of silicate minerals (most also contain Fe metal) and some resemble igneous rocks found on Earth. A third group, called the stony-irons, is composed of approximately equal amounts of nickel-iron and silicate material.

Meteorites can be further classified as either falls or finds. Falls are recovered meteorites, when they were "seen" to fall or reported as seen. A find is a meteorite that was not seen to fall, but recognised due to its distinctive features. The significance of falls and finds are that the falls are less weathered, if at all and represent a better estimate of abundance types. Table 1 and Figure

1 show worldwide fall-and-find statistics, compared with data for South African specimens.

Data for Antarctica (all finds) are not included in Table 1. Data from Pieters and McFadden

(1994), show that chondrite meteorite finds from Antarctica are more common than those collected elsewhere. Chondrites recovered from Antarctica consisted of 23 carbonaceous chondrites, 904 H-chondrites, 490 L-chondrites, 83 LL-chondrites and 9 enstatite chondrites. It is obvious that H-chondrites are the most common of recovered meteorites, followed by L- chondrites.

Currently, material from about 950 observed falls has been recovered worldwide. In addition to these, there have been about 1800 finds, thus totalling about 2750 known meteorites.

Each year there are new falls and finds. Table 1 gives a summary of the representatives of the various meteorite types and classifications groups that have been identified up to the end of 1993

(Heide & Wlotzka, 1994).

3 An Introduction to Meteorites and South African Meteorite Statistics

Table 1 Meteorite fall-and-find statistics as of 1 January 1992 (for worldwide) and current South African data (2000)

Worldwide SA Class Falls Finds' Total Falls Finds SA Total Meteorites, total 952 1798 2750 22 26 49

All chondritesb 822 (86.3%) 1023 1845 15 (68.2%) 5 (19.2%) 20 (56.9%) H-chondrites 293 (30.8%) 485 (27.0%) 778 6 (27.3%) 3 (11.5%) 9 L-chondrites 337 (35.4%) 395 (22.0%) 732 6 (27.3%) 2 (7.7%) 8 LL-chondrites 68 (7.1%) 35 (1.9%) 103 0 0 0 E-chondrites 13 (1.4%) 10 (0.6%) 23 2 (9.1%) 0 2 C-chondrites 36 (3.8%) 24 (1.3%) 60 1 (4.5%) 0 1

All achondrites b 70 (7.4%) 25 (1.4%) 95 3 (13.6%) 0 3 Eucrites 23 (2.4%) 9 (0.5%) 32 1 (4.5%) 0 1 Howardites 18 (1.9%) 4 (0.2%) 22 2 (9.1%) 0 2 Diogenites 10 (1.1%) 0 10 0 0 0 Aubrites 9 (0.9%) 1 (0.1%) 10 0 • 0 0 Ureilites 4 (0.4%) 7 (0.4%) 11 0 0 0 SNC meteorites 4 (0.4%) 2 (0.1%) 6 0 0 0 Lunar meteorites . n.s . n.s 13 0 0 0 Unclassified* n.s n.s n.s 3 (13.6%) 2 (7.7%) 5

All stony iron 11 (1.2%) 61 (3.4%) 72 0 1 (3.8%) 1 meteorites b Pallasites 4 (0.4%) 37 (2.1%) 41 0 0 0 Mesosiderites 6 (0.6%) 23 (1.3%) 29 0 1 (3.8%) 1

All iron meteoritesb 49 (5.1%) 689 (38.3%) 738 1 (4.5%) 18 (69.2%) 19 Octahedrites 28 (2.9%) 457 (25.4%) 485 1 (4.5%) 11 (42.3%) 12 Hexahedrites 5 (0.5%) 44 (25.4%) 49 0 2 (7.7%) 2 Ataxites 0 33 (1.8%) 33 0 1 (3.8%) 1 Ungrouped n.s n.s n.s 0 4 (15.4%) 4

Source: British Museum Catalogue of Meteorites (1985) and Meteoritical Bulletin 63-72 (1985- 1992). Frick and Hammerbeck (1973) and The Max Planck Institute for Geochemistry (1998) a The Antarctic finds are not included here. Finds from desert areas (Sahara, Nullabor, and Roosevelt County) were divided by two to account for possible pairings. b The total numbers also include ungrouped members n.s Not specified in references * Unclassified, 2 meteorites considered lost. 1 Unknown whereabouts, 2 doubtful classification. 1 is considered a chondrite and the other an enstatite chondrite. Percentages in brackets are percentages of the specific meteorite type compared to the total falls and finds of the Worldwide total and the South African total.

4 N. U, . . e li 0 C E

a) South Africa: Falls b) South Africa: Finds C) 0 e _c 10 co U O C

c) Worldwide: Falls d) Worldwide: Finds

Figure: 1 South African versus worldwide statistics of meteorite finds andfa lls. An Introduction to Meteorites and South African Meteorite Statistics

Petrographic, chemical, and isotopic differences among the various meteorite groups rule out the traditional interpretation that meteorites sample a single planetary parent body whose remnants are the asteroids. It appears that 70 to 80 parent bodies are needed to account for known meteorites (Dodd, 1981).

The most commonly used general classification scheme for meteorites is that of Mason (1962a), which is based on that of Prior (1920). This scheme (Wasson, 1974) was revised according to Mason (1967a). The only major weakness with this system is in the classification of iron meteorites, in which the classes are defined entirely in terms of structural relationships between the different irons (Wasson, 1974). For chondrites most authors currently use the nomenclature H (high total iron content), L (low total iron content), and LL (low total and metallic iron content) for the ordinary chondrites groups, and this is a practice which Wasson (1974) recommends. A more complete scheme was devised by Van Schmus & Wood (1967) in which chondrites can be divided into five groups: carbonaceous chondrites (C), ordinary chondrites, [high iron (H), low iron (L), low iron, low metal (LL)] and enstatite chondrites (E). Table 1 is based mainly on this scheme.

1.3 Meteorite falls and finds in South Africa

Table 1 and 3 list the 49 South African meteorites known to researchers (Laubscher et a1,1999). All of them were used in all the data correlations used in this chapter. The distribution of South African meteorites is shown in Figure 1. A few odd/unexplained facts can be found through the distribution of data in this figure: (i) There are 10 meteorites in the north of the country (Gauteng Province, Mpumalanga, Northern Province, Free State and the North West Province) of which three are recorded finds (red), and seven are recorded as falls (blue). (ii) The Northern Cape Province is characterized mostly by finds, possibly because it is the driest and most arid part of the country, so that farmers and local people may recognize unusual rocks more readily. In Figure 1 the South African distribution of falls and finds are (in terms of meteorite type) shown through the use of pie-diagrams.

5 An Introduction to Meteorites and South African Meteorite Statistics

Table 2 The distribution of chondrite falls among the petrological types (Wasson, 1974).

Petrological type (increase in metamorphic exposure =0

Group 1 2 3 4 5 6

E 3 2 6

H 6 23 53 32

L - 9 11 28 117

LL - 6 1 7 20

CV 4 4 -

CO - 5 1

CM 14 CI 5 - - no examples of falls among this petrological type at 1974.

Table 1 shows that there are almost twice the number of total finds in the world, compared to total falls (note that the Antarctic finds are not included in this compilation). Unusual rocks such as meteorites will therefore probably only be spotted if they are seen to fall. A possible explanation of this may be that in South Africa most of the meteorites are only found when they are seen to fall. The rest of the meteorites, which are left to be stumbled upon in the field, are mostly ignored and thus unidentified, unless clearly unusual. This would skew finds towards iron meteorites because they would generally seem more out of place than silicate rocks.

It should be understood that a single country, in this case South Africa, only represents a very small percentage (about 1.5%) of worldwide falls and finds, and that the few meteorites that constitute the total of a single country may seem out of context compared to the world total. Taking this into account, it may be inappropriate to compare the percentages of South Africa's meteorites with that of the world.

The most common finds or falls in South Africa are the octahedrites, H-chondrite and L-chondrites, in line with abundance statistics worldwide (Table 1 and Figure 1). Significant differences are that South Africa's percentage of iron-meteorite finds is twice the world percentage, and that worldwide chondrite finds is twice that of South Africa.

Unfortunately, studies of meteorites in Southern Africa has never been a high priority

6 An Introduction to Meteorites and South African Meteorite Statistics in research programs. Thus, meteorite research, historically weak in South Africa, may never feature highly, or at all, on the programs of research universities and research units in the country. For a short period in the 1960s, 1970s and early 1980s some work was done on meteorites for example by A.B. Simpson (1982), L.H. Ahrens, H. Von Michaelis, A.J. Erlank and J.P Willis (1969) and McCarthy (1972, 1973), all at the Department of Geochemistry at the University of Cape Town. In the early 1970s a catalogue of South African and South West African meteorites was written by Frick and Hammerbeck (1973) of the Geological Survey of South Africa. More recently, work on South African meteorites was done by P. Le Roux (1994) and this study. Recent work on meteorite impacts craters and processes was done at the University of the Witwatersrand (Reimold et al, 1999).

1.4 The South African Meteorite Inventory

Frick and Hammerbeck's (1973) catalogue of South African and South West African meteorites was the last complete list/inventory compiled by local scientists. The same data were assessable through the up to date Catalogue of Meteorites that the British Museum of Natural History publishes every few years. Some meteorites were missing from the Catalogue of Meteorites (1966), e.g; Bull's run, Bushman-land, Deelfontein, Maria Linden, and South African Railways. Bechuanaland is considered as a doubtful meteorite because it seems to have been lost before it could be classified.

According to the Catalogue of Meteorites (1966) there is no reference to research having been performed on Kopjes Vlei, Kouga Mountains and Rateldraai, but they are kept in the Mineral Dept. of The British Museum of Natural History. This study presents the updated data in a more current format (Table 3). Seeing that there were very few meteorite additions to the South African meteorite inventory since 1973, only a few facts have changed. Data that have been updated are the names of Provinces and districts where the meteorites were found, as well as modern references to research that was done after 1973. A subsequently updated map of meteorite distribution throughout South Africa is shown in Fig. 2.

Meteorites have been found in neighbouring countries such as Namibia and Zimbabwe during 1999 ( Dr. Sharad Master and Dr. Mike Zolensky, personal communication, 1999).

More meteorites should be recovered in the near future as work is being done by

7 Next Page

Figure 2: Map showing the localities of falls and finds within South Africa up to 2000

An Introduction to Meteorites and South African Meteorite Statistics

different researchers in South Africa on the awareness and recovery of meteorites among the public. A website (http://www.geoscience.org.za/pmsu/index.htm) has been established dedicated to Meteorites and Meteorite Impacts in South Africa as well as a meteorite recovery programme. This recovery programme has been started through the Astronomical Society of South Africa (T. Gould, personal communication, 2000) in collaboration with researchers at various Universities and research organizations. There are also some meteorites that have been found and are currently being classified (Master, personal communication, 1999).

Even though new meteorites like Merweville are being sought for, there are many meteorites in this inventory that need to be studied in greater detail, such as the Malvern howardite. As can be seen in Table 3 there are cases where the meteorites are classified, but without proper scientific references.

8 Ta ble. 3 List of a llknown Sou t h A frican meteor ites, listed a lpha betica lly

Fa ll Year Month Day I Time Weight Pieces Latitude Longitude Reference(s ) 1888 ( known) 0 u 25°S 24 °E no data (6) 1955 381 28 °5'S 24 °5'E Groeneve ld ( 1959) Y 1943 Ju ly 25 1735 3. 88 1 26°10'S 28 °25E Gevers et a l ( 1945) own N 1907 0. 603 1 33°O'S 26°24'E Bertwerth ( 19 12) Mounta in ( 1934, 1935) Mason ( 1963) 1910 (before) 0. 544 1 30 I I °35'S 23°33'E Pa lache ( 1926) Y 1964 (before) 2. 25 1 no data no data no data (2) 1932 (a bout) 3 1 30°S 20°E no data (2) 1793 136 1 33°30'S 26 °E Ba rrow ( 1 801) Vo n Da nkelmann ( 1805) Cohen ( 1905) Goldberg et al ( 1 95 1) Y 1838 Octobe r 13 0900 5. 2 u 33 °8'S 19 °23'E Herschel ( 1839) Maclear ( 1839, 1840) Buchner ( 1840) Wiik ( 1956) Boato ( 1954) Mueller ( 1953) Von Michae lis et al ( 1969) Y 1877Novem ber 19 1600 3.65 seve ra l 2 7°42'S 27°18'E Douglas Rudge ( 19 11) Prior ( 1916) Mason ( 1963) Vo n Michae lis et al ( 1 969) Y1868 Ma rch 20 1. 064 1 28°1 2'S 24 °34'E Greg ory ( 1868) Prior ( 191 6) Mason ( 1966) 1960 June 20. 93 2 29°23'S 23°6'E Schumann ( 1967) Viljoen ( 1972) 1932 (a bout) 28 1 30°11 'S 23°16'E n o data (2) Y 1906 Novembe r 04 1630 1 1 33 °45'S 1 8°34'E Maso n ( 1963) Von M ichaelis et al ( 1969) Le Roux ( 1994) 1970 (about) 2. 066 1 23°50'S 27°55'E no data (5) 1882 601 33 °19'S 19°37'E Brez ina ( 1887) Cohen ( 1905) Lu nt ( 1914) Henderson and Perry ( 1954) Y195 6Februa ry 0 1 18 153. 457 severa l 32°6'S 28°20'E Mou nta in ( 1956) Mason ( 1963) Von Michae lis et al ( 1969) Y 1 903 April 22 1 130 482 32 °30'S 21 °54'E Mason ( 1 963) Vo n Michae lis ( 1965) 1914 92. 1 1 31 °36'S 25°48'E Prior ( 1923) 1884 43 2 30°33'S 29 °25'E Cohen ( 1900) Kopjes Vlei IIA No rthern Cape Ken hardt d ist. N 1914 (before ) 13.6 1 29°18'S 21 °9'E no data (4) Kouga Mountains IIIB Eastern Cape Humansdorf dist. N 1903 (about) 1173 1 33°37'S 24°0'E no data (4) Leeuwfontein L6Gau teng Engelbrecht drift, Preto ria Y19 12 June 2114 000. 46 1 25°40'S 28 °22'E Prior ( 1922, 1923) Mason ( 1963) Lichtenberg L North-West Barbania farm, Lichtenberg Y 1973 September 26 4 1 26 °9'S 26 °11 'E no data (2) Ta ble. 3 List of a ll known Sou th African meteorites, listed a lpha betica lly (con tinued).

Macibini AEUC-P Kwazu lu-Nata l20km W of Matubatuba Y 1936 September 23 0800 1. 995 6 28°50'S 3 1 °57'E Na ughton a nd Pa rtridge ( 1 938) Lovering ( 1964) Malvern AHOW Frees tate 25km SSW of Tha ba Nchu Y 1933 November 20-3 0. 807 1 29 °27'S 26°46'E Th is study Maria Linden L4 no data No data Y 1925 April 15 0. 114 1 no data no data no data (2) Matatiele Medium Octa. Easte rn Cape Ongeluks Nek N 1865 known 298 1. 00 30'20'S 28'47'E Co hen ( 1 900) Merweville L5 Western Cape Prince Albert dist. N 1977 a bout 6. 97 1.00 32' 45. 5'S 21 '41 'E This study Molteno AHOW Easte rn Cape Molte no dist. Y 1953 April or May 1700h 0. 15 1 3 1 °15'S 26°28'E Frost ( 1971) Simpso n ( 1982) 'Moshesh H Eastern Cape Matatie le dist. N 2001 30°6'S 28°43'E Von M ichae lis et a l ( 1969) Mount Ay liff IA Eas te rn Cape Transkei N 1907 (about) 1 3.6 1 30°49'S 29°21 'E Prior ( 1921) Muizen berg L6 Western Cape Cape Town N 1880 ( known) 4. 6 1 1 34°6'S 1 8°28'E Mason ( 1963) Von Michae lis et al ( 1 969) Natal Aero lite Kwazu lu-Nata l No data (3) Y 1973 ( known) 0.0014 1 frag ment no data no data no data (2) N 'Ka nd hla IID Kwazu lu-Nata lKwa zu lu Y 19 12 August 0 1 1330 17. 2 1 28°34'S 30°42'E Sta n ley ( 19 13) Lunt ( 1914) Union Observato ry ( 1912) No's 1, 3 Orange River (iron ) IIIB Frees tate Philippolis dist. N 1855 148. 8 1 30°S 25°E Buchner ( 1863) Orange River (stone) Ae rolite No rthern Cape Hopetown dist. Y 1 887 September 08 0.008 1 29°40'S 24°13'E Brezina ( 1895) Piq uetberg H Western Cape Piq uetberg dist. Y 1 881 0. 037 1 32°52'S 18°43'E Brez ina ( 1887) Quee n's Mercy H6 Easte rn Cape Matatiele dist. Y 1925 Ap ril 30 2000 7 3 30°7'S 28°42'E Prior ( 1926) Maso n ( 1963) • Rate ldraa i II IA Northern Cape Kenhardt dist. N 1909549 1 28°50'S 2 1 °8'E no data (4) St. Mark's EH5 Eastern Cape St. Mark's Mission, Tra nskeiY 1 903 Janu ary 03 2300 13. 78 1 32 °1 'S 27°25'E Cohen ( 1906) Merrill ( 19 16) Bertwerth ( 1916) Maso n ( 1966) Von Michae lis et a l ( 1969) Le roux ( 1994) Schaap-Kooi H4 Western Cape Frase rbu rg dist. N 1910 (known) 2.7 1 32°5'S 21 °20'E Be rtwe rth ( 1916) Mason ( 1963) • Von Michaelis et a l ( 1 969) Simondium MES-A4 Western Cape Lower Paa rl N1907 1. 6 2 33°5 1 'S 18 °57'E Prior ( 1910, 1918, 1 921) South African Railways IVA Cape Province No data (3) N 1938 (before) 47 1 no data no data no data (2) Vaalbult IA Northern Cape Prieska dist. N 192 1 (before) 11. 8 1 29 °45'S 22 °30'E Prior ( 1926) Victoria West fine octa Northe rn Cape 40km SW of Victoria West Y 1860 2.95 1 3 1 °42'S 23°45'E Gregg ory ( 1868) Smith ( 1873) Winburg IC-ANFrees tate Winburg d ist. Y 188 1 50 1 28°30'S 27°E Doug las Rudge ( 19 11, 1914) Witklip Farm H5Mp umalang a Ca rolina d ist. V19 18 May 26 0940 0. 022 4frag ment 26°S 30°E Prior ( 1926) Maso n ( 1963) Wittekrantz L5 Weste rn Cape Y 1880 Dece mber 09 0800 2.2 2 32°30'S 23°E Prior ( 1913) Mason ( 1963) Von Michae lis et a l ( 1969) no data ( 1) Poss ibly a Iron meteorite but doubtfu l no data (2) No refe re nces to research no data (3) No coordinates are recorded, thus district u nknown no data (4) No reference, but the sa mples are stored in the British Musu em of NaturalHis tory no data (5) Relatively new sample with no class ificatio n yet and no references no data (6) Sample possibly lost before class ification cou ld be made (possibly a iron acco rd ing to Cata logue of Meteorites ( 1966)) * Bulls ru n. Sample seems to be lost a nd is a dou btfu l siderite The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

CHAPTER 2

THE MINERALOGY AND GEOCHEMISTRY OF THE CLASTS IN THE

MALVERN HOWARDITE

2.1 Introduction

A 4.5cm x 4cm x 3 mm piece of the Malvern howardite (Fig. 3) with a weight of 15.67 grams (Fig. 4) was supplied for this study by the Bloemfontein National Museum. This study involved mostly microprobe and scanning electron microprobe analysis of minerals and textures in clasts, of a very fine size. This study mainly focused on the different clasts itself and not so much on the composition of the mineral fragments and matrix, even though they are discussed briefly. It also includes geothermometry of minerals in the clasts. Seeing that Malvern, and howardites in general, are complex rocks with clasts of varied composition, it was deemed appropriate to distinguish between the clasts to better understand the surface processes that operated on the howardite-eucrite-diogenite (HED) parent body. HED meteorites are the only asteroidal samples for which the parent asteroid is known with some confidence. This body is presumed to be the asteroid 4 Vesta (Binzel and Xu, 1993).

The clasts composed < 50% in the thin sections that were analysed; the remainder was matrix, which consists of a mixture of broken clasts and mineral fragments. In the 5 gram sample fraction that was analysed, 25 random clasts of 2mm to 100pm size were individually analysed and studied to determine the specific features that constitute these clasts. The clast mineralogy is mainly composed of pyroxene and plagioclase grains and glass. Other minor minerals include olivine, troilite, kamacite, taenite, ilmenite and chromite.

The clasts were grouped (see Table 4) into six groups: eucrite clasts, orthopyroxenite clasts, breccia clasts, carbonaceous chondrite clasts, mineral fragments and matrix. Of the clasts

9 Fig. 3 The Malvern meteorite after it fell in 1933 near Bloemfontein, South Africa. It clearly shows the fusion crust that formed when it entered the atmosphere.

Fig. 4 The sample of Malvern before it was used for the analyses in this study. The dark inclusions are the clasts or glass beads. The light-grey areas is the matrix. The sample is 4cm in diameter. The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite analysed, the impact-melt rocks of the breccia clasts were most common. Neither diogenite nor carbonaceous chondrite clasts were found in the sample studied.

Table 4 Categorization and abundances of clast types in Malvern (percentages only includes clasts and not the matrix and mineral fragments).

Group Subgroup Number of clasts and 4)/0

Pyroxene-Plagioclase Basaltic 4 ( 16% of total)

(Eucrite) clasts Cloudy none found

Cataclastic 2 ( 8% of total)

Granoblasitc 2 (8% of total)

Orthopyroxenite none found

(Diogenite) clasts

Breccia clasts Howardites 4 (16% of total)

Melt-coated none found

Impact-melt-rock 12 (48% of total)

Metal and sulphide-

rich clasts 1 (4% of total)

Carbonaceous chondrite clasts none found

Mineral fragments found, not described in detail

Matrix found, not described in detail

Total 100%

Bulk chemistry of howardites

Two of the most abundant classes of achondrites are the howardites and eucrites (both are calcium-rich) (Wood, 1979a). Howardite meteorites have long been recognised as surface, or regolith, samples from a parent-body that also is a likely source for eucrites and diogenites, generally called the "HED" parent body (Duke and Silver, 1967; Bunch, 1975). The howardites are polymict breccias that contain lithic clasts, mineral clasts, and minor glass clasts, and they

10 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite bear textural similarities to lunar soils and breccias. Because of these textural similarities, the

same study methods employed by Vaniman et al. (1979) for the study of lunar soils can be

applied to the regolith of the HED parent-body.

The whole rock chemistry of howardites has been recognised by Moore (1962) and Mason

(1967) to be intermediate between diogenites (orthopyroxenites) and eucrites (pigeonite basalts).

Jerome and Goles (1971), Fukuoka et al. (1977), and Dreibus et al. (1977) have successfully

modelled the bulk chemistry of howardites as two-component mixtures of diogenite and eucrite

end-members. A petrographic study of howardites has an advantage over bulk-chemical studies;

not only can the lithologies in the source-terrain be identified, but also their pre- and post-

brecciation histories can be determined from their textures. The petrographic studies of Duke and

Silver (1967), Dymek et al. (1976) and Bunch (1975), have demonstrated that the particles that

make up the breccias represent a greater variety of rock-types than the mixing models suggest

(Labotka, & Papike, 1980).

Determination of modal mineralogy and mineral chemistry for different clast-size

fractions yields information about the nature of the source terrain, maturity, transport, and

lithification of the eucrite regolith. These characteristics can then be compared with those for the

lunar regolith to determine the types of soils-forming processes that were active on the HED

Parent-body (Labotka, & Papike, 1980).

Malvern classification

Based on chemical evidence Malvern has been classified as a howardite, but texturally it seems rather unique. The dominant clast type is glassy to devitrivied basalt with small, but abundant, disseminated opaques and various amounts of trapped angular mineral fragments.

Another clast type is a coarse-grained aggregate of orthopyroxene, plagioclase, and

11 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite clinopyroxene. Glass constitutes an extensive amount of the matrix of this meteorite. Roedder and

Weiblen, (1970) described "glass" as being included in the basic rock assemblages, and includes felsic glass and partially divitrivied felsic glass that is an interstitial phase in many rocks.

As was mentioned earlier, Malvern is an achondritic polymict breccia similar to lunar breccias. Lunar breccias are aggregates of dark-grey to black, fine-grained, particulate materials enclosing mineral and rock fragments up to 3cm in diameter. The matrix material consists of finer-grained equivalents of the coarse fragments. The glass in Malvern occurs in the form of spherules and angular fragments up to 1 mm in diameter. According to the studies of Kirsten &

Horn (1977), the mineral fragments are shocked orthopyroxenes (hypersthene-bronzite), clinopyroxenes, small olivine fragments and larger plagioclases. The plagioclases are recrystallized since they are clear, with no signs of shock. The 39Ar-40Ar age of the glassy clasts in Malvern shows an initial rise to 3.8 G.a. at 900 °C. At higher temperatures it assumes values between 3.6 and 3.8 G.a (Kirsten & Horn, 1977).

Malvern thermal history

According to the work of Hewins & Klein (1978), the thermal history of Malvern is

more complex than the continuous cooling of a single body of melt. The impact melt which formed glass beads, cooled more rapidly than 10°C min' initially, probably as the result of free flight, and the beads were incorporated in the breccia at a relatively low temperature, somewhat above the glass transition. Patches of melt with orthopyroxene dendrites cooled more slowly than

10°C min' between the liquidus and the glass transition. Some of these were locally undercooled by the incorporation of cold clasts, resulting in fine-grained highly crystalline melt rocks (dark matrix breccias). All impact melts cooled relatively rapidly to the glass transition temperature,

730°C. The breccia as a whole reached equilibrium below this temperature and no constraints can

12 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite be placed on its subsequent cooling rate (Hewins & Klein, 1978).

Time scale of achondrites

It has been suggested that the strong clustering of the ages of the lunar highland rocks and the remarkable correlations observed for the Pb-U systematics are evidence for a terminal lunar cataclysm at 3.9 G.a (Tera et al., 1974). If this sharply-defined bombardment of the Earth-Moon system represents a broad bombardment of the inner solar system, then evidence for a similar time scale may exist in the meteorite parent bodies. Since most basaltic achondrites are known to be surface breccias from some parent bodies, dating them will provide information as to whether such cataclysmic events were also prevalent on the meteorite parent bodies and if so, to what extent.

Metal in Malvern

Primary metal in achondrites generally contains 0-3wt.%Ni and O-3wt % Co. In Malvern, however, the clasts are virtually devoid of metal and the matrix contains no metal of primary achondrite composition. The melt rocks contain metal of meteoritic composition, which is also present in the matrix of Malvern. It appears therefore that metal was introduced into Malvern during the impact event(s) that produced the melt rocks. This metal may be related to the projectile clasts (carbonaceous chondrite), requiring an origin by reduction, according to Hewins

& Klein (1978), for which there is no direct textural evidence. The alternative is an origin from unspecified metal-bearing projectiles, which hit the parent body with higher velocities than the carbonaceous chondrites (Hewins & Klein, 1978).

13 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Carbonaceous chondrite clasts

In the initial studies of Malvern, no carbonaceous chondrite clasts were found in any of the pieces of sample analysed. This does not imply that there are no carbonaceous chondrite clasts in Malvern; it merely suggests that the lithic proportions in heterogeneous rocks such as howardites cannot be generalised. Similar studies may have to be done on the rest of the sample, but seeing that there is not much sample available, consideration should be given to future, possibly more compelling studies, such as looking for smaller IDP (interplanetary dust-sized particles) sized carbonaceous chondrite objects. This was suggested by Zolensky (1999), who considers these particles to be hosted in Malvern.

Carbonaceous chondrite clasts, direct evidence of projectile contamination, have been observed in the howardite Kapoeta (Wilkening, 1973), Washougal and Jodzie (Bunch, 1976) and

Bholgati (Hewins & Klein, 1978). There is indirect evidence of carbonaceous chondrite in

Malvern in the form of high concentrations of siderophiles (Chou et al, 1976). High concentrations of siderophile trace elements have been taken as indicators of projectile contamination of breccias (Morgan et al., 1977) and howardite breccias (Chou et al., 1976;

Fukuoka et al., 1977). It appears that the siderophile elements in the howardites reside to some extent in carbonaceous chondrite clasts, whereas in lunar samples they are in metal grains.

Most properties of the high-temperature materials (siderophiles) in carbonaceous chondrite meteorites suggest that they were formed from condensates that separated from a gas of solar composition at various temperatures and at ambient pressures between 10' and 10' atm.

Some of these materials appear to be simple aggregates of solid condensate: others (chondrules) probably crystallised from liquids generated by condensation or by melting of previously condensated solids.

14 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

2.2 Sampling History and Preparation

The meteorite was found on the farm Malvern, 25 km south-southeast of Thaba Nchu in the Orange Free State, South Africa, on 30 November, 1933, and presented to the South African

National Museum in Bloemfontein by the farmer, Mr. G. van Tonder, who recovered it. It fell between 20 and 30 November (it is not certain if he saw it fall and only picked it up later, or he picked it up in area where he had not been for 10 days), in 1933. The original mass of the achondrite was not recorded but was estimated by Simpson (1982) at approximately 700g from the amount of material now available for study. The bulk of the specimen remains in the South

African National Museum in Bloemfontein as sample K1600. As stated by Simpson (1982), the original mass of 10 kg given by Jerome and Michel-Levy (1971) was incorrect, and the source of the figure of 807 g quoted by Frick and Hammerbeck (1973) is unknown (Simpson, 1982).

The surfaces sawn by Simpson clearly reveal the brecciated character of the meteorite, which is an unsorted, unstratified polymict mixture, composed of sharply angular and irregularly shaped fragments. These grade in size continuously from a maximum of 2.8 cm down to microscopic (>100 ,um) dimensions. The meteorite is well compacted and lithified, and shows no major fractures or veining. Its overall colour is pale grey, but many of the constituent fragments are very dark grey, almost black, with mineral and lithic inclusions of a lighter colour.

Similar, but very much finer grained, mineral and lithic clasts make up the bulk of the discernible material interstitial to the larger fragments. The majority of these clasts are less than 1 mm, but the largest observed lithic clast measures 15mm by 4 mm. A few small grains of metal and sulphide occur both infine-grained interstitial material and in the dark fragments (Simpson,

1982).

The most conspicuous exposed clast in the breccia is itself a breccia. It is roughly cube- shaped, approximately 2.8 cm' and very pale grey. It contains angular grey clasts up to 4 mm in

15 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite size and one subhedral green pyroxene crystal 7 mm across. Grains (<1mm) of opaque minerals are distributed throughout the pale 'matrix' of the fragment. No metal or sulphide grains were observed macroscopically in this micro-breccia clast (Simpson, 1982).

The sample used for this study was cut with alcohol as a cutting fluid, because water can dissolve some rare minerals (Zolensky 1997). For thin section preparation, superglue was used to bond the sample to glass slides instead of epoxy resin, because a sample set in superglue can be soaked in acetone to later dissolve the superglue, should this be necessary for later study.

Using superglue also proved better for grinding and polishing than epoxy, because of its easy removal and the risk of damaging the section is minimised.

Because of the very brittle nature of the sample, even when it was set in superglue, it broke into two almost evenly sized corner pieces as soon as cutting was attempted. These two pieces were sliced in the horizontal axis, to yield four very thin layers/slices of sample, in addition to the remaining chunk of meteorite (Figure. 4). These four slices were be used for SEM and electron microprobe studies. The sections could not be ground down to standard petrographic thickness (-30/[tm) because of the brittle nature of the material. The surface of the sample was polished without damage to the section, to a thickness of —80um

2.3 Analytical techniques

A Cameca SX100 microprobe (Johnson Space Center, Houston, USA) was used for the electron microprobe work. Backscattered electron studies were also performed on the Cameca

SX100, and the figures displayed in this study were produced on this instument in backscatter mode. Additional SEM photos were taken on the JEOL instrument at Johnson Space Center, and they were used to make a map of the samples at 66x magnification. At Rand Afrikaans University microprobe work was done using a Cameca Camebax microprobe.

16 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

The accelerating potential for both the JEOL and CAMECA was 15kv, and a spot size of 3 microns was used for mineral analyses. Standards that were used at Johnson Space Center for microprobe analysis included: kaerstutite (used fOr most elements Mn-garnet (for Mn), apatite

(for P), an artificial metal (for Cr and Ni) and troilite (for S).

2.4 Clast Population in Malvern

Lithic clasts make up only a small part of the total number of grains in the howardites.

Nevertheless, these clasts are important because they are the potential source material for the mineral fragments, and they are the rock types that make up the near-surface of the HED parent- body. Thus, the assemblage of lithic clasts may serve to distinguish the source regions for the different meteorites in much the same way that the lithic clasts in lunar soils characterise the different landing sites (Labotka et al, 1980, Heiken and McKay, 1974; Basu and McKay, 1979;

Finkelman, 1973).

Bunch (1975) presented a detailed classification of the various rock types that occur in howardites, but for purposes of comparing lithic abundances among different howardites,

Labotka and Papike (1980) have placed lithic clasts into a broader classification. The first major group is the plagioclase + pyroxene rock group. Rocks that fall in this group are composed of approximately equal proportions of plagioclase and pyroxene, with minor chromite, ilmenite, tridymite, troilite, and metal. This group is generally subdivided by the texture of the rock into four classes. The first class consists of rocks with basaltic textures; the second typical of slowly cooled plutonic rocks, the third class contains rocks that have been shock-deformed. The fourth class contains rocks that have undergone recrystallization during and after deformation (Labotka, and Papike, 1980).

17 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

The second major group comprises polycrystalline, monomineralic rocks. The third major group of lithic clasts, breccia clasts, is subdivided into two classes. The first comprises breccias that have textures similar to the dark-matrix breccias and agglutinates that are found in lunar soils

(Labotka and Papike, 1980). The matrices in these clasts may be microcrystalline or glassy. Some glass occurs in all of the breccias, even the microcrystalline varieties, but the glass is devitrified in all of those meteorites except Malvern. The glassy dark-matrix breccias that occur in Malvern are called melt rocks by Bunch (1975) and Hewins and Klein (1978). Klein and Hewins (1979) described these rock types in detail in Malvern and Bununu. Because those rocks contain abundant clasts in a dark glassy matrix, they are referred as dark-matrix breccias to emphasise the similarity to dark-matrix breccias in lunar soils.

I adopted a scheme to classify/categorize the clasts in Malvern, which was used by Pun et al. (1998) and in turn adopted from Bunch (1975), Labotka and Papike (1980), and Fuhrman and Papike (1981). The groups that were used were placed into six main groups. Twenty-five clasts were described (see Table 4). Following this is a petrographic description of 25 clasts used in this study.

2.5 Petrographic Description of Identified Clasts Types

All the descriptions given here were based on backscattered electron (BSE) images, unless otherwise specified. The classification of the clasts is based on Pun et al (1998). See Table

4.

2.5.1 Eucrite (Pyroxene + Plagioclase) clasts

2.5.1.1 Basaltic textured/coarse grained; c4, c6, c10, cll

18 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

The minerals in these clasts range in texture from subophitic to intergranular and consist of: lath-shaped plagioclase crystals partially enclosed by large, subhedral pyroxene grains, with microcrystalline interstitial material, or they show a network of plagioclase laths with pyroxene formed between the plagioclase. Truly ophitic clasts are rare, supporting the findings of Pun et al., (1998).

These clasts do not show the quenched melt texture of the impact melt clasts, nor do they show cataclastic, granoblastic textures or have the howardite rock and grain fragments, all of which are described below:

Clast 4 is composed entirely of plagioclase and pyroxene with 3 small ilmenite and troilite grains, there is also no matrix as in clasts 10 and 11 (See Figure 6).

Clast 6 is a relatively small (> 500 pm) clast. There is a large quartz grain inside this clast. The matrix consists of pyroxene from the surrounding mineral grains. There are about 15 pyroxene crystals of various sizes (10,um to 50,um).There are also two 50,um plagioclase grains in this clast

Clast 10 is a very large clast compared to the other clasts in this group, approximately

3-4 mm in length and is dark (grey to black) in hand sample. It is composed of five large plagioclase grains in the matrix, about 8 crystals of Fe-Ni metal, no large pyroxene crystals and a matrix of plagioclase-rich glass. There are also about 7 small olivine grains approximately 30 pm across. This clast also has rounded pure SiO, grains/blebs <250IAM across. The pyroxenes in this clast are mostly matrix, as well as small grains which is already resorbed into the matrix but still visible.

Clast 11 is rounded and is about 460 pm in diameter. It has about 4 pyroxene,grains that are light grey in BSE (not as bright as the pyroxenes in clast 4). These pyroxenes are faintly visible but not part of the matrix and show no exsolution lamellae.

19 Fig. 5 Clast 3. Backscattered electron (BSE) Fig. 6 Clast 4. BSE image of a eucritic clast image of a breccia clast (impact melt-rock). The (basaltic textured). White grains are pyroxenes grey grains in the clast are plagioclase. The white and the grey grains are plagioclase. Scale bar at grains on the left of the clast are pyroxene. The the lower left is 200 run. lighter grey phases at the bottom and lower right of the clast are mixtures of both pyroxene and plagioclase. The scale bar at the lower left corner is 500 ;.irn.

Fig. 7 Clast 5. BSE image of a eucrite clast Fig. 8 Clast 8. BSE image of a breccia clast (cataclastic group). The grain in the center is (impact melt-rock). The dark grey grain at the plagioclase. It shows cataclastic features. The bottom is plagioclase. The top half of the photo scale bar at the lower left is 500 pm. shows the melted matrix with three phases. The white phase is olivine. The grey phase is pyroxene and the dark grey phase is plagioclase. The scale bar at the lower left is 50 pm. The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

2.5.1.2 Cataclastic; c5, c12

These clasts have typical fragmented textures, with minerals showing granular, fragmented, deformed and strained grains. Both granoblastic and cataclastic clasts contain pyroxenes of widely varying composition.

Clast 5 is a circular shaped clast with irregular boundaries, dominated by plagioclase and pyroxene. There are no other phases within this clast except pure Si0 2. The clast is > 800 pm in size, and shows shock features and breccias (Figure 7). The only pyroxene grain has no visible exsolution lamellae.

Clast 12 is composed of 80% pyroxene, with areas/inclusions of variable composition.

This clast also clearly shows fracturing throughout the clast. There are <10 grains of olivine and

<15 of plagioclase.

2.5.1.3 Granoblastic; c21, 24

Granoblasticclasts show evidence for solid-state recrystallization, and consist ofpyroxene and plagioclase grains with smooth, polygonal grain boundaries and abundant 120° triple junctions (Pun et al., 1998).

Clast 21 is >1200 1.1M in diameter. The majority of the mineralogy is pyroxene and plagioclase with only 20 troilite grains in this clast. The matrix is a mixture of smaller pyroxene and plagioclase grains. The pyroxenes show no visible exsolution lamellae. There is also no quenched melt texture like in clasts 8 or 9, and the texture is also very different from clast 4. Clast

4 is similar in mineralogy but the grains in clast 21 are larger, more rounded and smoother than clast 4 which has more linear/rectangular shaped grains.

Clast 24 is a sub-angular clast >500 pm in size. The clast consists of subrounded to subangular grains of pyroxene and plagioclase (Figure 18). The ratio of pyroxenes to plagioclase

20 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite is 70-30%. There is one large (50 ,um) ilmenite grain in this clast. The grains are much more rounded than the grains in the previous clast 21.

2.5.2. Breccia clasts

2.5.2.1 Howardite; cl, c2, c13, c14

These clasts consist of a fine-grained matrix of comminuted mineral and rock fragments, of eucrite and diogenitic parentage, into which are embedded larger mineral, impact-melt, howardite and eucrite clasts (Pun et al., 1998).

Clast 1 is circular, however it appears best not to call these chondrules because Wasson

(1974) states that these "chondrules" appear to be fragments of larger crystalline masses and are formed by comminution of larger recrystallized chondritic material. On the other hand, Reid and

Fredriksson (1967) state that the bulk of the matrix in ordinary chondrites like Merweville

(discussed in the next chapter) consists of comminuted chondrule material of high-temperature origin.

There were <20 small grains of olivine as well as about 8 pure Si0 2 grains. The matrix in this clast is composed of very fine-grained glass. The matrix, which has a quenched texture, has the same mineralogy as the surrounding grains in this clast. The pyroxene grains do not clearly show visible exsolution lamellae, although some have barely noticeable lamellae. Some pyroxene and plagioclase grains show lighter coloured outer rims. Microprobe analysis of this pyroxene grain showed a decrease of Fe and increase in Ca from the outside of the grain to the inside.

Clast 2 has irregular boundaries and has a non-circular shape. This clast is larger than clast 1 (about 2mm) with large pyroxene crystals in the matrix. The pyroxene crystals have well defined exsolution lamellae. Most pyroxene crystals are < 200 pm size. The minute grains that

21 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite make up the matrix are generally 51.tm, with random larger crystals of olivine and troilite in the matrix. This clast contains <25 olivine crystals at 50 p.m size. The troilites are about the same size as the olivines, but less common. In one case, a troilite crystal occurs within a pyroxene crystal.

There are pyroxenes in clast 2 with very fine exsolution lamellae. The matrix is very fine, but does not show the quenched melted texture of some of the other clasts.

Clast 13 is a large compact clast (>2500 lAm) with a large (>500 [tm) pyroxene grain in the clast itself Less than 10 kamacite and troilite grains are visible. The matrix is glass with a few large inclusions of low-Ca and high-Ca pyroxene. The clast also has 4 small grains of quartz and about 5 grains of plagioclase. The matrix does not appear melted, but the grains are barely visible when compared to the surrounding matrix. The grains and matrix in this clast are not as clearly outlined as was the case in the previous clast 2.

Clast 14 is a small sub-rounded clast 600 inn across. Of the pyroxene grains in this clast,

4 grains do not have clear exsolution lamellae, but the lamellae are still visible. There are also

<10 plagioclase grains and 4 kamacite grains. The matrix is a mixture of surrounding minerals with a high pyroxene content. The grains seem similar to the previous clast 13, without the large pyroxene grain (Fig 10).

2.5.2.2 Impact melt-rock: c3, c7, c8, c9, c15, c16, c17, c18, c19, c20, c22, and c25

Pun et al. (1998) state that these highly melted breccia clasts have microcrystalline matrices and contain lithic and mineral clasts.

Clast 3 consists mainly of plagioclase but has many pyroxene fragments (Fig 5). The largest of the mineral fragments are pyroxene crystals- with visible exsolution lamellae. There are areas in the clast with a mixed composition, (see Table B.4) but the areas do not resemble matrix, because the texture is not microcrystalline. The pyroxenes are fragmented into smaller grains,

22 Fig. 9 Clast 8. BSE image of a breccia clast Fig. 10. Clast 14. BSE image of a breccia clast (impact melt-rock). This photo shows the same (howardites). The scale bar at the lower left is clasts as before but shows the clast at 500 pm. 200 i.un. Notice the variety of inclusions in the It also clearly shows the large single white clast. The dark-grey grains are plagioclase. The metal grain in the top right of the clast and the lighter grey grains are pyroxenes and the white large plagioclase at the bottom of the clast. single grain is a metal. The matrix is finer grained but not melted.

Fig. 11 Clast 15. BSE image of a breccia clast Fig. 12 Clast 15. BSE image of a breccia clast (impact melt-rock). The scalebar at the lower (impact melt-rock). This clast shows a quenched left is 500pm. This clast shows a variety of texture with elongate, skeletal crystals of inclusions and a large single white metal pyroxene (the white crystals). The grey matrix grain to the left of the center of the photo. and grey crystals are compositional mixtures. Below the center of the photo are "skeletal" The scale bar is 50 pm. structures (see Fig. 12). The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite but are from the same larger pyroxene grain.

Clast 7 resembles clast 1 in terms of texture in lower magnification, but under higher magnification it shows a definite quench texture in its matrix that is very different to clast 1. The clast is made up of only plagioclase (40%) and pyroxenes (60%), either as larger (>20 pm) crystals or as the matrix (<10 pm). Clast 7 is <1000 pm in diameter.

Clast 8 is relatively large, >2000 pm (Fig 8 and 9). There is one large (<1000 pm) plagioclase (An 87 8_88? )in this clast. There is also one large (300pm) Fe-Ni metal grain (kamacite).

This clast also has a quenched melt texture but is not as needle-like as the texture observed in clast 7. There are about 100 Fe-rich olivines scattered as small grains throughout the matrix. The pyroxenes occur only in the fine-grained matrix; no large (>25 pm) pyroxene, olivine mineral clasts are present. The matrix consists of plagioclase, pyroxenes and olivine. The metal in this clast, contains 0.35-1.1 wt% Co and 5-6.4 wt% Ni, which plots mostly in the "meteoritic range"

(Fig19).

Clast 9 is a heart shaped clast >1000 pm. There are 2 large (100 pm) pyroxene grains and one large (50pm) troilite grain. The matrix melt texture consists of mixtures of phases i.e high- and low-calcium pyroxenes, glass and plagioclase. Although this matrix is melted, relics of pyroxene grains with observable exsolution lamellae are still faintly visible.

Clast 15 is >1 mm in size with an orthopyroxene and plagioclase matrix. This matrix has quenched melt texture. There are no large kamacite grains and 4 low-Ca pyroxene grains (80 pm) and about 10 plagioclase grains <50 pm. The matrix is composed of glass with quenched crystals and pyroxene (Fig 11 and 12).

23 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Clast 16 (>1000.00 p.m) has a unique quenched melt texture (Figure 13). It has a very

12 •

0.8 . 0 • 0.6 .

0.4 . Meteoritic Range

0.2

1 4 5 6 7 Wt. % Ni

Fig. 19 Cobalt-nickel compositions of one large metallic Fe-Ni grain from clast 8 of Malvern. fine-grained matrix comprising plagioclase and pyroxene. There is a >150pm kamacite grain in the centre of this clast. This clast does not have the large (>100 vm), distinct pyroxene grains that some of the other clasts have, but has small 20-40 i.m low-Ca pyroxene and plagioclase grains.

Most of the pyroxenes are barely visible in the matrix. Less than 5 pyroxenes have visible exsolution lamellae.

Clast 17 is >1000 1.1M. Plagioclase and pyroxene grains of <25 pm comprise the matrix.

One large oval shaped kamacite grain of 200 pm is present in the centre of the clast. There are many (<60) small pyroxenes <151.1MM in size, that are randomly, yet almost evenly distributed.

There are no pyroxenes that show visible exsolution lamellae in this clast (see Figure 15).

Clast 18 is >1 mm. It has a distinct matrix of glass, similar to the quenched crystals melt texture of clast 15. There are about 15 plagioclase grains and very little metal minerals. There are

24 Fig. 13 Clast 16. BSE image of breccia clasts Fig. 14 Clast 7. BSE image of breccia clasts (impact melt-rock). The scale bar at the lower (impact melt-rock). Scale bar is 200 i.un. At the left is 100 um. This photo shows the variety of top right of the photo is a single white metal inclusions in the matrix. grain. The dark-grey grains are plagioclase, the intermediate grey is pyroxene and the light grey spots are olivines. They are all matrix except some of the larger grains.

Fig. 15 Clast 17. BSE image of breccia clasts (impact melt-rock). Scale bar at lower left is 500 pm. In the middle of the photo is a single white metal grain to show the ongoing occurrence of the metals in the middle of the clasts. The dark grey grains are plagioclase, the intermediate grey is pyroxene and the light grey spots are olivines. The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

relics of pyroxenes left with faint exsolution lamellae visible.

Clast 19 is a sub-rounded clast and >2000 p.m in size. Pyroxene makes up about 80% of

the matrix. This matrix has a quenched crystal texture with very fine elongated crystals, which

differs very much from some of the other impact-melt clasts (such as clast 17) which have larger

(>5 1.Am) crystals which are rounded and coarser. The clast has as <5 kamacite grains, like the

other clasts, with no olivines and troilites.

Clast 20 is sub-angular and < 500 pm in size. The overall texture is inequigranular. The

large grains are subangular to rounded and appear to be partially resorbed. It consists of 6 relict

grains as well as a definite quenched igneous texture. Three of the pyroxene grains have faintly

visible exsolution lamellae. There is one large (>100 pm) plagioclase grain recognisable. The

kamacite in this clast is not found in a few larger clasts (50-100 pm) like clasts 16 and 17 , but

in very low quantities (10 lim) and is absorbed with the plagioclase and low-calcium rich glass.

Clast 22 is a round clast < 500 1.1111 in diameter with many asymmetrically shaped

kamacite grains. The matrix consist of pyroxene grains with almost no other mineral phases

(except kamacite) in this clast such as plagioclase, olivines and Fe-sulphide metals. The

pyroxenes in this matrix display no exsolution lamellae.

Clast 25 is a sub-angular (<1000 pm) clast with one large (<200 pm) pyroxene grain as

well as 13 large plagioclase grains at <200 pm average size. It also has a inequigranular texture.

Only two of the pyroxene clasts have very well defined exsolution lamellae. There is a very fine-

grained quenched melt texture present consisting of pyroxene rich groundmass/matrix.

2.5.2.3 Metal & sulfide-rich breccia clasts; c23

The metal and sulfide-rich breccia clasts contain relatively large amounts of metallic Fe,

Ni or troilite, and are similar to impact melt-rocks described from howardites by Hewins and

25 Fig. 16 Clast 23. Metal and Sulfide rich clast Fig. 17 Clast 23. Metal and sulfide rich clast (BSE image). Scale bar at lower left is 500 um. (BSE image). Scale bar at lower left is The metal and sufide clast is distinctly different 20 rim. The white grains are troilite, the black from all the clast referred to so far. Also notice grains are quartz and the grey grains are the matrix and the clasts surrounding this clast. pyroxene.

Fig. 18 Clast 24. Basaltic clast (granoblastic) (BSE image). Scale bar at lower left is 50 um. The single white grain at the lower right is a metal. The dark-grey grains are plagioclase. The lighter grey grains are pyroxenes. Notice the rounded smooth texture of the grains and the smaller grains which seem to make up the matrix. The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Klein (1978) and Hewins (1979). Their matrices are microcrystalline like those of other impact

melt rocks.

Clast 23 is rather unique in Malvern, or at least in this sample of Malvern. It is a small

clast (compared to the average clast diameter size of about 500 µm (Figures 16 and 17) and it is

elongate in shape, about 500 i_tm by 100 Clast 23 has a unusual appearance, because it

consists of different minerals than the other clasts (which predominantly consist of plagioclase

and pyroxene). It consists mainly of a silica (98.35 wt % SiO,) and troilite minerals. In <1% of

the troilite grains, which are associated with the pure SiO 2 grains as making up the matrix, there

are Fe-rich olivines in the troilite. There is another area in this clast where >5% of the troilite is

associated with pyroxenes as making up the matrix, and not SiO 2 as was the common matrix

mineral in the other areas.

2.5.3 Mineral fragments

Mineral fragments include pyroxene, plagioclase, Fe-Ni, metal, troilite, chromite,

ilmenite, silica, and olivine. Mineral fragments were found in the sample studied but they were

not as abundant as the clasts and the matrix. The mineral fragments made up approximately <5%

of the phases in the samples of Malvern. Their size ranges from >50gm to about 1 mm and their

shape is anhedral. Very few of these fragments were thoroughly analysed, seeing that they were

single large mineral grains and the intention was to concentrate on the heterogenous composition

of the clasts.

2.5.4 Matrix

The clasts in this sample of Malvern occur randomly in a matrix that consists of an assortment of grain fragments and clasts. The grain fragments and clasts in this rock are <90% made up of pyroxenes, plagioclase and metals. The mineral grains in the matrix that were

26 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite analysed by microprobe were: plagioclase, pyroxenes, Fe-Ni, troilte, olivines, ilmenite, chromite and quartz. Analyses can be found in the Appendix. The matrix has a fragmented texture and is composed of comminuted pyroxene and plagioclase fragments. Fuhrman and Papike (1981) define matrix as consisting of grains <20pm in size (any object >2011m in size was identified and classified into one of the specific types listed above).

2.6 Mineral Compositions as Determined by Electron Microprobe Analysis

Data are shown below in Table 4a for individual mineral grains in their allocated clasts groups. In certain clasts more than one grain was analysed.

Table 4a Mineral Compositions as Determined by Electron Microprobe Analysis

Clast number and type Electron microprobe data of pyroxene,

plagioclase and olivine

Clast 4 (Eucritic) W°26.63-39.80 En27.36-28.90 F S32.83-43.71

Clast 6 (Eucritic) W(3 1.7-34.10 En28.33-50.90 F S22.69-64.75

W°2.62-43.10 En34.20-44.05 F S22.69-53.11

W°6.9-11.9 En28.3-50.9 F S41.05-64.75

Clast 10 (Eucritic) W°4.7-9.8 En53.3-58.8 FS34.09-36.8

W°2.7-7.4 En36.9-50.9 FS42.3-59.5

Clast 11 (Eucritic) W°2.68-9.7 En42.6-46.5 F S46.5-51.4

W047_,1 . 1 E11.33.9_35.9 FS45.0-61.01

W°36.8-45.1 En42.1-46.5 F S P.7-16.7

W°7.9-4.6 En69.7-69.6 F S ,6.7-/7.5

Clast 5 (Cataclastic) W°, .7-41.4 En29.8-37.1 FS27.7-60.9

Clast 12 (Cataclastic) W°3.65-4.209 En64.46-64.979 FS30.92-31.37

W05 .78 E1137. 82 and F S56.40

F00.35_0.37 and F 010.65_0. 63

27 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Clast 21 (Granoblastic) Wo, 6_3.8 En71.3_71.9 FS"4.8.25A

Clast 1 (Breccia-howardites) W03.03-6.39 En54.72-71A8 FS24.94-39.54

Clast 2 (Breccia-howardites) W00.8-44.0 En40.5-54.05 F S18.6-45.42

W02.1-37.8 En34.9-43.7 F S25.9-54.0

W03.1-4.4 En57.7-66.1 F S30.1-38.2

Clast 13 (Breccia-howardites) W°1.3-8.3 En61.8-71.6 FS77.0-31.9

W05.3-19.1 En33.6-36.2 F S47.2-59.2

W°7.1-47.0 n131.5_38.5 FS26.1 _59.1

Clast 3 (Breccia-impact Melt-rock) W03.61-43.175 En36.20-48.72 F S20.69-47.4

Clast 7 (Breccia-impact Melt-rock) All.78.6_95.5

W02.5-42.4 En35.4-44.1 FS22.3-53.0

W05.1-8.2 En51.7-61.7 F S33.5-41.4

Clast 8 (Breccia-impact Melt-rock) W03.99_7.91 , E1153.5" _60.11 FS35.21-42.48

Clast 9 (Breccia-impact Melt-rock) W0 10.7-15.4 En31.5-34.0 F S52.2-54.7

W0 1.6_3.9 E1153A_54.3 F S41.7-44.8

Clast 16 (Breccia-impact Melt-rock) W0 1.5-10.7 En54.1-58.6 F S35.0-41.5

W07.1-4.8 En45.0-45.9 FS50.7-522

Clast 17 (Breccia-impact Melt-rock) W04.4-8.8 En55.0-63.4 FS32.8-36.8

W07.4-4.3 En54.2-56.9 FS40.6-42.5

Clast 18 (Breccia-impact Melt-rock) W0 1.8-31.6 En33.9-44.1 F S34.5-59.4

Clast 19 (Breccia-impact Melt-rock) W°24 En66 FS31.6

Clast 20 (Breccia-impact Melt-rock) Wo1.43-7.6 En61.8-70.9 FS27.7-35.5

WO1.9-5.8 En46.7-50.8 FS46.7-49.8

Clast 25 (Breccia-impact Melt-rock) W0 13.9-42.8 En,9.7-34.2 F S27.3-51.8

W03.5.5.8 E1135.1 _36.3 FS58.9.61.3

W03.9.9.8 E1134.9_36.6 FS53.5.61.1

W°24.6-42.1 En30.3-32.1 FS77.5-43.3

WO3A.3.9 D135.5_37.3 F S59.0_60.5

28 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Clast 22 W033.6-38.9 En40.2-43.8 FS20.8-23.3

(Metal and Sulphide-rich Breccia)

Clast 23 W00.9-1.0 En43.4-43.6 FS55.2-55.6

(Breccia-impact Melt-rock)

Plagioclase all clasts An 78.60-95.50

Troilite all clasts Fe 57.35-63.00 S 35.96-38.06

Kamacite and Taenite all clasts Fe 88.97-96.00 Ni 3.5-6.6

Ilmenite all clasts TiO, 48.70-51.99 Fe 41.29-44.46

In Clast 5 the calcium content of clinopyroxene decreased from the outside of the grain to the inside. The microprobe analyses were done at 211m intervals (8 spots). This can be seen in the vertical distribution of the analyses WO2 7_41 4 En,9 8.371 FS,7 7_60 9 (Fig. 20)

Two grains from clast 2 also had clear exsolution lamellae. A pyroxene grain without exsolution lamellae shows variable iron content Wo3.1-4.4 En57.2-66.1 FS30.1 _38.2 relative to a change in Ca. A grain without lamellae showed a decrease in iron content from the outside to the inside of the grain.

The matrix of clast 7 is composed of fine-grained plagioclase (A1178.6_95.5 ) and pyroxene grains. A second grain (all the pyroxenes are part of the melted matrix but may be from different grains) without any exsolution lamellae, plot with a change in iron content but shows stable calcium composition W05.1 .8.2 En51.7_61.2 FS33.5_41.4. The pyroxenes in clast 17 do not show any exsolution lamellae but has a content of Wo4.4_8.8En55.0-63A FS3,.8_36.8 and W01.4_4.3 E1154.2_56.9 FS 40.6-42.5.

Two pyroxene grains were analysed in clast 20. One of the pyroxenes without exsolution lamellae showed a change in iron content Wo l 43_2 6 El-161 8_70 9 FS27 7_35 5.

A grain in clast 25 with exsolution lamellae was analysed along visible lamellae. The result showed a change in Ca content W0 13 9_4, 8 Ell.29 7_34 2 FS27 3_51 8.

29 Eucrite (Basaltic) clasts

En Fs En Fs

En Fs En Fs Eucrite (Granoblastic) Eucrite (Cataclastic) clasts clasts

En Fs En Fs Hd

En Fs En Fs

Fig. 20. Compositions of pyroxenes for grains in Malvern clasts. The different fields are based on different pyroxene mineral grains within the clasts. The symbols within the fields were randomly chosen to differentiate between different grains. The numbers in the top right hand corner correspond with the clast number used throughout the chapter. Breccia (howardites) clasts

Breccia (impact melt-rock) clasts

Fig. 21. Compositions of pyroxenes for grains in Malvern clasts. The different fields are based on different pyroxene mineral grains within the clasts. The symbols within the fields were randomly chosen to differentiate between different grains. The numbers in the top right hand corner correspond with the clast number used throughout the chapter. Breccia (Impact melt-rock) clasts

Hd Di Hd Di

En

En

En En Metal and sulphide-rich breccia clast

En

Fig.22 Compositions of pyroxenes for grains in Malvern clast The different fields are based on different pyroxene mineral grains within the clasts. The symbols within the fields were randomly chosen to differentiate between different grains. The numbers in the top right hand corner correspond with the clast number used throughout the chapter.. The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

All pyroxene analyses from different clast groups are plotted in figure 23 a-f.

Comparatively, the analyses of (basaltic clasts, Fig 23c), (howardite clasts, Fig 23d) and (impact-

melt clast, Fig 23e) have a similar compositional range. Total cataclastic analyses of (figure 23

b), show a similar spread/range as figure 23 c, e and f but with less data. The majority of the

pyroxene analyses (Figure 24), show a relatively low content in calcium (<40% Wo) content. The

composition of this studies basaltic, howarditic and impact-melt pyroxene, compares favourably

with the overall compositions for eucrites and matrix from Pun et al, (1998). However, the matrix

results of Malvern shows less Ca content (possibly more orthopyroxene) than do those of Pun et

al (1998).

The plagioclases in Malvern range from An n. 6_95 .5 (Fig. 25). In Figure 26 it is also clear

that the average composition of the matrix of Malvern is pyroxene of augite and pigeonite

composition. This is shown on a Wo-En-Fs diagram (Figure 26). Thus, the matrix of Malvern

confirms the presence of abundant pyroxene as a clast component and a matrix component.

2.7 Pyroxene Thermometry

Some pyroxene grains in the clasts of Malvern, which had an extensive variation in Ca,

were used to determine crystallisation temperatures with the aid of the Wells (1977) pyroxene

thermometry model, which is based on Fe/Mg exchange between coexisting orth.- and

clinopyroxene. Below is the equation that was used in calculating the equilibration temperature

of Malvern pyroxenes.

T= 7341 / 3.355 + 2.44 X °Px F, - 1 n K

In Table 5 it can be seen that the average temperature of crystallisation for all the sampled grains and all the clasts were in the range of 965 to 1230°C with a standard deviation of about

32°C, the average being 1042°C. The highest percentage deviation from the average of 1042°C,

30

a) Total Granoblastic clasts b) Total Cataclastic Clasts

Di Hd

En Fs ' En Fs c) Total Basalt clasts d) Total metal & sulphide breccia clasts

Di Hd AA 0 •

0

0

o 0 0 • g En Fs En Fs

e) Total Howardite clasts

f) Total Impact-melt clasts

Di Hd A A A A

o f t

o •• . o Q. 0

0 o L. k ". v v ..e.vAxt.i 7,4

Fig.23 a-f Total composition of pyroxenes in Malvern clasts. All data without fields are shown. kb

90/10 90/10

80/20 80/20

70/30 70/30

60/10 60/10

50/50 50/50

10/60 10/60

30/70 30/70

20/80 20/80

.10/90 10/90

10/90 20/80 30/70 10/60 50/50 60/10 70/30 80/20 90/10 En

Figure 24. Total pyroxene analyses of Malvern on a Wo-En-Fs diagram

Or

90/10 90/10

80/20 80/20

70/30 70/30

60/10\ 60/10 , / \ / 50/50 \/ / \ 50/50

10/60 / \ •0/60

30/70 30/70 /\ /V 20/80 20/80 AA/ / \A/ \ /V yV \ 10/90 \// 10/90

10/90 20/80 30/70 10/60 50/50 60/10 70/30 80/20 90/ rib An

Figure 25. Total plagioclase analyses of Malvern on a Or-Ab-An diagram W o

90/10 90/10

80/20 80/20

70130 70/30

GO/10 G0/10

50/50 50/50

10/80 10/80

30/70 30/70

20/80 20/80

10/90 10/90

10/90 20/80 30/70 10/00 50/50 60/10 70/30 80/20 90/10 En F s

Figure 26. Total matrix analyses of Malvem plotted on a pyroxene Wo-En-Fs diagram The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite per clast calculated, was 6%, and the lowest 1%, the average was 3%. This suggests that these crystallisation temperatures are those of high energy events, such as would be expected during impact processes.

Table 5 The temperatures for pyroxene grains in the clasts as calculated using the model of Wells, (1977).

Clasts and grains used Ave T °C aSTDEV b % DEV Clast2 g1 996 56 6 Clast2 g2 1,043 7 1 Clast3 g1 1,231 38 3 Clast3 g2 1,023 18 2 Clast3 g3 999 56 6 Clast4 g1 1,104 24 2 Clast5 g1 965 29 3 Clast6 g1 975 21 2 Clast13 g1 973 30 3 Clast18 g1 1,113 38 3 Ave. temperatures 1,042 ±31.6 ±3.1

a The standard deviation is based on the average T °C calculated by Wells (1977) b The % deviation is based on the standard deviation calculated to a percentage value.

2.8 Discussion

In clast 6 all of the pyroxene grains were melted and resorbed into the matrix. There are pyroxenes with clearly visible exsolution lamellae and three with faint exsolution lamellae that seem almost part of the matrix. The composition of the pyroxene may have changed as a result of surrounding grains. The composition of the pyroxene grains may vary as a result of the influence that impact heat played on them. This is shown by the absence of exsolution lamellae.

The metal in clast 8 contains 0.35-1.1 wt% Co and 5-6.4 wt% Ni, which plots mostly in the "meteoritic range" and probably represent xenoliths introduced into the HED parent body from various types of primitive or Fe-rich meteoritic projectiles, similar to what has previously

31 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite been observed for Kapoeta and other howardites (e.g., Desnoyers and Jerome, 1976; Hewins and

Klein, 1978; Hewins, 1979). These same writers and Bunch (1976) found in Malvern that melt rocks contain Ni-rich metal. Moore et al. (1969) and Goldstein and Yakowitz (1971) agreed that this is similar to the metal of primitive and metal-rich meteorites rather than to primary basaltic

achondrite metal.

Melt rocks are unique among howardite clast types in consistently containing metal of

meteoritic composition. It is, therefore most likely that this material was introduced into the

howardite in the impact event which caused the melting, as has been suggested previously for

Malvern (Desnoyers and Jerome, 1976; Hewins and Klein, 1978). The variation in Ni

concentrations with relatively constant Ni concentrations suggest that a fractionation process was

involved in the formation of the melt rock metal. These compositions could possibly have been

inherited from the projectile, but were more probably derived during the dispersal of the impact

cloud or the solidification of the melt. Gibbons et al. (1976) have suggested that fractionated

metal spherules are formed by instantaneous dispersal of projectile material into melted target

material, which in some cases includes metal-free rocks. It was stated in Desnoyers and Jerome

(1976) that metal in Malvern was very rare and they only found one fragment of kamacite and

taenite with 51.8% -52.9% Ni. In this study no such taenites were found. The highest amount of

Ni in Malvern taenites was 6.6%. Also, metals were not as rare as was suggested by Desnoyers

and Jerome (1976).

The matrix is characterized by intergrowths of plagioclase and pyroxene, typical of the

quenched texture in Malvern. It is also clear that the average composition of the glass/matrix of

Malvern is dominated by pyroxene of augite and pigeonite composition. Below the inversion temperature the calcium-rich phase is rapidly exsolved from the orthopyroxene, and commonly gives rise to a 'graphic intergrowth' between the orthopyroxene and exsolved augite (Walker and

32 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Poldervaart, 1949). The more Fe-rich pigeonites generally do not show the same degree of exsolution. In volcanic and other quickly quenched rocks pigeonite does not display optically visible exsolution lamellae, and such crystals have been considered to be chemically homogeneous (Brown, 1957). Deer et al (1978) added that augite changes in lattice parameters

may occur subsequent to lamellar nucleation; at constant composition as a result of thermal

contraction, reduction in pressure or reversible polymorphic transitions, or with changing

compositions due to the exsolution or by element fractionation between matrix and lamellae. The

lamellar angles are thus a potential means of clarifying the pressure-temperature regimes of the

pyroxene. The pyroxene grains in Malvern with visible exsolution may rather be augite than

pigeonite seeing that pigeonite do not show visible exsolution lamellae at quickly quenched

circumstances.

Some clasts with more than one analysed pyroxene grain show more restricted mineral

compositions, e.g clast 3 and 25. Some clasts showed relatively slow cooling because of the

change in Ca content that is shown in many clasts e.g; clasts 2, 3, 5, 6, 7, 13, 18 and 25. Others

showed a change in Mg and Fe, i.e. possible reducing circumstances. Variable iron content of

pyroxenes suggests that iron reduction possibly took place. This could be as a result of oxygen

being released in the impact event on the asteroid body, and oxygen being extracted from the

composition of minerals to be burned up and reducing the composition even further . As

expected, pyroxene and plagioclase compositions are essentially identical to, and vary as widely

as, those of pyroxene-plagioclase (eucritic) and orthopyroxenite (diogenetic) clasts, since the matrix formed by comminution of such rocks and clasts (Pun et al, 1998). The overall pyroxene compositions of this study compare very well with the distribution that Desnoyers and Jerome

(1976) found in Malvern.

33 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

The different textures of clasts can be interpreted in terms of variations in cooling rate.

Plagioclase forms elongate skeletal laths at 15 °C/hr (Donaldson et al, (1975). Pyroxenes form

curved dendrites and spherulites at 650 °C/hr and then form curved dendrites and elongate chain-

like skeletons from 170 °C/hr down to 40 °C/hr. At 15 °C/hr the pyroxenes become elongate

subhedral grains, and elongate chain-like skeletons. At 7 °C/hr the pyroxenes change into

subhedral, subsequent grains. The differentiation of these minerals helps to distinguish their

textures even further.

There are only two examples in this study of pyroxenes with elongated or even dendritic

textures (clasts 15 and 18). The majority have mostly subhedral to euhedral quenched textures,

showing that most of the clasts cooled slower that the two examples mentioned earlier. Thus,

even though they have quenched melt textures, it seems unlike the dendritical textures associated

with the most supercooled grains of 1400 °C/hr. Hewins and Klein (1978) stated that the impact

melt which formed the glass beads cooled more rapidly than 10 °C/min -1 between the liquidus

and the glass transition. This cooling rate seems too fast to accommodate the average subhedral

and subsequent grain texture of the pyroxenes which form at 15 °C/hr and slower.

Metals in many of the clasts seemed unusual in that single large metals were enclosed by

quenched melt textures and material and not matrix. It occurs as only single metal grains and not

as a few random smaller grains. Many of the metals found in these clasts, were large single metals

(mostly kamacite or taenite) that were situated close to the centre of the clasts. Steele (1988)

stated that iron metal is a relatively common phase occurring both within chondrules and as single

grains. He also added that metal is commonly contained completely within silicates, especially olivine, but larger grains do occur enclosed only by matrix. Grossman and Olsen (1974) assumed that the enclosing silicates were formed by condensation, and therefore that the composition of the enclosed metal possibly represented gas-metal equilibrium prior to condensation of forsterite.

34 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

If the olivine formed during the melting event, the included metal composition probably

represents chondrule-forming conditions rather nebular conditions. An uncertainty in Grossman

and Olsen's (1974) conclusions was how the metal was in fact separated from the gas, because

there are no associated phases, and grains of this size are not observed within silicates. Their

conclusion was that metal grains represent clusters that formed in the solar nebula and

incompletely reacted with silicates during chondrule formation due in part to shielding by a

troilite rim. Another occurrence of metal is as clusters rarely or as single crystals surrounded by

matrix that is similar to that described by Olsen and Grossman (1978).

As a comparison, the Kapoeta clast consists of a dense mass of euhedral, solid to skeletal

low-Ca pyroxene phenocrysts and microphenocrysts in a cryptocrystalline granular textured

groundmass. Mittlefehldt and Lindstrom (1997). This is very similar to the texture of the

Malvern howardite. Mittlefehldt and Lindstrom (1997) also stated that it seems more likely that

the Kapoeta clast was incorporated in the breccia either as a cold solid clast, or possibly as hot,

platic spatter, rather than as a liquid. This situation is also similar in the clast forming

circumstances of Malvern.

2.9 Conclusions

In this chapter I examined 25 clasts randomly and found that most belong to the impact- melt rock group of the breccia clasts. The crystallization temperatures, based on geothermometry of the pyroxene grains in these clasts were found to be ± 1042 °C.

All of the clasts and crystals in this meteorite were subjected to high velocity impacting on the parent asteroid body. The impacting meteorites and melts cooled down relatively fast in the cold environment of a geologically inactive asteroid body. Evidence for high velocity impacting is suggested in the overall texture of this meteorite. Quenched melt textures occur

35 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

commonly in some clasts. The other clasts all have some impact- related textures such as grain

fragmentation.

This study agrees with the findings of Hewins and Klein (1978), that the primary rock and

mineral fragments in Malvern are virtually devoid of primary metal, and that melt rock clasts

contain metal with composition characteristic of primitive and metal-rich meteorites. The matrix

of Malvern contains metal of a similar composition (primitive and metal-rich meteorites), which

was incorporated into Malvern when the impact melts were generated. Hewins and Klein (1978)

suggested that this metal may have originated by reduction of carbonaceous chondrite material,

which is present unaltered in howardites. Since there is no direct evidence of this reduction, an

origin from high velocity metal-bearing projectiles is also possible.

Hewins and Klein (1978) found that the liquidus temperature for a synthetic glass of

Malvern brown glass composition is about 1280 °C and the glass transition temperature is about

730°C. The temperatures measured in this study of Malvern are from grains in the clasts and

cannot be compared directly with the synthetic glass used by Hewins and Klein (1978).

Donaldson et al. (1975) also suggested that nucleation temperatures of olivine, in cooling

rate experiments are dependant on the experimental technique, and hence, results of cooling

experiments should be applied with caution.

The glass beads to which Hewins and Klein (1978) refer are the same as the clasts that are

often referred to in this study. The higher recrystallization temperatures for the clasts thus also

agree with the Hewins and Klein's finding that the glass beads cooled faster, possibly as a result

of free flight. Hewins and Klein also found that pyroxene-bearing glass was incorporated into the breccia immediately after impact at near liquidus temperatures and cooled more slowly. The textures and relatively Fe-rich pyroxene of clast-laden melt rock are attributed to the heat-sinking effect of the clasts. The breccia as a whole reached thermal equilibrium below 730 °C.

36 The Mineralogy and Geochemistry of the Clasts in the Malvern Howardite

Malvern reached such a high temperature that the original chondritic clasts have all been melted and only the impact-melts and the metals in the clasts remain. It may have been because the metal was so central in the impact that it absorbed most of the heat generated by the impact.

Of the original chondritic breccias the metal did not melt away, because it needed higher temperatures to melt. Some metals then became nuclei for the clasts and the silicates formed around it to become clasts with the central large metals, as was shown in figures of chapter 2.

Carbonaceous chondrite clasts were not found in the samples analysed. However, there is indirect evidence of a carbonaceous chondrite in Malvern in the form of high concentrations of siderophiles (Chou et al, 1976). It appears that the siderophile elements in the howardites reside to some extent in these clasts, whereas in lunar samples they are in metal grains.

Carbonaceous chondrite clasts have already been found and analysed in some howadites , such as Kapoeta, Jodzie, Bholgati, LEW 87295, LEW 85441, G' Day, and Y793497 (Zolensky et al.

1996).

37 The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

CHAPTER 3 THE CLASSIFICATION OF MERWEVILLE, A NEW CHONDRITE METEORITE FOUND IN SOUTH AFRICA

3.1 Introduction This large, red-brown meteorite was found on a farm in the Merweville district in the Western Cape Province of South Africa in 1977 by Mr. C.A.J Marais. Because Merweville was quite weathered, it was thought useful to analyze the unweathered as well as the weathered portion of the rock using XRF methods to attain the whole rock chemistry for both portions. Seeing that Merweville is a new meteorite, this section cannot deal with previous research, but will consider types of meteorites that comprise the chondrite group and the classification of these meteorites. Ordinary chondrites constitute about 80% of the meteorites observed to fall on the Earth, and L chondrites are about half of all ordinary chondrites (Sears and Dodd, 1988). Compositions of ordinary chondrites are similar to that of the average solar system, indicating that the parent bodies of ordinary chondrites did not experience melting and igneous fractionation (Sears and Dodd, 1988). Chondrules are small globular bodies of various materials, though mainly olivine and pyroxene, found as an inclusion in chondrites and are usually less than 3mm in diameter, may be porphyritic or glassy in texture, and are clearly visible on polished surfaces (Lapidus and Winstanley, 1990). Chondrules, which comprise more than half of the typical unequilibrated ordinary chondrite, are believed to have formed by the melting and resolidification of primitive material in the solar nebula (Grossman et al., 1988). Chondrules are depleted in siderophile elements, with these elements in chondrites being contained in the metal phase. Although proportions of chondrules and metals may change from one chondrite to another (Jarosevich, 1990; McSween et al., 1991), the bulk composition of chondrules of the same chemical group remains similar. Thus, it appears that chondrules and metals were derived from a single source, as they are chemically complementary (Kong and Ebihara, 1995). Scott et al. (1988) stated that recent analyses by many other researchers shows that no

38

The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

two chondrites appear to have identical matrix material, and the material in one kind of chondrite cannot have formed directly from that in another. Chondrite matrices are also not homogeneous mixtures. 3.2 Sampling History The main aim of this study was to classify a previously undescribed meteorite. Mr. C. A. J. Marais (formerly of Wolwefontein and now a resident of the town Merweville (see Fig. 26a) found the meteorite in approximately 1977 on his farm Waterval 64 in the Prince Albert district, which is about 375 km north-east of Cape Town, South Africa. The meteorite was then presented to the Geology Department at the University of the Free State where it remained until 1997. During that year, the meteorite was offered to our group for study. The name Merweville has been assigned to the specimen after the convention described by Merril (1916),as the finding site is closest to the town Merweville. The location of the site is 32°45.5'S and 21°41' .00 E or about 1 km northeast of Gemsbokkop, and due south of the farm road, and can be found on the 1: 50 000 map sheet 3221 DC Prince Albert Road (Chief Directorate: Surveys and Land Information, Private Bag X10, Mowbray). The original mass of the stone was 6.97 kg and the portion sawn off for this study was 0.7 kg. The dimensions of this piece were 14.5 x 9 x 6.5 cm, after cutting (Figure 27). Externally the hand sample shows evidence of weathering but the sawn internal surface reveals more pristine material. The hand sample (Figure 27) has a red-brown fusion crust and few regmaglypts. The sawn unweathered portion is light orange brown in colour and the weathered portion is much darker brown in colour.

3.3 Experimental Procedure and Analytical Techniques 3.3.1 X-ray Fluorescence Method (XRF) The X-ray fluorescence (XRF) method is a standard technique for determining the chemical composition of rocks. The specimen to be analysed may be in the form of finely ground loose powder, compressed powder brickettes or fusion discs. The specimen is bombarded with high energy X-rays, and emits secondary radiation characteristic of the elements present. For each element, the intensity of its characteristic radiation is proportional to the concentration of that element in the specimen. Sample

39 Next Page

Figure 26a. This map is an enlargement of Fig 2. showing the region where the Merweville meteorite was found in relation to the Western Cape Province. 0 O O ti gg, 1 E

c• T

1933). o. APE 0 0

( O

C C TA rn -o0 1907) ES lve 0

( O

n O Ma TERN

FRE O S Bowde

EA 0

O ao 03

1880 N

( C t

co

0 Wes

1960) ia 0 k ( 1910)

tor • ( Vic Hoe 1932) ( town De

in 0) 0 its te

Br 21) fon l APE 19 C ( 0 Dee 14 lbult 19 Vaa i (

THERN E O O OR jes Vle jes N

Kop 0

0 O CNI

O 0 CNI 0 0

. 188 (

ox rg 0 be izen Mu z 0 ix END

NE z EG 0z ,_0 TO L rg co S

0 Fig. 27. A piece of the Merweville hand sample used in this study, after it had been cut. Notice the dark areas where weathering has taken effect and the lighter areas where it was not weathered as much. Samples were taken and analysed from both areas. The specimen is 14.5 cm along its longest dimension. The Classification of Merweville, A New Chondrite Meteorite Found in South Africa spectra are compared to those of standards of known composition. XRF analysis is suitable for determining the concentrations of major elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, and Fe). XRF analysis of Merweville was done at the University of Cape Town, based on the method described by Von Michaelis et al. (1969). According to Von Michaelis et al. (1969), three requirements for XRF analysis are needed: the sample powder must be homogeneous, finely-ground (<120#), and free from a metallic phase. Von Michaelis et al. (1969) also stated that complete separation of the metal from the silicate phase is necessary for two reasons: (i) to completely oxidize the metal phase, which cannot be achieved if metal grains are embedded in a silicate matrix, and (ii) to obtain samples for the subsequent study of the distribution of some elements between the metal, silicate and sulphidephases. Additionally metal phases cannot be put through standard XRF preparation procedures as they will react with the platinum crucibles used. For XRF analysis the sample was crushed in a hardened steel percussion mortar. The metal phase was separated from the sulphide and silicate phases by a sequence of steps involving a paper-covered hand magnet, a Frantz isodynamic magnetic separator, grinding in an agate mortar and sieving through 40 mesh and 120 mesh nylon bolting cloth. After each crushing (as many times as was necessary to break down the sample), the resulting product was sieved using a 40-mesh sieve. It was then sieved to divide the <40-mesh portion (which was mainly silicate) and the >40-mesh portion (which was mainly metal + sulphide). The <40-mesh portion was re-crushed and salvaged after each crushing. The <40-mesh portion was ground in an agate mortar for 5-minute periods. The silicate-rich fraction, was sieved using 120- mesh bolting cloth and this was repeated 4 times to obtain: >120-mesh portion of dominantly metal + sulphide, and < 120-mesh portion of silicate. Magnetic separation was carried out in acetone, on the 2 previous mentioned portions, with a quick release magnet covered in a plastic bag. This process was repeated 3 times. Homogenization was achieved by weighing out aliquots of metal and silicate phases of the samples separately, in the same proportion as that of the original separation. These were oxidized to constant weight at —700 °C in a preheated stream of oxygen and steam in the high grade quartz tube

40 The Classification of Merweville. A New Chondrite Meteorite Found in South Africa heated, in a calibrated combustion furnace designed for this purpose. The oxidized material of all samples was ground in an agate pestle and mortar to pass through 120 mesh nylon bolting cloth. The powder was then mixed in a Spex Mixer Mill and ground for two 30-minutes periods in an automatic agate mortar. The powders were ignited to 1000°C for 12 hr in a muffle furnace, cooled in a dessicator and reweighed. Then the oxidised and silicate portions were recombined. The resulting weight of the crucibles after preheating was 22.813g for the unweathered chondrite, and 22.496g for the weathered chondrite. The sample + crucibles weight was 23.565g for the unweathered chondrite and 23.756g for the weathered chondrite. The constant weight for the unweathered chondrite was 23.609g and for the weathered chondrite 23.782g. The recombined weight for the unweathered chondrite was 0.281g made up of the silicate portion at 0.141g and the oxidised portion at 0.140g. The recombined weight of the weathered chondrite was 0.282g (silicate portion: 0.141g; oxidised portion: 0.141). The recombined weight of the unweathered chondrite was: 0.280. No weight could be determined for the weathered chondrite silicate, as there was not enough sample available. The above weights are significant because it shows that the different fractions of Merweville were carefully measured in all relevant stages of sample preparation to determine precise XRF results.

3.3.2 Instrumental Neutron Activation Analysis (INAA) Instrumental neutron activation analysis (INAA) was used for the analysis of specific trace elements (Sc, Co, Cr, Cs, Hf, Ta, Th, U) down to detection limits in the ppm and ppb range. The INAA sample preparation is based upon the methods used by Erasmus et al. (1976) and Von Michaelis et al. (1969). The samples supplied as fine powders were dried at 110° C for 12 hours prior to weighing aliquots of the samples into irradiation containers. For short irradiations, 100 to 500 mg of sample was loaded into high-purity polyethylene containers, while for longer irradiations (1 to 24 hours) quartz ampules were used. Oxidation of the metal + sulphide dominated portion was achieved in pure silica crucibles. The crucibles were preheated at 950°C for 24 hours. A constant weight was obtained after four 24-hr periods of heating the sample at 950°C (Erasmus et al. 1976).

41 The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

The preparation of the sample and the counting processes took place at the Schonland Research Centre at the University of the Witwatersrand. The samples were irradiated at the Atomic Energy Corporation of South Africa, using the 20 MW Oak Ridge Research SAFARI-1 type reactor at Pelindaba.

For the determination of short-lived isotopes, samples were irradiated in the pneumatic facility, which has a neutron flux of 3.10n.cm -2 .sec -1 . Irradiation times were up to 30 minutes in this facility. For the determination of longer-lived isotopes (half-lives > 2.5 hours) the samples were sealed in aluminium cans and irradiated for one hour in the hydraulic facility at 9. 10' 3n.cm-2sec -1 . For epithermal activation, the ampules were encapsulated in cadmium cans of 1.5 mm wall thickness and irradiated in an epithermal flux of 1.10 ' 2 n.cm -2.sec -1 for 24 hours. Flux monitoring, gamma-spectrometry and calibration standards were all based on Erasmus et al. (1976).

3.4 Results 3.4.1 Petrographic Description The metal and sulphide minerals found in the sample (by microprobe analysis) were mainly Fe-

Ni metals such as kamacite (Fe 0 93_0 096N10 07-0 04) and taenite (Fe <08Ni >0 ,) and lesser amount of troilite (FeS) and chromite (spinel group). The textures of the metals occur randomly as opaque anhedral to euhedral grains and comprise between 15-20% of the overall mineralogy. Larger crystals of troilite are more common than the Fe-Ni metals. The overall texture is semi-equigranular with the largest grains being <1 mm and the chondrules <8 mm. The silicate minerals comprise mostly orthopyroxene and olivine. Approximately 80% of the minerals in this meteorite are silicates. The grain size is generally < 0.01 mm. The thin sections consist of 55% red-brown grains and 45% light grey and opaque grains. The red-brown colour is not caused by a particular mineral but is probably a weathering influence. There is a unknown mineral with the following composition (Si02=70.9%,Al2 0 3 -23 5%, FeO = 1%, CaO = 1.5%). The composition of this mineral is uniform in different parts of the sample. This mineral was small (<60 p.m) and it was only found accidentally when analysing other minerals. This mineral was not found in reflected light because

42 The Classification of Merweville, A New Chondrite Meteorite Found in South Africa of the diminutive size. Therefore the colour of the mineral could not be established. It was found next to metal grains, both troilite and kamacite, and in between pyroxenes and olivines (see Figures 29 and 30 for images) Analytical data can be found in appendix B.3. The Merweville chondrite does not contain an abundance or great variety of chondrules. The most common chondrules are barred olivine chondrules with excentroradial pyroxene (Figs 31 to 32). Figure 29 shows the association of troilite, kamacite, pyroxenes and the unknown Si-Al-rich mineral. Figure 30 shows another kamacite grain with taenite rims (the grey zones on the boundaries of the kamacite). Also shown in Figures 29 and 30 is the unknown Si-rich mineral which is found in both cases between the metal phase either kamacite and pyroxene, or taenite. In Figure 29 it is troilite and in Figure 30 it is kamacite. Shown in Figure 31 is a BSE image of a barred olivine chondrule in enlarged view. It is the only common chondrule type in this meteorite apart from a few excentroradial chondrules. In this photo it can be seen that the linear orientation of barred olivine chondrules grains is made up of different minerals, including pyroxenes, olivines and the unknown Si-Al-rich mineral. In Figure 32 a kamacite grain can be seen included in a larger troilite grain with olivines around them. In Figure 28 the overall texture of a thin section in transmitted light is shown The opaque minerals are metals and sulphides. There are grey and orange-brown minerals of which the mineralogy is the same (mostly pyroxene and olivine in grey and orange-brown minerals). It is a mixture of olivine and pyroxene together and the orange-brown colour seems to be a weathering effect. This section was taken from the relatively unweathered section of the sample. In Figure 28 it can be seen that the real weathered section of the sample has very light coloured areas compared to Figure 27.

3.4.2 Major Element Chemistry The XRF data of Merweville are compared in Table 6 to two other chondrites analysed by Le Roux (1994). Even though St. Mark's is an E chondrite, the XRF results compare very favourably with Merweville's unweathered fraction, except for the 5.28% of A1203 in Merweville compared to 1.58% in St Mark's. Diep Rivier (an L6 chondrite) compares favourably with the weathered fraction of Merweville (see Table 6).

43 Figure 28. A thin section (slide 6c)of Merweville in plain polarised light. The length of the photo represents 3.5cm of the thin section. The orange colour is due to weathering. The majority of visible minerals are pyroxene, olivine and metals. Fig. 29. Backscattered elctron (BSE) image of some grains in Merweville. The scale bar at the lower right is 100 gm. The large white grain (A) at left is troilite. The white grain to the right (B) is kamacite and taenite together. The dark-grey smaller grains to the right of the large troilite grain is the unknown mineral (C) composed of Al and Si. The grey grains are pyroxene.

Fig. 30. BSE image of grains in Merweville. Scale bar at lower right is 100 gm. The large white grain (A) is kamacite. Taenite is found in the area near the centre of the photo (B) where the kamacite makes a slight point. The unknown mineral (C) is again shown in the centre of the photo as the dark-grey phase in between the kamacite and pyroxene to the left. The smaller white grains are troilite. .200.0 1 1 um I 5_o k1 USE

Fig. 31. BSE image of a barred olivine chondrule. Scale bar at lower right is 50 tun.. The light-grey phase (A) is olivine. The intermediate phase (B) is pyroxene and the dark-grey phase (C) right in the centre is the unknown phase.

Fig 32. BSE image of Merweville grains. Scale bar at lower right is 500 pm. The large light grey grain (B) near the centre is troilite. The darker grey phase (A) in the centre of that grain is kamacite. The large amount of dark grain (C) around these metal grains are olivines. The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

Table. 6 XRF data of Merweville showing unweathered and weathered fractions of Merweville (this study). Also is shown the silicate fraction of the unweathered sample (this study). Chemical analyses of other chondritic meteorites are shown for comparison.

Oxides (Unweathered 'Weathered Silicate fraction, Diep Rivier St. Mark's of unweathered L6 E5 Si02 36.52 40.99 43.18 42.01 37.82 TI0, 0.10 0.11 0.11 0.11 0.08 A120, 5.28 2.68 2.53 2.38 1.58 FeO 31.41 25.72 22.77 24.37 31.93 MnO 0.31 0.34 0.35 0.35 0.32 MgO 23.18 25.51 26.46 26.07 19.47 CaO 1.55 1.91 2.07 1.90 1.25 Na20 *b.d.1 *b.d.1 *b.d.I 0.80 1.46 K20 0.10 0.10 0.12 0.13 0.10 P205 0.18 0.26 0.26 0.25 0.43 NiO 1.87 0.88 0.25 0.68 1.54 Cr203 0.49 0.53 0.49 0.57 0.47 Total 100.99 99.01 98.58 99.62 96.45

*b.d.1 below limit of detection Diep Rivier and St.Mark's are form Le Roux (1994)

3.4.3 Instrumental Neutron Activation Analysis (INAA) Results The first point to determine is whether or not the INAA results of Merweville are in agreement with previous work conducted on meteorites belonging to the same chemical group. The INAA results of Kong and Ebihara (1995) for a few L-chondrites and Allende (used as comparison to show how close the values are even if it is not an L-chondrite) compares in some ways to the silicate fraction of Merweville (Table 7). The unweathered fraction of Merweville had higher FeO wt% values than the weathered fraction in both the INAA and XRF results (2.3% and 5.7% respectively). There were double the amount of NiO in the unweathered than the weathered in the XRF results but <20% more NiO in the INAA results between the unweathered and weathered fractions.

44 The Classification of Merweville. A New Chondrite Meteorite Found in South Africa

Table 7 INAA results of Merweville, All data in ppm, except for Iridium and FeO

Sample Sc Cr Ni Ir ppb Co Fe (wt% FeO) *U 5.5 2571 34200 0.9 1192 28.6 **W 7 2427 29653 0.84 1018 26.3 ***US 10.7 3597 2432 127.6 17.8 ****WS 10.8 3925 3545 160.6 18.4

Allende (CV3) 10.7 3630 1.40% 0.772ppm 680 23.90% Y791421 (L5-6) 8.43 3920 0.70% 0.456ppm 563 19.90%

*U: Unweathered bulk fraction **W: Weathered bulk fraction ***US: Unweathered silicate fraction ****WS: Weathered silicate fraction

3.4.4 Electron Microprobe Analyses Standards that were used for analysis at RAU were the following: For olivine and pyroxene analyses (15 KV) the following were used olivine, augite, garnet, albite, MnTiO 3, orthoclase, NiO and SrSO4 For metals (20KV) FeS, Co, Cu, ZnS, Te, Sb2S3, Se, Bi, As, Cd, Ag, G A P, PbS, Ni, and MnTiO3 were used. Standards that were used at Johnson Space Center for microprobe analysis included the following: kaerstutite was used for all elements, except Mn-garnet for Mn, apatite for P, an artificial metal for Cr and Ni and troilite for S. Microprobe results are presented in Tables B 1 -B 4 in Appendix B. The composition of pyroxenes are plotted in Figure 33. Orthopyroxenes compositions vary from

En70 64-79.0. None of these pyroxenes showed exsolution lamellae. The overall composition of olivines is Fa69,77. Data for the unknown mineral are shown in Table B.3 This mineral is unfortunately so small and difficult to find that it would be difficult to do TEM work on it. Microprobe data for this unknown mineral for both work at RAU and JSC are shown in Table B.4 and the results do compare well with each other. Thus it seems as if this peculiar result or mineral is not grinding powder. This result should be noted for future reference. The metal and sulfide data for the FeNi-metals such as kamacite and taenite are shown in Table

45 En Fs

Figure 33: Compositions of orthopyroxenes in the Merweville chondrite, as determined by electron microprobe The Classification of Merweville. A New Chondrite Meteorite Found in South Africa

B.3. Troilite data are also in Table: B.3 and chromite in Table: B.4. No plagioclase was found in Merweville. Figure 34 (wt% Co vs wt% Ni) shows kamacite, taenite and troilite compositions. The troilites plot out of the meteoritic range, and are depleted in Ni. The kamacites and taenites plot partly in the meteoritic range but mostly outside.

3.5 Chondrite Classification Schemes Before describing the schemes to classify chondrites, it is deemed necessary to shortly discuss chondrite origins so that the reader understands the significance behind the classification. The overall uniformity of composition in terms of most of the elements, and the sequential chemical and mineralogical relationships between the individual groups of meteorites, support the theory that the chondritic meteorites were all derived from a common parent material (Mason, 1962). Mason (1960a, b) and Ringwood (1961a) have theorised that the parent material was highly oxidised, its original state being similar to that of the Type 1 carbonaceous (CI) chondrites, the other groups of chondrites having been produced from this material by dehydration and progressive reduction. Chondrite metals are not melting remnants of previously condensed metals. Rather, they were produced by reduction of CI- or CM (Mighei- type specimen of carbonaceous chondrite)-like material during the melting process (Kong and Ebihara, 1995). The complementarity in composition and the similarity in quenched features, suggest that chondritic metals and chondrules are the complementary components of the same melting event. Distribution of trace elements between taenite and bulk metal indicates that kamacite and taenite are probably the low-temperature diffusion products and must have been developed in the chondrite parent body. The difference in the taenite composition between equilibrated and unequilibrated chondrites reveals that the equilibrated chondrites were located near the surface while the unequilibrated chondrites were in the interior if they were derived from the common parent body (Kong and Ebihara, 1995). The following chemical parameters are most useful in describing the differences between the meteorites in the above groups: The ratio (by weight) of total Fe to SiO, (Fe/SiO 2) in the bulk analysis, The SiO2/MgO weight ratio in the bulk analysis,

46 Ni vs Co in all Merweville metals

1.5 1.4 Taenite 1.3 Intermediates of Tae-Kam A Kamacites 1.2 Troillites 1.1 1.0 0.9 0.8 wt % Co 0.7 A 0.6 A 0.5 0.4 Meteoritic Range 0.3 rg-- 0.2 1 0.1 P 0.00 10 15 20 25 30 35 wt %Ni

Figure 34: Ni vs Co in Merweville metals, as determined by electron microprobe The Classification of Merweville. A New Chondrite Meteorite Found in South Africa

The molecular ratio [FeO/(FeO + Mg0)]=Fe* in the olivine and pyroxene of the meteorite, and The ratio of metallic Fe to total Fe (Fe'/Fe) (Van Schmus & Wood, 1967). The Fe* of the olivine and pyroxene is the most valuable parameter for classification of ordinary chondrites, into their chemical groups. The SiO 2/MgO of the whole rock XRF analysis ratio distinguishes between the E group (enstatite chondrites), C group and ordinary chondrites. The Fe/SiO, and Fe'/Fe ratios are used to subdivide ordinary chondrites into total iron groups i.e. H, L and LL (Van Schmus & Wood, 1967). The ranges of these parameters for the different groups are summarised in Table 8. In addition to the above, chondrites also generally follow the two relations stated as Prior's rules: As the amount of FeNi-metal phase scattered throughout a chondrite decreases, The Ni/Fe ratio within that phase correspondingly increases, and The ratio of FeO to MgO for the entire meteorite increases (Short, 1975).

Van Schmus and Wood (1967) expanded the chondrite classification system, in which the same chemical groups are retained with an additional parameter referred to as petrological type, which is based on textural features. They divided the chondrites into six types, (Table 9) with Type 1 corresponding to the material experiencing the least degree of reheating, and type 6 the chondritic material which experienced the most intense reheating (Wasson, 1974). The petrological classification of Merweville is described in section 3.5.2. The criteria listed in Table 8 and discussed above are employed to define six petrologic types within the chondrites irrespective of the following bulk compositional differences: (for numbers see Fig 8). Homogeneity of silicate mineral compositions. Heterogeneous olivine and pyroxene grains indicate a high degree of disequilibrium and would tend to become more homogeneous in composition with progressive degrees of equilibrium, i.e. metamorphism (Van Schmus & Wood, 1967). Pyroxene

47

l les ia

d it

t dru ly r, r ins fine ters lea hon ra Poo c de in C CD g

ix tr d ma

ic b d llize les m

te ta

t s dru dily form horo i linea t a

Recry re Chon de Un Or LO Absen

V) (13 0 1967)

>-. C % d, 5% lline

= = 2 t d

n C 0. ta Ta u) t 1.

s re cc les c cc fine a

•—L...cal..= ry

ai sen d Woo as o 8 co = ...4:., a) cf) E cr) .."E" han han .— ,.__ - de 0 - c.) To 0 dru sp ix n 0 (...), w (1) re

t 0 t u) E C ... , LO n CU C 1.... la ll- -0 c7) „_. 0 tr a an

V) p icroc 5 = 6 ss ss o L.. 2 .`,-4 cy) = 2 ho le ma le (1) ':`'- a) o m c Tr We <'c ite J 1.0 -0 4., E 0 a_ E RH— - V 0 ' n hmus

%) Sc ix

d tae tr n 20 an Va ma r han ite e .4Z., t u

0 %

N.... 3 re Afte

aq ,..1 3- ( 4 mo 0. Op Kamac ( Ci 3 1 ites.

le

b d ix

ia hondr tr

ic r %)

ar fine f c % t o

ns 20 v ma o trop n ly de 5 io t < t n ue ly es

n ( iso ia p lass; bse ic ha aq v d les ina nce t a ty g ,..9.. r inor lin t harp t m e0, de an ite n da te O s h op m n n Lo N do

ry 'le

imary O co r bu hondru c Pre p Ve mean monoc Clear a Tae very

Grea c:5 (NJ Abse A CV differen Muc ing

d, h Qa) les is ine u

O ra C) dru ing n ...,o t ue ho & fine-g dis 2 o--o (.. 1 c aq LO (v, .,_CO No op All for ia ier

r it a 8 Cr ldsp le t) b fe ls

ten ne ra Ta n dary ine ene n oxe r ox m r Ni co eco d py fide f s l o t imum an Ca py Ca f su ine t t t o men low- n max liv n f ( te ten te ix lop ls n n f o o

n tr

o re co co tate r ity n tu i co deve

inera lass f ma te f l s ne N ns g o m e o ra e io ll tex it tu llic lk wa ree s ta lk carbo era o neous Bu

Bu Me Ov Texture Ig Deg Averag Struc Homog mp 10. co [ The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

The ratio of low-Ca monoclinic pyroxene to orthorhombic pyroxene correlates with progressive recrystallization of a chondrite. The monoclinic state of pyroxene is the natural product of the quenching necessary to produce chondrules, and orthorhombic pyroxene may represent the inversion of the metastable monoclinic state under conditions of sustained high temperature metamorphism (Van Schmus & Wood, 1967). Feldspar Only the well-recrystallized chondrites contain feldspar grains readily visible in thin section. This feldspar is the result of the metamorphic reconstitution of primary glass or microcrystalline material in more primitive chondrites (Van Schmus & Wood, 1967). Igneous glass Glass is found in some chondrules of unmetamorphosed and little-metamorphosed chondrites. This primary glass is evidence of the quenched state of these chondrules and is absent from chondrules in more recrystallized chondrites (Van Schmus & Wood, 1967). Metallic minerals Unmetamorphosed chondrites appear to contain only kamacite (4-7%Ni), which seems to indicate that taenite (30-55%Ni) is a secondary, metamorphic product. This distinction is not definitive and may only be a relative criterion (Van Schmus & Wood, 1967). Sulphide minerals Unmetamorphosed chondrites contain Ni-rich sulphide minerals, e.g. troilite, with 1 to 3% Ni, which are out of equilibrium with the kamacite that is also present. The stable assemblages, e.g. kamacite-taenite-troilite, are present in metamorphosed chondrites (Van Schmus & Wood, 1967). and 8. Textures Metamorphism can cause a coarsening and homogenisation of textures. Unmetamorphosed chondrites contain sharply delineated chondrules embedded in an opaque matrix. In highly metamorphosed chondrites, the matrix has clearly recrystallised and merged with the chondrules, resulting in most of them being barely recognisable (Van Schmus & Wood, 1967). 9 and 10. Contents of C and H 20

48 The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

Carbon and water are driven out of chondrites if high enough temperatures were reached, and the system was open (Van Schmus & Wood, 1967). The specific characterisitics for the 6 petrological types is shown in tables 9 and 10.

Wasson (1974) shows a list of petrological indicators of shock in meteorites. Very few of these indicators were recognized in the original investigation of Merweville and thus requires a more detailed study of shock in the future. Initial studies do not show signs of a highly shocked state.

Table 9 Characteristics of chondrite types to classify metamorphic stages (Glass, 1982)

Type Characteristics 1 applies only to the carbonaceous chondrites and is equivalent to Wiik's Type 1. These are apparently unmetamorphosed, like Type 2 chondrites, but do not contain chondrules.

2 sharply defined chondrules; glass present; minerals not in equilibrium (unequilibrated) Not metamorphosed.

3 chondrules well defined; glass; silicate not in equilibrium; metal and troilite in equilibrium. Somewhat metamorphosed.

4 chondrule boundaries slightly blurred; glass very rare; silicates close to equilibrium.

5 chondrule boundaries blurred. No glass; silicates in equilibrium; microcrystalline feldspar produced by recrystallization (secondary)

6 chondrules rare, almost absent; no glass; secondary feldspar visible. Most highly metamorphosed

3.6 Discussion 3.6.1 Geochemical Group Classification The XRF bulk rock and electron microprobe mineral composition data were used to obtain values for the chemical parameters most useful in describing the differences between groups of chondrites:

49 The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

Table 10 Ranges of parameters employed to classify chondrites (Van Schmus & Wood, 1967).

Group symbol Fe'/Fe Fe/SiO2 % Fa SiO,/MgO E 0.80 ± 0.10 0.77 ± 0.30 0 1.90 ± 0.15 H 0.63 ± 0.07 0.77 ± 0.07 18 ± 2 1.55 ± 0.05 L 0.33 ± 0.07 0.55 ± 0.05 24 ± 2 1.59 ± 0.05 LL 0.08 ± 0.07 0.49 ± 0.03 29 ± 2 1.58 ± 0.05 C 0.77 ± 0.07 1.42 ± 0.05 MU: 0.26 0.596 23.3-30.7 1.575 MW: 0.092 0.4347 1.6068 MS: 0.3653 1.6368

MU: Merweville unweathered results MW: Merweville weathered results MS: Merweville silicates only fraction results

The ratio by weight of total Fe to SiO 2 (Fe/ SiO2) in the bulk analysis. The value of the unweathered Merweville sample fits well into the range of the L-chondrites. L-chondrites are 0.55 ± 0.05. The weathered fraction is closest to the LL-group, where 0.49 ± 0.03 are the limits of this group. The value of 0.43 does not exactly fit in but it is the closest to it.

The SiO2/MgO weight ratio in the bulk analysis. The ranges for the values of the SiO,/MgO overlap in the L, LL and H groups. The value of 1.58 for the unweathered fraction fit the closest to the LL-group (1.58 ± 0.05) but it also still fits in with the L-group (1.59 ± 0.05) and H-group (1.55 ± 0.05). The weathered fraction could fit into the L and LL group. The percentage fayalite of the constituent olivine.

50 The Classification of Menveville, A New Chondrite Meteorite Found in South Africa

Most olivines analysed in Merweville had and average value of 23-31% fayalite. This falls within the 22-26% Fa range for L chondrites (24 ± 2). The values for the H and LL-chondrite groups are 18 ± 2 and 29 ± 2 respectively. Less than 10% of the olivines analysed had 30% Fa. This indicates that the value of this ratio is close to LL but still L.

• The ratio of metallic Fe to total (Fe'/Fe) The metallic iron was determined taking into account a few assumptions (see chapter 3.5). This was deemed necessary seeing that the preparation of the samples and XRF analysis did not include a specific way to determine the Fe° apart from the Fe' in the sample and only the total iron available. The result was that the ratio of metallic Fe to total (Fe'/Fe) values for the unweathered sample fit in the range of L chondrites which is 0.33 ± 0.07, and the weathered sample fit in the range of 0.08 ± 0.07 for LL chondrites. This strengthens the classification of Merweville as an L-chondrite. The LL match for the weathered sample does not come as a surprise seeing that the metallic iron content dropped from 5.599 to 2.013 wt% in the weathered sample and could be due to oxidation. The classification of Merweville as an L-chondrite is indicated by the above results. Now the petrological type will need to be established by using Van Schmus & Wood, (1967). The criteria are shown in table 8.

3.6.2 Petrological Type Classification It is necessary to explain the criteria for the petrological type classification to see what range of metamorphism Merweville has undergone (see Table 8 and 9 for details). First the homogeneity of olivine and pyroxene composition had to be determined. The standard deviations for the low-calcium pyroxenes and olivines are above 5% mean deviation. (En70.1-79.0 (almost 9% variation) and Fo 69.3- 76.7 (almost 7% variation)). Thus the low calcium pyroxenes fit into the type 2-3 group and of the clinopyroxenes a few fit into the 2-3 group. See table 6.2 in the appendix for standard deviations. Second, the structural state of low-Ca pyroxene had to be determined. It is mostly orthopyroxene, with Ca0

51 The Classification of Merweville. A New Chondrite Meteorite Found in South Africa had to be established, but no primary or secondary feldspar was optically observed in the investigation of the meteorite. No igneous glass was observed in this meteorite during the investigation. Merweville has very little taenite, which usually has the most Ni of the metallic minerals. Thus it falls into the petrological type range from 3-6.

In this case the only sulphide mineral observed and analysed was troilite. The average Ni content of the troilite is well below 0.5 wt%. On the basis of this, the meteorite falls into the petrologic type 3-6 grouping. The chondrules are readily to poorly defined, and are not sharply defined. This suggests that the petrological type is 5-6. The texture of the matrix in this meteorite merged with the chondrules, rendering them poorly recognisable. It would fall into the recrystallised matrix in the range of group 5-6.

Noting that most of the criteria above fall into the type 5-6 group, it is necessary, however, to state that this scheme is not without uncertainties. Some of the above criteria depend on the relative observations of each researcher and his or her opinion, such as the sharpness of chondrules for example. This specific criterion is the only one in the table that would make it necessary to differentiate between Type 5-6. The degree of development of secondary feldspar would also help to determine if the meteorite falls into Type 4-5 or 6, but in this case the secondary feldspar is absent. Thus in my estimation, the chondrules in this meteorite are of the Type 5 (readily delineated) and that would imply that Merweville should be classified as an L5 chondrite. Wasson, (1974), showed the distribution of chondritic falls among the petrological types and the most common of chondrite types were in the L6 group.

3.6.3 Geochemical Ratio Classification In Figures 35 and 36 the XRF bulk analyses of Merweville are compared with the chondrite bulk compositions of Von Michaelis et al. (1969) which was also used, and referred to in Wasson 1974. Von Michaelis et al. (1969) assessed the precision and accuracy of their analytical data and considered three aspects such as (i) precision (reproducibility) as based on replicate determination of each element they

52 i i ► ► /S /S Mg Mg

s s •• @) i v i v "0 it ' cl) di 0 0. /S l/S a)'-'0 iir A ts ,, Mn

=3 cdan- 2 0 0 CI) CA cs, = . GI) oo

= = = = 43 0 0 o 0 222.2 0 0 O o a4,21'`u")(11`1g O ❑ r-- 30 0 ► <, ► 0 E] ....3 c--- 0 44') 0 If) 0 O o O N v■.I 1.-.1 C.) C. O Oo q O 6 ci c; c> 6 G c) Ad/Si Mn/Si

N

1-1

► ► ► O

O I

/S in Mg

a

s 0CD 4) ...= iZ,N r.n -0 til 43 0

0 /Si v 43-C iri 00

r'S' 2 Fe 0 0 0 cn Ch VI Z ..61 0 0 0 Cla) tl) 0 (1.)..O.) (1) O 00 • C• C. M•VOFF = 0 "0"0.13":) > > > -c) = = =0 43 0 0.3 O O 0 0 0 O 0 043c) 4.3034). 0 A, ..a.. 0 t. 4 0 p. 0 0 O 0 oo ■0 ,:t• (-1 ,--■ 0 C> 0 o O C). vl O O. <6 6 c:5 6 N Ca/Si Fe/Si ► aC.).T. 2C.).1z y C.)2=2. a) a.) O

0 • 4 0 • 0 19 • CD a jai

C7 O

O 00 0

0 0 O 0 O K/Si

O O

rn0 0

❑ O (r) 00 0 0 C 0 0 0 00 0 0 0 00 O 0 00 4:) eN1 '1' ∎ O O O O -•• 0 0 0 O O 0 0 0 O O O O O O O O o O C I . I . 11 . Ci; O C 0 Ci; Ci; P/Si Ti/Si The Classification of Merweville. A New Chondrite Meteorite Found in South Africa determined (ii) the spread (dispersion) of lithophile element ratios and abundances in the different chondrite types and (iii) the possibility of systematic error. Seven (Ca, Al, Fe, Mn, Ti, K, P) elements were compared of an element(x)/Si vs Mg/Si to see how the results of Merweville compares with other chondrites (see Figs. 35 and 36) The ratios that compared the most favourably were Ca/Si, Al/Si, Mn/Si, Ti/Si and P/Si. The K/Si and Fe/Si also show that the analyses still fit in with the L-chondrites rather than the E, C, H chondrites, although not that convincingly.

3.6.4 Effects of weathering The unweathered Merweville sample is hereby classified as an L5 chondrite .The weathered sample is similar but with values closer to LL5 than the unweathered sample. Merwevillle is highly weathered in certain parts of the sample. Therefore, it is necessary to give separate results for the weathered and unweathered fractions of the meteorite. The XRF results showed that the unweathered Merweville is chemically different from the weathered sample of Merweville. The weathered section has 4% more Si02, ± 5% less FeO, ± 2% more MgO, ± 3% less A1 203, 1% less NiO, while the other elements analysed remained more or less the same (Table 6). The higher SiO 2 value for the weathered fraction could be due to more resistant SiO 2 staying behind in the sample. The lower FeO and NiO in the weathered sample may be due to these elements leaching out of the meteorite because they are mobile elements. The MgO should be a very mobile element to leach out but there was 2% more MgO in the weathered sample than in the unweathered sample. The Na,O was found to be lower than the level of detection and may have been completely leached, thus subsequently no percentages to compare.. Some of the changes could be due to the effect oxidation has had on the sample, e.g the breakdown of FeO and the consequent reduction of FeO in the weathered sample. References to the effects of weathering on meteorites can be found in Stelzner et al (1999), Wentworth et al (1999), Welten (1999), Bland et al (1997), Keller et al (1997) and Bell (1997).

53 The Classification of Merweville, A New Chondrite Meteorite Found in South Africa

3.7 Conclusions This dealt with the classification of a new South African chondrite meteorite. The meteorite was named Merweville because the town Merweville in the Western Cape was the closest to where it was found Merweville was classified on the basis of petrography, scanning electron microscopy, XRF, and INAA. The hand sample was quite weathered in certain areas, resulting in loss of FeO, A1203, and NiO relative to the unweathered fraction. Merweville is classified as an L5 chondrite, using the classification scheme of Van Schmus and Wood (1967). The majority of the elements analysed compare very well with the L-chondrite data of Michaelis et al (1969). This group is one of the most common groups of meteorites (see chapter 1). Merweville is a new addition to meteorites found and classified in South Africa, one of very few additions to the South African meteorite inventory for at least two decades.

54 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

CHAPTER 4 PLANETARY SCIENCE AND MUSEUM AWARENESS SURVEY FOR SOUTH AFRICAN FINAL YEAR SCHOOL STUDENTS AND FIRST-YEAR UNIVERSITY STUDENTS

Abstract

In this inquiry the intention was to determine the level of literacy and interest of Grade 11 and 12 pupils and first year university students in the fields of planetary sciences, meteoritics and associated subjects. Objectives were as follows: a) to establish whether the students were taught these subjects effectively at school; b) to determine the extent to which their interest in planetary sciences was stimulated; c) to determine how often young people visit museums; d) to establish the possible reasons for infrequent visits, if such a trend was found; e) to describe the patterns of planetary science literacy with respect to selected demographic and other student background variables; f) to ascertain which student background variables appear to have the most influence in determining planetary science literacy and awareness; g) to encourage students to make suggestions to improve museum access and displays, perhaps motivating their future interest and visits; and h) to ascertain whether South African students are aware of major scientific discoveries, such as the

1996 proposed Mars microfossil findings, the Mars Pathfinder mission (1997) and the Lunar

Prospector (1998).

Students in Johannesburg and Cape Town were chosen to represent different societal sectors, including school students from disadvantaged (Group 1) and advantaged (Group 2) communities, as well as university students, where literacy levels and awareness of science and planetary sciences should be higher. Most students queried (67%) responded that at least some aspects of planetary science had been taught to them at school. However Group 2 schools responded

55 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students on average 20% better than Group 1 to basic knowledge-based planetary science and meteorite- related questions.

The Group 1 students scored the poorest in the planetary science and meteorite-related questions but indicated a high interest in these subjects. This indicates that student interest in the subject of planetary science was not met by instructional efforts. Only 20% of all responding students indicated that they visit museums. The students gave many reasons for not visiting museums, such as lack of funds, time, transport, poor advertising efforts from museums, and a general lack of interaction between schools and museums. These students need help more urgently, to restore national literacy and awareness, hopefully to match international standards.

It was established that university students are not necessarily more aware and scientifically literate than school students. Only 56% of the all the students indicated interest in improving museums. Students from the Group 2 schools were the most aware of major scientific discoveries such as the recently proposed Mars microfossil findings, and outperformed even their older colleagues at university.

I believe that a well displayed, well-advertised science museum would contribute to the awareness and literacy to improve the science of our future adults. Smaller science centres and mobile science education units would also help in areas that are too far away from the major centres.

4.1 Introduction

This study will try to paint a broader picture of the situation of the South African education system in terms of planetary science awareness, compared to other countries in the world. The study shows the unhealthy state of South African science education and particularly Earth science education and basic planetary science education. As discussed below studies have shown that South

56 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Africa's international competitiveness in business is unhealthy, according to surveys and research done by reputable organisations. These studies show the small numbers of scientists and engineers in South Africa compared to major world competitors. This seriously jeopardizes economic prosperity in South Africa. Economic prosperity cannot be successful without strong science, engineering and technological foundations and investment in these fields. This study shows the importance of museums and/or science centres, and how poorly they are visited by South African students and school pupils, and what recommendations are made to help rectify this problem. The first goal of this study is to document this problem, by compiling survey data.

4.2 Methods

Grade 11 and 12 school students from formerly disadvantaged (Group #1) and

advantaged (Group #2) communities were compared with each other and with first year university science students, also from both advantaged (Group #3) and disadvantaged (Group #4) backgrounds, to determine what differences, if any, there are between the different Groups. We selected South

African first-year chemistry and physics classes as samples for university science students, noting that most students studying the other sciences (earth sciences, biological sciences, medical sciences, engineering etc.) study chemistry and/or physics as'a prerequisite. The student populations sampled for this inquiry are shown in Table 11. Of the schools used in this study two of the four schools

(Hoerskool Linden and RAUCALL) were among the 1998 list of top schools in South Africa. The first selected group (advantaged) belongs to the Group 2 schools and the second to the Group 1 schools (Sunday Times, 1998).

57 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Table 11 The Groups used in this inquiry, the population size and type of institution

Name of Type of Type of City Socio-Political Education level Population Institution Institution Program background sampled size RAUCALL School (G1) ADP* JHB disadvantaged Grade 11& 12 75 PROTEC School (G1) ADP* CT disadvantaged Grade 11&12 57 Vorentoe School (G2) MC*** JHB advantaged Grade 12 81 Linden School (G2) MC*** JHB advantaged Grade 12 67 RAU University AU** JHB advantaged Chemistry 1A 162 UCT University ADP* CT disadvantaged Physics 1 89

ADP* Academic Development Programme

AU** Academic University

MC*** Model C School

A questionnairewas prepared consisting of 20 questions based on varied concepts (Table 12).

In order to maintain the students' interest and get 100% feedback from as many participants as possible, a sufficiently condensed questionnaire (one A4 page) was constructed to avoid lost or overlooked pages. There was a risk of losing on feedback quality (questions left unanswered because the student found the questionnaire to long or complicated). The brevity of the questionnaire hopefully severely limits this danger. Responses were generalised into positive feedback and negative feedback because simple yes and no answers do not apply to all the questions.

Table 12 shows a summary of (a) the type of information that was requested from the students, (b) the reasons for asking the questions, (c) the average correct/positive responses for the different Groups, and (d) the most typical incorrect/negative answers that were received from the

20 questions. Table 13 shows all the individual percentages.

58

Table 1 2. Type of information used in inq u iry, reason and typical incorrect responses

% Pos itive Incorrect answers O Ur %- <4 n QTy pe of info probed Reason for question C Most ty pica l misconceptions 4 < < < co ••••• ..- > >

CO coi ' I coZinzo_Ha_5 %— L0 r 1 CO co .= i) To E ip _c _E c_c ...C, ca) 'Tr .,... CU a)0 - C .-- co = U) a) RI U) Q ca CD a)C c a) m a > CO c=039_ N a) = C co C 0E (13 (ri CD -0.- `'' >, u) CO 4- 0_ 0 CO(° ._ 0 > Ca) c ,.. -0• „ al n CO cf) a) aso CD) a) 0 a) C XCI- 0 U - , - - ^ ,,, • .a) '_E . •S 0JaHE 5, c..) -. 5 a) c u,a)..-(,)-.-,_ ur in -0 2 o us 0 coc a) 8 a's CO CO 1°- cc. U a) ui o) „... = _ - , • CCO-.0 . > - -c) CV N. c) CO 01 CV N- _C 0 CV '."' - Tz :.=' -c - -V-) -cw.- ...... To .... - (1) a_ 2 w 2 (T.) a) co (c) C Cn a) c o E o C c N co Q (13 C CO = 0 CO 06> c 0 '' C M „, o a)0 a) c N ' co U c,_ co7- a)a •- c• ts - -° - 0 CV .- a) 6 E 6 Co o c.) 2 - a) a) co c a) a) _ as ...,.,80- a' cn 5 u) E os _c ci) (c co a) c (,) a) u) cr, 0 „, _ , ) L = =Ta E c - -CC ° 0- en CO CO .21 U) 0) 2 fa_0bI . - - • N- 4i.5 cr c ca. c 0) Ca a3 CL in 0 0 2 0 Ca a) u) as 0) 4- o a) a) ,5 2 (33g. S c_.) a) a) •°) 0 0) 0 a) o a o_ , °- a) *- a) a) 5 ',7-: - - ) ) . w u) 0 2 E ° Lo a) 111 ..- ;-.=E ' '4=. - -- ..- a) - 0EC - • -i- 4- 5 c ■ a) as a) --,coc co ,_ = n „,... ,. ,, >•. -; = 1: o 0 eL -.., a, 1 3 -) ) ) , >... ci_=- _c -. u) 2 „ LC) 'cr CDCVCO'Cr 0) CDCO N- COr 0 LOCOL() CO .,-CICDr c -c 'V 't 0 c° ( as cs (D ,_ 2 ui a T.)a)..... ELEcoo = CO a) = 6 ,-= m 4-• - oc u) = , c , co ay •- ) - , • 0.. ,-o E= D) °c cl a,1_ it):.--, or_ - w _c -) 1 et -t Ds a) 0cr) „._ U) vo al 8 o_ "a) = o_ 0 11 CD 8 c ,2 E a) c (,) ) - V, a),_ ,_ c3, _>, (D c _ 'V' CVs - c 4, ,,, u)u) a) Jo in M D ° c 0c >, ,-0) c cn .r_. CT m2 c c vi3 - o -- s.. - - _ - COCV - 73 .0 07cCD_cCri

-c- _ • c) (..)_cc= 73 7 0 57, To _c c. . - >, -c- 1.0 'Cr•,- ,, .._. N.. -t g ti co 4- -cE(7:,-.-0"<>„ 41 •-• n, 03 c uc 2 as5 co c - •-• u, ' c a) E = us .-`-2-c C U)6" a) (13 2 0o_,. co 0 (I) ° o 0_ 0 , 0 o E a) a.) „?... o _.a) E a3 a) ( ` a) = , z L ) , - . 0 2o_Ne a :'-' a)D - u) 0) .-- To 0 - = .c)2 -- 0 -c cs- -0 .- . 73 (,) a) =•ao CRS u) a) , C , a) 2 6 g 2 .- - c u) .-- c in1 0 C a) co_co o .., Ems' (7) -0_0 c (pus 7 0 ,--a) c ) U- ,_ o c 0 0 '- E - o ) - 0) , , . - kiF.,.15 0a)

_,0cv _oa) TD - --_c tiai ) 0-•-•c 5 . -1 ; . - . -c cr, C) - L' - a.) a) '-' 0" a) as -^- >-. i- oc co 1- a) .0 a) ,- 05 c > co a) = u) (7).- CO ._ ,-E - 2 -.-a)=_cc CD a) D o 0 :„ o_I a) c To ..._a) - 2 a)›. -0 - .= a., 0 D a) o . 0 a) >, a >, >-. 2 > E as a)1),_w g E (D w CO C 0 E ,,, '•-• > c .: s -u) , sc ) a) C.)0020 4- CV CV 7 _ 2 . c• .%- Nt N Lo r ...... -.- -t -0 Ili -.-' - -- - U) al c _c ,.... a) >••Fzi c• u) o— 0 5 (.1) Ca 0C a) =.__c i= c „.... - „,u) ,- 0a) cr) —0 a) 10 al 2 w c E--- a) ,- o c o 0 -C a. a) E U) 0 (,) .-= o a) 7.- >, •-• = - :, .c - - , - 44- o_c co E 0- •- _c

(19 ' a)c 2 >, 7 • C - :&., . _._ - .E 2 a) 0_ s. a., a= tc E a" 0 c ,( ° 2,_ cr) ca_ 1 5 ° ..7. L(7) „; _c ,_ -co.... s- 1 i -. ) -.- - - - _c CV 01 CO cp r CO ID -0 - 'c' - p 1 TD .— _c '- in ..2 w 0 o t-, ,_ a) 5 in = , 0 co 0 c w , ..... Ea) a) ( c a) a) o_ o a) _ccu Cl) CO CD U) ,,, 0 _ I 3 P_13 - -• U) ..) - _ ) ) . , f: 0 c) -.€S a) 4 _c •S < (-- C•-• 0, a) co 5

6 4, ' = (,)

._ 2 cz - -0 „._ CD 1 co 10 CV - .= . -_,, - . _c '0 13 I EMcDOEOTDSECDU)coU)o C) 'a— -.- D 2 ..?.. - .0 Ca ., es a a) 0 u) 0 " cu cn 0 U) cn a) o E W c = E o 2 co c o >, o..= c 0 x c71 Cr) in a (-) cmww_cc 0 Ea 2 = al c7) c ..- c)-4 = 0 a) CD n = E_ Ea,a) a) u) as a) > so "' 3 o ) ) - - ui-- oa) E-,- a)(n V) 0)CO "-r--; - • ,, (-- a) -c-• -.- 2 a) o c tn (1) 0 0- C a.) „, E (1) - ' " co _., (,) a) g , in- m --- •.- 5 (7)=%!..- - 2 . co0_73 .,;. L 0 (-) =E ctsxc a) (0 N CD CV . '4 -C . -0 - et a— -'a' _ (,) 0 c ui a) u) t) C 0 co c co 8 >, a) a) c) 7., 0 a.) E a) a) 0 t) 0 ECOu) E co a-) = .=, co C •-..... in = E a, .c - >a) 1, u) c, Fis --• --. _ - ) TD_(1) ( .z., 2 13 (f) - w>a) 0 >'' ,,, as „.." _c o c co .• I--In a) .(.)..:6-, = co 2 :.- H _c _c (N a) 0) CO C) 7) W _,- 4- N- 13 : IA a— 4.- - c - 0 o c a 8 a) ci a) >, a) ICI) (") :.=., 0c0 E (T3 8o = 1.- a) a.) E c u) --„. > (- 0 _C ,„ 2 a) a) 0 a) ci > 0- °- :- c 7, ". - ' c ... 20 C usco.- o..... 0... .- a) cr) 0 (,) -..= a 0 u) m a) 2 Ds E c = .-- 8 0) c Di (3) a) L), 7 c n -- - .- ) o_ ) - 0 0co-2 0 - - z -c "cT, (0 CD N- N ..-. .- = _c a • 2 .> - ,-o -C ' LE CO a— _ ,_ o a C o c w a) (0 CU a) 0 co E 0 C c .- CL) 0 c a) 0 0 0 CD a) - c s a u) co 3 )

a.) ' - _c 4- 0 a) E EL) c a >u)°- ( = a) a) .- c 0 I ) ) coc

_ ca2 -_- CO C r (0 Z "c -C - . -0 _= ia)a)4,,- -- N. a— - -- 11) §-!.,,,, ...=. 8 ( w IT) co 0 E 0 (I) cs_ o 0 C 0 ui a, c >-. (0 = 0 c › , 0 CU E a) a 0 0 -- 0) E a) 0 a) c a a) cn (7) >:, -d U) a ,, CO a) w a) . s r a - ) ) , - ) ) c

(/)w ' - 0 co a) 5 < c) c >, ._, a) ui co w 6 -.-. = co ts_ as-,,co >- cn CO CV z crsaso_ • - N- 01 CD CD CO CV . . . - - .- -.9 •-• 00 0) a— 00 o _c 0 E u, c •- U.- C a) 0 vi . = w 0,- c co - ,., o 0 c D ul 'Ct (0 " 00c00 a) (1) - u)6' U) 0 CO 0- (7.1 k 0 -.-. a) c a C 0 CO 2 c 03 a) a) cn u)7 FA (7) 0 c_) .- c a) „, co o c 0- E .S -- u • -, o)$.=. if) a Li- A) _c _c - ,..., CO 1 -.- a)c_2 . - 4-. .0 c c 0 a) = .....C0 (1) 2 (1) 0 ''' 03 F., L u) oaccsa) ,, 0 c ozsc s ) " 's - °E Eso

a)u)m

.••• cco . k o '- vu w ..= " 0 C 8 fg8_ cn 0 5.26 . 5 cncn • . -0 _c N CO CO r 00 •-- .- .- 7 . < - .a) _ •-d "a5 0 C •-• •-• --- w CO o E a) a) 2 c o u) 2 a) ,_ as 0 co 0 a) o .- ? CD a) 2 U) CD 0 (n oa) -c c CO C i.7.) >, (1) 6 -0 0 (0 _a co c = u) ,a2 a) ,„ ■ I - - =

' * tO co m E a) - (7) ,0 0 ° ea c 1-: E t as as c ca cn w 0 t- CO s >, ,,,, o ., • •

Table 13. Type of information used in inq u iry, reason and typical incorrect responses

Question RAUCALL PROTEC RAU UCT Vorentoe Linden Overall Group1 Group2 Univers ities Numbers Schoo l (01) School ( G1 University University School (G2) School (G2) Average Average Average Average I 1 41 67 70 76 68 77 67 54 73 73 2 67 72 82 79 9787 81 70 92 8 1 3 52 44 65 72 8 1 69 64 48 75 69 4 47 61 83 62 95 84 72 54 90 73 535 44 70 52 82 47 55 4065 6 1 6 40 44 84 62 68 63 60 42 66 73 736 20 74 6346 63 5028 55 69 8 33 14 73 6044 54 46 24 49 67 98 12 23 3515 7 17 10 1 1 29 10 27 2179 6570 80 5724 75 72 11 33 25 89 62 7981 62 29 80 76 12 11 16 25 21 3014 20 14 22 23 13 596 0 6 1 43 525 956 60 56 52 14 5 7 3018 1219 15 6 1 624 15 27 30 45 55 8 1 76 52 29 • 7950 16 67 53 55 56 78 6462 6071 56 17 72 93 6281 82 70 77 83 76 72 18 67 9081 83 75 6176 79 68 8 2 19 49 70 6763 6361 62 60 62 65 20 64 9 1 76 79 72 50 7278 61 78

RAUCALL PROTEC RAU UCT Vorentoe Lin den Group1 Group2Un ivers ities Average 48 5377 65 85 7 051 7 871 Q2-6 Group1 Group2Un iversities Average 26 17 6256 44 5 122 4859 Q7-10 Group1Group 2 Universities Average 37 44 454 1 44 4 1 41 43 45 Q12-14+17 Group1 Group2 Un iversities Average 6084 75 75 705 77 2 64 75 Q18-20 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

4.3 Results & Discussion

In this section the results from the questions are grouped topically and are then discussed using graphs to depict the comparative results of related questions. Misconceptions (Table 12) refer to the answer being inadequately answered because the student did not comprehend the question in the context in which it was intended. Figure 37 shows the average for all 20 questions asked to the students. The overall response seems rather confusing as the averages for all the Groups and universities are scattered.

The largest relative difference in response to a specific question for different Groups was

61% for Question 11 (do students think meteorite research is done in South Africa ? ). Here Group

1 and Group 2 scored 29% and 80%, respectively. The smallest difference in response to a specific question was 5%, for Question 19 (are student's interested in planetary science ? ) where the lowest and highest average was 60 and 65%, respectively. The poorest response per question was Question

14 (have the students seen museum exhibits containing meteorites ? ) where Group 1 scored 6 % and the overall average was better at 15%. Some of_the other very low overall scores were for Question

9 (where is the asteroid belt found in our solar system ? ) and Question 12 (do students visit museums ? ), where the scores were 17% and 20%, respectively. The highest response per question was Question 2 (how many planets are there in our solar system ? ) where Group 2 scored 92% and the overall average was 81%. Thus the student's major negative feedback came from knowing where the asteroid belt is, visiting museums and having seen museum displays with meteorite exhibits.

4.3.1 Basic planetary science questions (q. 2-6)

The overall results showed that the Group 2 pupils, with a average of 77% for questions

59 •

Average for all 20 questions

100

90

80

co 70

60

50

40

co 30

CC 20

10 RAU

0 t- f t i I - t 4f111 - 1 -1- 11i --0— UCT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group 1 Question numbers Group2

Figure 37 Graph depicting the average percentage correct response for all 20 questions. Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

2-6, were most knowledgeable about the basic planetary science questions (q2-6), and that Group

1 pupils with 51% average could correctly answer the least (Figure 38). The answer required for

Question 2 (name the number of planets in our solar system ? ) was a number, they either knew it or not. As shown earlier, the students did the best in answering this question, especially Group 1 with 70% positive response.

The planets were given various incorrect names, such as "Murcurious" for Mercury, "Mass" for Mars, "Satan" and "Sutar" for Saturn, "Uranius" for Uranus, "Vinus" for Venus, "Jipeter" for

Jupiter, etc. This type of incorrect spelling was more common from the Group 1 pupils. The students also switched the correct order of the planets in different combinations. The sun and moon were also included as planets.

There was a 17% difference between the knowledge of the students regarding the closest and furthest planet from the sun. Most students were able to acknowledge that Pluto or Neptune were the furthest planet from the sun. The Group 2 schools with 78% achieved much better than their other Group 1 counterparts.

Interpretation of the results of the basic-planetary science questions (q. 2-6)

Second-language English speakers may have had greater difficulty with the specific names, possibly accounting for the frequent spelling errors. It seems that less emphasis in education is put on Mercury being the closest and knowing which planet/planets have rings around them.

4.3.2 Meteorite-related questions (q. 7-10)

All the students regarded the meteorite-related questions as difficult and more specialized

60

100 90

t 80

rrec 70

Co Group 1 schools

t 60 50 -0--Group 2 schools Universities Percen 40

e 30 20 Averag 10 0 2 3 4 5 6 Question numbers

Figure 38 Graph showing % correct responses for basic planetary science questions (q2-6). Notice the large gap between group 1 and group 2 schools. Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

than the more basic planetary questions. Most of the incorrect answers for the meteorite-related questions were students saying that they don't know, instead of responding at all.

Only 50% of all the students knew that meteorites represent rocks which travel/drift through space (q.7). Of the 50% correct responses, many said that meteorites were rocks/parts of planets/ planetary debris or falling stars that landed/crashed/collided on/with Earth after they have traveled through the Earth's atmosphere. Some other ideas that were taken as correct were that a meteorite was anything from a shooting star, a piece of rock or pieces of planets falling on Earth from space.

Incorrect explanations of meteorites included: meteorites were instruments used to look at the night sky and that scientists invented them, that meteorites damage the ozone layer and that meteorites cause skin cancer. Some of the more correct explanations concerning the origin of meteorites (q8) were that they come from blown up/disintegrated planets/ bodies/ stars and comets from our galaxy. Others gave vague answers, for example that meteorites came from outer space, the sky, the heavens, the atmosphere, Saturn's rings, and some said even from Hell. Here the discontinuity between Group 1 schools and university students was very large (41%) (Figs. 39). A similar lag of 43% was evident again between Group 1 schools which responded with 24% and universities 67% (Table. 12).

Misconceptions regarding meteorites included incorrect ideas, such as: that all the meteorites would burn up in the Earth's atmosphere, or that the meteorites were burning fireballs when they fell on the ground and could start fires and melt objects. Some thought that meteorites are not dangerous because the ozone layer would stop them from entering the atmosphere. Some thus thought meteorites were dangerous, but for the wrong reasons. Other respondents said that meteorites can be dangerous to Earth, either by hitting individuals, aeroplanes or buildings, or if large enough could

61 80

70

60

50 4.-- Group 1 schools 40 D— Group 2 schools 30 Universities

20

10

0 7 8 9 10

Question numbers

Figure 39 Graph showing % correct responses for meteorite related questions (q7-10). The group 2 schools scored lower than the universities compared to their (group 2's) overall better results in the basic planetary science questions. Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students do even worse damage to the environment by obliterating everything on impact; they can also cause dust to form around the Earth, which could produce greenhouse effects, ice ages, or throw Earth out of orbit, etc. The remainder responded that meteorites could do no damage or do not fall often enough on Earth, to create a risk of damage. Additional ideas were that large meteorites do not occur often, in a human life span, to pose much of a threat to Earth. Thus, indirectly they responded correctly for short term risk of meteorite damage, but the common perception ignores the few billion years throughout Earth's history, where large falling meteorites definitely played a role and will keep on playing a role in Earth's future. In the meteorite-related questions (q7-10) the university students

(59%) correctly responded the highest and the Group 1 schools again the lowest with 22% (Figure

12).

Interpretation of the results of the meteorite-related questions (q. 7-10)

The students in the Group 1 schools were also obviously taught less factual information about meteorites than the Group 2 schools. This could be taken as a partial justification for presenting more substantive meteorite exhibits at museums around the country.

4.3.3 Museum-related questions (q. 12-14 and 17)

The museum-related questions (q12-14 and 17) showed that all the students had basically

the same ideas and habits concerning museums. There was no obvious difference between the schools and universities (Figure 40). There were various reasons why the students said they did not go to museums. Most stated lack of funds, time or transport, or were ignorant of the locations of museums near them. The remaining answers showed a complete lack of interest. Slightly more than half of the students gave reasons how museums could be improved. Very few had seen museum displays containing meteorites. The overall response to this section was very poor. Some perceptions

62 Group 1 schools —0—Group 2 schools —o— Universities

Figure 40 Graph showing % correct responses for museum related questions (q12-14 and 17) All the students, basically had the same museum habits and ideas concerning museums. Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students were that museums were only used for "old statue things". Although the response was poor (20% overall for students visiting museums), a large majority (77% overall) of students in Group 1 schools, Group 2 schools and of universities expressed interest in seeing museum displays of meteorites and other planetary science related exhibits.

Question 12 played a significant role in this study, because it directly shows that museums are visited very infrequently by the questioned Groups, and this does not enhance the prospect of finding support to set up museums exhibits. Only 56% of all the students had recommendations to improve on museums and museum accessibility.

Very few students (15%) had ever seen a museum exhibit on meteorites and/or other extraterrestrial material. Knowing how few times the students visited museums, it is understandable why these percentages were so low. There are also very few suitable meteorite and related museum exhibits in the country. Three quarters of all the students asked stated interest in seeing a museum display on meteorites.

Interpretation of the results of the museum-related questions (q. 12-14 and 17))

A possible reason for the lack of response to question 13 is that those students who gave suggestions to improve museums are also the ones who are the most interested in the possibility of going to museums, and who would visit museums if they had the chance. The remaining students who did not give any suggestions may not be interested in visiting museums at all, even if they had transport, money and good museums to visit. They may have found it pointless to answer questions on a subject that does not keep their interest in any case.

63 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

A few possible influences on the students' lack of museum habits are shown below. Possible reasons to the influences are given in the conclusion section.

that museums, in general, are boring (some are boring, but not all), although this opinion

may be an excuse for laziness and/or lack of interest;

a lack of funds and transport keep them from visiting museums;

too few museums to visit and/or that the museums are too remote from their audiences

especially those in previously disadvantaged communities;

the standard of South African museums;

too little advertising;

that museums do not keep the public involved with interactive programs, and

that schools do not make efforts to organize compulsory, fun excursions to museums.

The positive response by the students to want see meteorite exhibits, should be considered with the reasons why the students do not go to museums. This will have to be addressed and then resolved before setting up meteorite and planetary science displays at appropriate institutions.

4.3.4 Science and planetary science interest questions (q18-20)

Almost 80% of all participants said they were interested in science. The students did well in this answer but the question remains as to why almost 20% of university science students should report a lack of interest. The students also showed more interest in general science than in planetary sciences.

64 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Most Group 1 and university students (78% for both) were interested in science as a career or just as a hobby, but only 61% Group 2 school students were interested in those same endeavours.(Figure 41). Surprisingly, in the questions relating to the students' interest in science and planetary sciences (q18-20), the Group 1 schools scored very positively and the Group 2 schools less positive. This shows that the Group 1 students are still interested in science and planetary science, even though they scored poorly in the knowledge questions (Figure 41).

Protec (a Academic Development Program from Cape Town) scholars definitely showed more interest in science regarding their future career choices (Table. 13). Of first year chemistry and physics university students, only a few eventually make physics or chemistry their careers because the rest will go into other science combinations like geosciences, biology, engineering etc.

Unexpectedly, 22% seem to study science for various other non-scientific career paths (Figure 41).

Interpretation of results of the science and planetary science interest questions (q18-20)

Perhaps poor achievement in tests may have dampened their motivation or the students may have ulterior motives (they may not be studying science for science's sake but for a different non science profession) as to why they are studying science. Studying science is sometimes seen as a challenge even though the students were not completely interested in it from the start. Science may also be a way of diversifying the student's career prospects, by combining it with non-scientific subjects before or after the students study science. Many students also study science as an entry point into medicine or engineering.

65

t rrec Co

t —41—Group 1 schools 40 —0—Group 2 schools

Percen = —O— Universities e —

rag 20 _ -°- _ _ _ _ _ Ave 0 18 19 20

Question numbers

Figure 41 Graph showing % correct response for questions relating to interest in the sciences (q18-20). Universities average was highest, but not by far. The Group 2 schools were least interested in science as a career. Group 1 schools interest was high even though they scored low in earlier questions. Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

4.4.5 Miscellaneous Questions (ql, 11, 15 and 16)

The Group 1 school students' response to whether planetary sciences were being taught to them at school were 20% lower than the University students and Group 2 students (Figure 4.6). Interviews with teachers established that all the students in the country were taught the same curriculum and that the problem must be sought elsewhere. In all schools planetary sciences were only taught in the geography class in grade 9. It is compulsory in most schools to take geography up to grade 9, after which the students can start selecting their own subjects.

The question relating to meteorite research in South Africa showed that university science students, as well as Group 2 students had a much better idea about the existing possibilities for scientific research. In contrast to the Group 1 schools, the Group 2 schools responded well (Figure

42) in this question. Their better results shows that daily lives are vastly richer in information technology relatie to their counterparts in the disadvantaged communities. The Group 2 schools with 78% compared to 29% for Group 1 schools and 50% for the universities, acknowledged that the recent microfossil findings were in Mars rocks and not from the Earth, the Moon and the other planets (Figure 42).

Although there was only one question (about the Mars microfossils, q15) to determine the students awareness of current major scientific breakthroughs, it was still an indicator of the general lack of knowledge of a very important and well-reported scientific finding. Many more of the Group

2 schools knew about the Mars microfossil findings than the Group 1 schools and university students. The average was just over 60% for all students responding on the possibility of extraterrestrial life in the universe. The university students scored the lowest with 56% compared to 71% from Group 2 students.

66 response toquestion16.. the largegapbetweengroup1and2schoolsinquestions1115specifically,morecommon Figure 42.Graphshowing%correctresponseformiscellaneousquestions(ql,11,15and16).Notice

Average Percent Correct 40 60 70 80 20 30 50 10 - - - =— a Question numbers

_ _ - - a — —a— Universities 0 — G rou G roup2 pi Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Interpretation of the results for miscellaneous Questions (ql, 11, 15 and 16)

The difference for the much lower retention in Group 1 could be because the Group 1 students did not study the subject comprehensively or that the students did not recall what had been studied.

Another possibility for the poor retention of the Group 1 students might be that the students never fully understood what planetary sciences are.

The Group 1 school students were much less aware (Figure 42) of research in South Africa. I think the reason for this because the students have not been exposed to much "real" science and are consequently unaware of the research possibilities in South Africa. Especially in the poorer, more disadvantaged communities, where people do not have access to the interne ,or any equivalent source of information about these subjects in their every day lives.

It is difficult to explain why the Group 2 students knew more about the Mars microfossil findings than, for instance, the science university students who should have been more inclined to scientific awareness. It could be coincidental that the Group 2 schools were taught something at school about this finding whereas the university students were left to their own devises to become aware of the

Mars microfossil findings, and that they generally do not read current scientific reports.

I think university students are less influenced by non-facts than school pupils. I also think that

University students should be less subjective and/or influenced to such a subject if they are intent on pursuing a career where objectiveness is fundamental. School students, who have not yet made choices about following a scientific career, would be more easily influenced by the media

(television, films etc.) concerning other possible life in the universe. Again in this regard the Group

1 school students scored less probably because they have less access to media resources than their

67 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Group 2 counterparts. This lack of awareness of the Group 1 school compared to the Group 2 school may be attributed to their socio-economic background, which was discussed earlier.

4.4 Literature Study

This section is necessary to describe the context in which this study finds itself. Various previous research have given insight into our situation. Their findings will be able to add motivation and depth to this study.

Jakwerth et al. (1997) made comparisons of science literacy around the world, by using a wide range of data acquired from the TIMSS (Third International Mathematics and Science Study). The data comprised a large-scale international study comparing mathematics and science education in about 50 countries. The study involved an investigation of student achievement, official curricula, textbooks, teacher practices, and national educational systems based on representative random samples of students, teachers and national policy-makers in each participating country, including achievement test results. All students took the same test and the same methods were used to analyse textbooks in each country. The science achievement test included six areas with enough items to allow reliable "sub-test" comparisons: earth science, life science, physics, chemistry, and environmental issues and the nature of science.

South Africa was the only country from the African continent that featured in the 41 countries on the Earth Science Achievement comparison, but unfortunately was placed last on this list

(Jakwerth et al., 1997). In a similar comparison in competitiveness from the World Economic

Forum's Africa Competitiveness Report 1998, South Africa was only the seventh most competitive nation in Africa, after Mauritius, Tunisia, Botswana, Namibia, Morocco and Egypt (Financial Mail,

68 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

1998). In a more recent comparison done in Switzerland by the World Competitive Yearbook, South

Africa was rated only 42nd of 46 possible places in 1998, again the only country representing Africa, despite improving its rating by two places since 1997 (Beeld Newspaper, 1998). This indicates that achievement in Earth Science education in South Africa is not on a par with international standards, and this could be considered a motivation for South Africa's geoscience education to be upgraded.

Geoscience is very important for the South African economy, because the vital mineral exploration, mining and exportation of minerals depends on Earth Science. It is generally accepted that there is a shortage of scientists, engineers and technicians in South Africa. There is also a growing concern among member countries of the Organisation for Economic Co-operation and

Development; the serious shortages of scientists and engineers are due largely to the decline in the population of 15-19 year old's, which translates into noticeable reductions in the number of students in science and engineering (Organisation for Economic Co-operation and Development, 1991).

The UNESCO Statistical Yearbook (1993 and 1995) claims that scientists and engineers make a greater positive contribution towards national economies than their numbers would suggest.

Therefore it is useful to compare the numbers of such professionals in the South African economy

(per 1000 population) with the countries abroad with which our economy competes (see Table 14).

69 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Number of SE's per 1000 per country

Kenya Malaysia South Korea India South Africa

o' Brazil Australia UK Canada Japan 20 40 60 80 Number of SE's per 1000

Table 14 Number of scientists and engineers (SE's) per 1000 per country (UNESCO Statistical

Yearbook, 1993 and 1995).

Improving on planetary science awareness and knowledge may just change the scientific foundations of the South African community, but the lack of knowledge and/or interest in the subject could shed light on the underlying conditions.

With the beginning of direct exploration of the solar system, planetary science has been revived to become not only respectable, but also one of the active, forefront areas of research. How active can be gauged by the assessment, widely agreed on (as claimed by Hammond, 1974), that the rate of new discoveries and the rate of obsolescence of old ideas have never been so rapid as at present.

Investigators are now confronted with such an overwhelming array of new observations and theories that what amounts to a revolution in understanding the solar system is in progress (Hammond, 1974).

We can only barely imagine what the next generation will see in our reconnaissance of the galactic

70 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students neighbourhood. A case might be made that human destiny lies in exploring the galaxy and finding our roots, biologically and chemically, out among the stars (Marcy and Butler, 1998).

In this study, the Earth Sciences component was most relevant and especially knowledge of basic planetary sciences. This inquiry was done to establish the levels of planetary science knowledge and awareness in South Africa, but it also brought to our attention a more global perspective on our needs for better education. The South African education system should not only strive to have a more scientifically balanced aware community, but should also motivate students and adults to take a more active role in science.

The results of this study, combined with the information from the TIMSS will provide data to the South African Department of Education regarding the current situation of awareness of planetary science among students from most sectors of South African society. The aim is to motivate for a closer look at current school curricula, and perhaps consider possible improvements. This data indicates that interactive museum programs could help achieve these goals more easily.

Countries that are among the most technologically competitive in the world depend largely on the size and level of skills in the science and engineering work force (FRD, 1996). This work force then must compete nationally and internationally with high technology products and programmes.

High technology needs a strong scientific and technical foundation in society, and this includes planetary sciences. Scientific and technological careers in turn needs strong science and mathematics programmes in schools, and a large financial budget to make it prevail.

Laugksch (1996) set up a Test ofBasic Scientific Literacy (TBSL) to assess the scientific literacy of matriculants entering Universities andlechnikons in the Western Cape, South Africa. He found that the level of scientific literacy of students from different population Groups varied greatly, and

71 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students a clear hierarchy was evident with respect to all the variables examined. "White" and "Indian" students were most scientifically literate, followed by "Coloured" and thereafter by "African" students. This hierarchy was shown to be related to the school and home environment of students from different population Groups.

Overall, male students displayed statistically significantly higher levels of scientific literacy than female students did, as did university students compared to technikon students. In general, students registered for degrees or diplomas in engineering had the highest level of scientific literacy, followed by students in the natural sciences. Next were students in commerce and management, while students in the human sciences had the lowest level of scientific literacy. Engineering students were found to have a statistically significant higher proportion of parents with a science-related occupation than other students. They were also found to have parents who were more likely to exercise a 'science push' than parents of non-engineering students.

In general, levels of scientific literacy decreased with increasing age of students. The level of scientific literacy of students who included physical science in their subject combination at school was consistently higher than that of students who did not. It was also found that students taking only physical science possessed a better understanding and awareness of the three dimensions of scientific literacy i.e. the nature of science, science content knowledge and the impact of science and technology on society than students taking only biology. The effect of taking geography in senior years of high school was found to be similar, and not additive, to that of taking biology, suggesting that there is no obvious advantage to taking geography in addition to biology in terms of increasing students' level of scientific literacy. According to Laugksch (1996), only one third of matriculants entering universities and technikons in the Western Cape can, on the basis of the TBSL, be regarded

72 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students as scientifically literate. Based on the overall level of scientific literacy of students from different populations Groups, and given a number of assumptions, Laugksch speculated that the science education provided by the recent (before 1996) South African education system to "white" students may be regarded as reasonably acceptable, whereas that available to "African" and "Coloured" matriculants does not even reach the minimally acceptable levels.

There has always been a educational crisis called in every decade in America. Although the particulars vary from one education crisis to the next, the episodes are connected by common threads. Each has surged into public discourse on an unrelenting torrent of fear flowing from the educational research profession. Gregory Cizek (1997) has found 4000 articles of literature of the past 30 years in which scholars declared some sort of crisis in the schools (USA) but barely bothered to spell out what cataclysm was imminent. Each episode has also eaten away at public confidence in schools, which fell 38% from 1973 to 1996 in schools according to surveys by the National

Opinion Research Centre.

Most important, the crises all share a central logic. US economic & scientific dominance is on the verge of collapsing because the schools are not producing enough scientists, engineers and other technical skilled workers. The schools crisis thus jeopardize the nations ability to compete in the global economy and to raise US standards of living (Gibbs and Fox, 1999).

In most of the cases of educational fears in the USA the solutions were unfounded and led to even worse results. A consensus has begun to emerge among science education researchers, teachers and practicing scientists that schools should turn out scientifically literate citizens, not more candidates for the academic elite.

73 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Paul Dehart Hurd (1997) elaborates that there is plenty of time after high school for the scientists-to-be to learn the minute facts of science. He says what they need from schools is the higher-order thinking skills to distinguish evidence from assertions, science from folklore, credibility from incredibility, theory from dogma and opportunity from crises (Gibbs and Fox 1999).

This reflects poorly on our situation in South Africa. If the USA got worried about their results in TIMMS (Sweden's score, 559, USA score 480, South Africa's score 349, International standard score, 500) and they (USA) still outscored our students by far. Should South Africans not be much more worried about the situation here?

4.5 Discussion

Although this inquiry was not nearly as thorough as the TIMSS project or the TBSL data, the results support a motivation for improvement in the planetary and earth science components of the physical sciences curriculum at secondary schools. Most students in South Africa belong to the

Group 1 school community, At the majority of the typical Group 1 schools, standards should even be poorer than reported here, because the schools in our Group 1 sample were some of the better maintained schools with specific development programmes for disadvantaged communities. Thus,

I believe that Group 1 schools should be aided to reach internationally acceptable levels of both planetary science and science education, with emphasis on elevating the Group 1 schools more urgently.

According to this study, museums in South Africa seem to be visited on average by only 20% of all school pupils. All the students questioned resided in greater Johannesburg or Cape Town where some of the larger museums are located. Thus students in most other areas probably had a lesser chance to visit scientifically-orientated museums. More than 80% of school pupils, our future

74 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students adults, never go to museums. Museums will, in fact, also lose 80% of current revenue from all students. If museums could attract more of these visitors and thereby increase revenue by up to 80% from students alone, it would do much for the museums to improve themselves so that the students would keep coming back when they are adults.

Museums are not expensive compared to most other social events. The entrance fees to the

Transvaal Museum in Pretoria (a Natural History and Science Museum) are between R3.50 and R6 per person. The museums receive approximately 70% of their revenues from government subsidies; the remainder must be funded through visitors, donations or other sponsors. The Transvaal Museum received between 80,000-160,000 visitors annually during the last four years. There were fewer visitors to the museum in the years when the museum were being upgraded or renovated (Prinsloo,

1998). The Science and Technology Museum in Pretoria had 20,000-30,000 visitors in 1997 and their entrance fees were between R1.50 and R5.50. This museum is also more or less dependent on

70% subsidies from government (Hanow, 1998). MuseumAfrica in Johannesburg is more of a cultural, historic museum than a scientific or natural history museum but it does contain some science exhibits, including one focussed on geological sciences. This museum's entrance fees are between R1.00-R2.00. The number of visitors received in 1996 was 73,000 and 57,500 in 1997

(Huntley, 1998). MuseumAfrica, which is close to the centre of Johannesburg, seems to have a problem with how visitors perceive the safety of the area in which the Museum is situated. For whatever reasons, the number of visitors dropped between 1996 and 1997. Compared to this is the

Smithsonian museum of Natural History in Washington D.0 with more than one million visitors annually (McCoy, 1997).

75 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

Recently (May 2000) in a Chicago Museum a multi-million dollar display of a very large dinosaur was unveiled. This exhibit is an example of an emerging blockbuster mentality among museums that are trying to compete with movies, theme parks, and sports for family free time. Big projects mean big money, which often means corporate sponsors. "Museums about 20 years ago began to make themselves intellectually accessible to the public," said Edward Able Jr., president of the American Association of Museums. They moved away from static, dusty displays toward more entertaining, easier-to-understand fare, he said. The more entertaining approach — along with the robust US economy and an increase in popular interest in science — has contributed to a 50 percent increase in U.S. museum attendance over the past 10 years, Able said. The creators of the dinosaur exhibit sought to make it both fun and informative. (New Scientist, 2000).

All of the previously mentioned South African museums are worthwhile and some have superior displays in certain subjects, but they all need improvement and more interactions with the public. Most of these museums are situated in accessible, safe areas. The success of museums situated in cities depends on the different cities themselves. Museums can only be successful in cities if the cities are safe, have sufficient available parking space or reliable public transport routes and stops nearby. It should also be noted that most South Africans do not own their own cars. There are many museums of various kinds in our cities, mostly cultural-historical museums; there is a shortage of science and natural history museums (Prinsloo, 1998).

Students should also be encouraged not just to visit science or natural history museums but to give attention to the wide spectrum of museums so that the students have enough knowledge or background about all of them. This will enable the students to make up their minds about visiting museums.

76 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

The revision of the educational structure should be a combined effort from schools, students, museums, local or national governments and businesses. It seems there are a number of good museums in South Africa that are worthwhile to advertise and visit.

Motivation from students is necessary to justify a meteorite exhibit display, preferably in

Johannesburg. In the writers opinion this motivation is evident from the survey results. This may take time to become a reality, but any science centre that already attracts visitors in these areas, would also help, such as Hartebeeshoek Satellite Application station.

Johannesburg, the largest city in Southern Africa, needs a suitably large Natural History museum for all to visit. MuseumAfrica, which is not really a Natural History Museum, can nevertheless play a role in exhibiting science-related exhibits but the location does not help in attracting visitors. The suggestion is to rather upgrade, modernise and expand the Transvaal

Museum, so that it attracts people from all over Gauteng.

When many different museums or attractions are situated in the same area they could all benefit from each other, because the visitors are already there and they are exposed to what else is offered next door. For example the Zoo Lake area already has the Zoo, the Zoo Lake, Restaurants and the War Museum.

South Africa has one of the largest, most competitive economies in Africa, but South Africa should not limit its competitiveness only to Africa. South Africa also has large resources in most respects to help in its fulfilment of attaining a stronger economy. It is therefore vital to every citizen that South Africa should maintain and strengthen its science and technology foundations if South

Africa are to start competing with the other 40 countries ahead, of us, as stated in the various comparisons previously.

77 Planetary Science and Museum Awareness Survey for South African Final Year School and First-year University Students

As was mentioned earlier, geoscience is very important for the South African economy, for reasons such as mineral exploration, mining and the exportation of minerals. South Africa still plays a large role in the mining industry in the world and should try to improve on the expertise that it already has.

4.6 Conclusion & Recommendations

At the Annual 1999 International Meteoritical Society Meeting in Johannesburg (METSOC

`99), a new foundation and interest may also have been laid in the South African community, in the

subject of meteorites. During this conference an excursion was made to the Tswaing crater/Pretoria

Saltpan and museum where a plaque was erected to the late Dr. Eugene Shoemaker. This help set the scene for the now highly regarded displays and attractions at this Museum. The Tswaing

Museum also received the commendation in 1999 as the best outdoor museum in South Africa. This

underpins the conclusions of this study, that museums can support education in the country. I believe that well displayed, well funded, well-advertised science museums and/or smaller science centres would contribute to an effort to improve the science of our future adults.

78 References of all chapters

COMBINED REFERENCES

Ahrens, L.H., Von Michaelis, H., Erlank, A.J. and Willis J.P. (1969). Fractionation of some abundant lithophile element ratios in chondrites. Meteorite Research: Proceedings of a Symposium on Meteorite Research held in Vienna Austria, 7-13 August 1968. p. 166-173.

Basu A. and Mckay D.S. (1979). Petrography and provenance of Apollo 15 soils. Proc Lunar Planet. Sci Conf 10th, p. 1413-1424.

Bell J.F. (1997). Geochemical space weathering effects on asteroids; implications for spacecraft instrumentation Abstracts of Papers Submitted to the Lunar and Planetary Science Conference. 28, part 1; pp 83-84.

Binzel R. P. and Xu S (1993). Chips off asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science 260, 181-191.

Bland P.A., Jull J.T., Smith T.B., Berry F.J; Cloudt S., Pillinger C.T. (1997). Weathering of meteorites and ice flow at the Allan Hills. Meteoritics and Planetary Science. 32 Suppl.; ppl 5-16.

British Museum Catalogue (2000). Catalogue of Meteorites; 5' Edition. Editor: Grady M. Cambridge University Press. pp. 700.

Brown G. M., (1957). Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, east Greenland. Min Mag., 31, 511-543.

Bunch T.E. (1975). Petrography and Petrology of basaltic achondrite polymict breccias (howardites). Proc. Lunar Planet Sci. Conf 6th 469-492.

Bunch T.E (1976). Mineral analyses of howardite clasts and a differentiation model for the basaltic achondrites. In Lunar Sci. VII, 105-107. Lunar Science Institute, Houston

Chou C.L,. Boyton W.V,. Bild R.W,. Kimberlin J and Wasson J.T. (1976). Trace element evidence regarding a chondrite component in howardite meteorites. Proc. 7th Lunar Sci. Conf , 3501-3518.

Cizek, G. J. (1997). Learning, achievement, and assessment: Constructs at a crossroads. In G.D. Phye (Ed.), Handbook ofclassroom assessment: learning, achievement, and adjustment, pp. 1-3. New York: Academic.

79 References of all chapters

Deer W.A., Howie R.A. and Zussman J. (1978). Rock-forming minerals; Single Chain Silicates. 2' Edition Volume 2A. Longman, New York. pp56.

Desnoyers C. and Jerome D.Y. (1976). The Malvern Howardite; a petrological and chemical discussion. Geochim. Cosmoschim. Acta 41, pp. 81-86.

Dodd, R. T., (1981). Meteorites, A petrologic-chemical synthesis. Cambridge University Press, Cambridge, pp. 1-27.

Donaldson C.H., Usselman T.M., Williams R.J., and Lofgren G.E (1975). Experimental modelling of the cooling history of Apollo 12 olivine basalts. Proc. Lunar Sci. Conf 6,h pp. 843-869

Dreibus G., Kruse H., Spettel B., and Wanke H. (1977). The bulk composition of the moon and the eucrite parent body. Proc. Lunar Sci. Conf 8th, pp. 211-227.

Duke M.B. and Silver L.T. (1967). Petrology of eucrites, howardites, and mesosiderites. Geochim. Cosmochim. Acta. 31. pp.1637-16665.

Dymek R.F, Albee A.L Chodos A.A., and Wasserburg G.J (1976). Petrography of isotopical- dated clasts in the Kapoeta howardite and petrologic constraints on the evolution of its parent body. Geochim. Cosmochim. Acta 40, pp.1115-1130.

Erasmus C.S., Fesq, H.W., Kable, S.E., Rasmussen., J.P., Sellschop J.P.F (1976). The NIMROC samples as reference materials for Neutron Activation Analysis. Journal of Radioanalytical Chemistry, Vol. 39 (1976) pp. 323-334.

Financial Mail (1998). At best, it could have been worse, March 20 1998. Times Media, Rosebank, p66.

Finkelman R.B (1973). Analyses of the ultrafine fraction of the Apollo 14 regolith. Proc. Lunar Sci. Conf 4th, pp. 179-189.

FRD (1996). South African science and technology indicators 1996; Foundation for Research and Development (South Africa); Scientometric Advisory Centre; Pretoria, pp. 98.

Frick C and Hammerbeck E.C.I (1973). Catalogue of South African and South West African Meteorites; Bulletin 57: The Government Printer, Pretoria.

80 References of all chapters

Fuhrman M. and Papike J.J. (1981). Howardites and polymict eucrites: Regolith samples from the eucrite parent body. Petrology of Bholgati, Bununu and ALHA76005. Proc. Lunar Planet. Sci. Conf. 12th. 1257-1279.

Fukuoka T, Boyton W.V. Ma M. S. and Schmitt R.A. (1977). Genesis of howardites, diogenites and eucrites. Proc. 8" Lunar Sci. Conf, Geochim. Cosmochim. Acta Suppl.8, pp.187-210

Gibbs W.W. and Fox. D. (1999). The False Crisis in Science Education. Scientific American, October 1999, pp 64-71.

Gibbons R.V., Hoerz., F., Kieffer S.W., Schaal R.B., Milton D.J. and Dube A. (1976). Shocked basalt from Lonar impact crater, India, and experimental analogues. Proc. 7'h Lunar. Sci. Conf Vol 2. pp.1391-1412.

Glass, B. P., (1981). Introduction to Planetary Geology. Cambridge University Press. Cambridge. pp. 90-122.

Goldstein J.J. and Yakowitz H. (1971). Metallic inclusions and metal particles in the Apollo 12 lunar soil. Proc. Lunar Sci. Conf 2", Geochim. Acta Suppl. 2, 177-191.

Gould T. (2000). Personal communication (South African Astronomy Association).

Grossman L. and Olsen E. (1974). Origin of the high-temperature fraction of C2 chondrites Geochim. Cosmochim. Acta 38: 173-187.

Grossman J. N., Rubin A.E., Nagahara H., and King E. A. (1988). Properties of chondrules. In Meteoritics and the Early Solar System (ed. J. F Kerridge and M.S. Matthews), pp 619-659. Univ Press.

Hammond, A.L. (1974). Exploring the solar system (I): an emerging new perspective. Science, 186 pp. 720-4.

Hanow E., (1998). Personal communication; Science and Technology Museum, Pretoria.

Heide, F. and Wlotzka, F., (1994): Meteorites: Messengers from Space. Springer-Verlag. Berlin, Heidelberg. pp 67, 231.

Heiken G. and Mckay D.S. (1974). Petrography of Apollo 17 soils. Proc.Lunar Sci. Conf 5th, pp. 843-860.

81 References of all chapters

Hey M. H. (1966). Catalogue of Meteorites: Third, revised and enlarged edition. Trustees of the British Museum (Natural History).The Alden Press: Oxford. pp. 637.

Hewins R.H. (1979). The composition and origin of metal in howardites. Geochim. Cosmochim. Acta 43, pp.1663-1673.

Hewins R.H. and Klein L.C. (1978). Provenance of metal and melt rock textures in the Malvern howardite. Proc. Lunar Planet. Sci. Conf. 9th, pp.1137-1156.

Huntley, S. (1998). Personal communication; MuseumAfrica, Johannesburg,

Hurd, P.D., (1997). Inventing Science Education for the New Millennium, Teachers College Press, Teachers College, Columbia University

Jakwerth. P, Bianchi. L, Mcknight. C.C. and Schmidt. W.H. (1997). Focus in School Science: An International Comparison. Geotimes, July 1997, pp.19-22.

Jarosevich E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, pp. 323-337

Jerome D.Y. and Christophe Michel-Levy M. (1971). Quelques aspects remarquables de la meteorite achondritique de Malvern (Afrique du Sud). Bull. Soc. Fr. Mineral. Crist. 94, 156- 161.

Jerome D.Y. and Goles G.G. (1971). A re-examination of relationships among pyroxene- plagioclase achondrites. In: Brunfelt A.0 and Steinnes E. (Eds.): Activation Analyses in Geochemistry and Cosmochemistry, pp. 261-266.

Keller L.P., Wentworth S.J and Mckay D. S. (1997). Space weathering effects on Apollo 17 breccia 76015; reflectance spectroscopy and microstructure.. Abstracts of Papers Submitted to the Lunar and Planetary Science Conference. 28, part 2; pp 709-710.

Kirsten T. and Horn P. (1974). 39Ar-40Ar dating of basalts and rock breccias from Apollo 17 and the Malvern Achondrite, Proc. Soviet American Conf on Cosmochemistry of the Moon and Planets, Moscow. pp. 526-540.

Kirsten T. and Horn P. (1977). Lunar highland stratigraphy and radiometric dating. Conference proceedings; Issue 285/1327; pp. 145-149.

Klein L.C. and Hewins R. H. (1979). Origin of impact melt rocks in the Bununu howardite:. Meteorites and Lunar rocks. Proc. Lunar and Planetary Sci. Conf 10. Vol 1. pp 1127-1140.

82 References of all chapters

Kong, P. and Ebihara, M. (1995). Metal phases of L chondrites: Their formation and evolution in the nebula and in the parent body. Geochim. Cosmochim. Acta. 60, pp. 2667-2680

Labotka T.C. and Papike J.J. (1980). Howardites: Samples of the regolith of the eucrite parent body: Petrology of Frankfort, Pavlovka, Yurtuk, Malvern and ALHA 77302. Proc. Lunar Planet. Sci Conf 11th, pp.1103-1130.

Labotka T.C., Kempa-Marta J., White C., Papike J.J. and Laul J.C. (1980). The lunar regolith; comparative petrology of the Apollo sites: Meteorites and regolith studies. Proc. Lunar and Planetary Science Conf 11, volt, pp.1285-1305.

Lapidus D.F and Winstanley, I. (1990). Dictionary of Geology. Collins. Glasgow. pp.103

Laubscher, S.A.B., Ashwal L. D., Tredoux M (1999). Meteoritics and Planetary Science Supplement Volume 34, p 72 1999 July. The Meteoritical Society and The Lunar and Planetary Institute

Laugksch, R.C. (1996). Development of a Test for Scientific Literacy and its application in assessing the scientific literacy of Matriculants entering Universities and Technikons in the Western Cape, South Africa. DoctoralThesis submitted to UCT.

Le Roux P.J. (1994). Petrographic, Mineralogical and Bulk Chemical Investigation of Two Unusual South African Meteorites. Project report submitted to the University of Cape Town in partial fulfilment of the requirements for the degree of Bachelor of Science (Honours). Department of Geological Sciences, University of Cape Town: November.

Marcy, G. W. and Butler, P. (1998). Giant Planets Orbiting faraway Stars. Scientific American: Quarterly Publication, May 1998, pp.10-15.

Mason, B. (1960). The origin of meteorites. Journal ofGeophysical Research, 65, 9, pp 2965-2970.

Mason, B. (1960). The origin of chondrules and chondritic meteorites. Journal of Geophysical Research. 65, 8, pp 2510.

Mason, B. (1962). Meteorites. New York: Wiley. pp. 274

Mason, B. (1967). Meteorites. Am .Sci. 55, pp. 429-455.

Mason B. (1967). The Bununu meteorite, and a discussion of the pyroxene-plagioclase achondrites. Geochim. Cosmochim. Acta 31, pp.107-115.

83 References of all chapters

McCarthy T. S., Ahrens L.H., and Erlank A.J. (1972) Further evidence for the mixing model for the howardite origin. Earth Planet. Sci. Lett. 15, pp. 86-93.

McCoy, T. (1997). Personal Communication. Smithsonian Museum ofNatur al History. Washington D.0

McSween H. Y., Jr, Bennett III M. E., and Jarosevich E. (1991). The mineralogy of ordinary chondrites and implications of asteroid spectrophotometry. Icarus 90, pp. 107-116.

Merril G. P. (1916) Handbook and Descriptive Catalogue of the Meteorite Collections in the United States National Museum. Smithsonian Institution (United States National Museum). Washington Government Printing Office. pp. 205. USA.

Mittlefelhldt D.W and Lindstrom M.M (1997). Magnesian basalt clast from the EET 92014 and Kapoeta howardites and a discussion of alleged primary magnesia HED basalts. Geochimica et Cosmochimica Acta 61; 2. pp. 453-462.

Moore C.B. (1962). The petrochemistry of the achondrites. In Research on Meteorites, C. B Moore Ed. J. Wiley, New York. pp.164-178.

Moore C.B. Lewis C.F and Nava D. (1969). Superior analyses of iron meteorites: Meteorite Research. pp738-748, 839. International Atomic Energy Agency. Vienna.

Morgan J.W., Janssens M.J., Hertogen J., Takahashi., H. (1977). Ries crater: an aubritic impact. Meteoritics conference abstract; Issue12/3 pp. 319.

New Scientist (2000). http://www.newscientist.com/ns/archive.html

Olsen E. and Grossman L. (1978). On the origin of isolated olivine grains in Type 2 carbonaceous chondrites. Eart Planet. Sci. Lett. 41, pp.111-127.

Organisation for Economic Co-operation and Development (1991). Science and Technology Policy, Review and Outlook 1991. OECD, Paris. No page numbers in reference.

Pieters, C.M. and Mcfadden, L.A. (1994). Meteorite and asteroid reflectance spectroscopy: Clues to early solar system processes. Ann. Rev. Earth Plan. Sci., 22 pp. 457-497.

Prinsloo S., (1998). Personal Communication, Transvaal Museum, Pretoria.

Prior, G.T., (1920). The classification of meteorites. Mineral. Mag. 19, pp. 51-63.

84 References of all chapters

Pun A., Keil K., Taylor G.J. and Wider R. (1998). The Kapoeta howardite: Implications for the regolith evolution of the howardite-eucrite-diogenite parent body. Meteoritics. 33. pp. 835- 851.

Rajan.R.S.,Huneke. J.C., Smith. S.P. and Wasserburg G.J. (1975). 39Ar-40Ar dating Chronology of isolated phases rom Bununu and Malvern howardites. Earth and Planetary Science Letters, 27, pp. 181-190.

Reid, A.M and Fredriksson K(1967). Chondrules and chondrites. In: Abelson, P.H. (Ed): Researchers in Geochemistry, Vol. 2, New York: Wiley 1967.pp. 170-203.

Reimold W. U (1999). Meteoritics and Planetary Science Supplement Volume 34, p 9, 15, 17, 20, 28, 34, 37, 42, 59, 66, 76, 97, 107. 1999 July. The Meteoritical Society and The Lunar and Planetary Institute.

Ringwood A.E. (1961). Chemical and genetic relationships among meteorites. Geochim. Cosmochimica Acta. 24, 3-4, pp 159-197.

Roedder E. and Weiblen P. (1970). Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks. Science 167, pp. 628-630

Sake-Beeld (1998). Suid-Afrika se mededingendheid het effens verbeter sedert 1997. Beeld Dagblad/Newspaper. April 22, page 3.

Scott E.R.D, Barber D.J., Alexander C.M., Hutchison R. and Peck J.A. (1988). Primitive material surviving in chondrites: Matrix. Meteorites and the early solar system. The University of Arizona Press. Tuscon, USA.

Sears D. W .G and Dodd R. T. (1988). Overview and classification of meteorites. In Meteoritics and the Early Solar System (ed. J.F Kerridge and M. S Matthews) , Univ Arizona Press. pp 3-31.

Short, N. M., (1975). Planetary Geology. Prentice-Hall, New Jersey, pp.31-43.

Simpson A. B. (1982). Aspects of the composition and origin of achondrites and mesosiderites. Unpublished. Ph.D. thesis, University of Cape Town, pp. 624-629.

Steele I. M (1988). Primitive material surviving in chondrites: Mineral grains, Meteorites and the early solar system. The University of Arizona Press. Tuscon. USA. pp. 808-818.

Stelzner T., Heide K., Bischoff A., Weber D., Scherer P., Schultz L., Happel M., Scroen W.,

85 References of all chapters

Neupert U., Michel R., Clayton R.N., Mayeda T.K., Bonani G., Haidas I., Ivy-Ochs S. D. and Suter M. (1999). An interdisciplinary study of weathering effects in ordinary chondrites form the Acefer region, Algeria. Meteoritics and Planetary Science. 34; 5 pp. 787-794

Sunday Times (1998). Sunday Times Top Schools (Special Appendix): September 13. Times Media. Johannesburg.

Tera F. and Wasserburg G. J (1974). U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Geochim Cosmochim Acta Suppl (Oxford) Conference proceedings, Issue 5; pp.1571-1599.

UNESCO (1993). Statistical Yearbook. United Nations Educational Scientific and Cultural Organizations, Paris. No page numbers in reference.

UNESCO (1995). Statistical Yearbook. United Nations Educational Scientific and Cultural Organizations, Paris. No page numbers in reference.

Van Schmus, W. R. and Wood, J.A., (1967). A chemical-petrological classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, pp. 747-765.

Vaniman D.T., Labotka T.C., Papike J.J., Simon S.B., and Lauj J.C. (1979). The Apollo 17 deep drill core: Petrologic systematics and the identification of a possible Tycho component. Proc. Lunar Planet. Sci. Conf 10th, pp.1185-1227

Von Michaelis, Willis, J.P. Erlank H., Ahrens, L.H and, (1969). The composition of stony meteorites:1 Analytical Techniques. Earth Planet. Sci. Letters 5, pp. 383-387.

Von Michaelis, H., Ahrens, L.H and Willis, J.P., (1969). The composition of stony meteorites:2 The analytical data and an assessment of their quality. Earth Planet. Sci. Letters 5, pp.387-394.

Walker F. and Poldervaart A. (1949). Karoo dolerites of the Union of South Africa. Bull. Geol. Soc. America, 60, pp. 591-701.

Wasson J. T. (1974). Meteorites: Classification an_ d Properties. Springer-Verlag. Berlin Heidelberg New York. pp. 1-35, 316.

Wells P. R. A. (1977). Pyroxene thermometry in simple and complex systems. Contrib. Mineral Petrol. 62, pp.129-139.

Welten K.C. (1999). Concentrations of siderophile elements in nonmagnetic fractions of Antarctic

86 References of all chapters

H- and L-chondrites; a quantitative approach on weathering effects. Meteoritics and Planetary Science 34; 2, pp. 259-270.

Wentworth S.J., Keller L.P., McKay D.S and Morris R.V. (1999). Space weathering on the moon; patina on Apollo 17 samples 75075 and 76015. Meteoritics and Planetary Science . 34; 4 pp. 593-603.

Wilkening L.L (1973). Foreign inclusions in stony meteorites-I. Carbonaceous chondritic xenoliths in the Kapoeta howardite. Geochim. Cosmochim. Acta. 37, pp. 1985-1989.

Wood J.A. (1979). Review of the metallogenic cooling rates of meteorites and a new model for the planetesimals in which they formed:. Asteroids. Univ. Ariz. Press. Tucson, pp 849- 891.

World Economic Forum (1998). Africa Competitiveness Report. Lausanne and World Economic Forum, Geneva. No page numbers in reference.

World book (2000). http://www.worldbook.com/funibthimeteorites/html/meteorites.html.

Zipfel J. (1998). Database of South African meteorites. Max Planck Institute for Chemistry. Mainz/Germany. (Not a publication but a ongoing database).

Zolensky M.E., Weisberg M.K., and Buchanan P.C. and Mittlefehldt D.W. (1996). Mineralogy of carbonaceous chondrite clasts in HED achondrites and other Moon. Meteorit. Planet. Sci. 31, pp. 518-537.

87 APPENDIX A: ELECTRON MICROPROBE DATA OF MINERALS IN MALVERN ▪

CO Q) Ul CO 0) C3 c- c- C4 U) 0- CV N CO CV 4 QD CD CD CD 0) CD CD N OD QD CV CD 0 CD N OD CD CD 4 C4 4 CD C) CD C3 CD M N M CD CD c- 0 OD CD CD CD C3 M 4 CL 6 6 U) 6 6 6 6 6 6 ti . . . . . . . 01 r- 0) CD CD c- CD CD CD 0 CD CD C`) ci ca N E 0, 4 cy T- 4 cc) op CD CD 00 O r- r- CO CV CD 4 c) 0 T- N O CD C) C3 OD CO r- T- CD CD CD O CD CD U0 CV 0 CD 0 0 0 0) M CD 6 6 cri ci ci . 00. . c-. C3 OD. CD. C3. CD. CD. M L0 4 0) c- 0 CD c- CD CD 0 0 CD CD ci ci

a ) (p

E t

00 CV 0, ti v- C) r- U) C3 O 4 CO CV 01 4 0- 0- QD C4 C3 in

N CD CV CD CD V CV r- CD 0 U) 01 0- CD N CV CV 01 0 0 0 c-r) 4 co o 6 -4 T- 6 6 6 00 . r-. CD. QD. CD. CD. CD. C3. a) co cr) 6 cY CO c=i p O c- CD CD c- 0 CD CD 0 0 0 ci ci C.) le ing

01 c- Y- 0) OD 0- CD 01 U) CD 4 m cy CD CD CD CD 01 T- O O CD s c- CD 0- OD 07 CO c- Am- C3 O C) C3 r- 01 OD C) CD CD N M c- c- C3 CDCD U0 CD CD CD CD W M CO u5 cd 6 N cY 6 6 6 ci . . . . . . . . . . 12 ), M O Am- CD CD CD 0 CD CD CD 0 CD cNi ci 11, ( e

cy m cc) N , 0 0 cy CD Y- CD r- r- T- op CD CD c- 0) CD CD lin • O dr- c) OD CD CD 01 c- CO CD CD CD CD M 0) 0 0 0) C3 C3 CD CD C3 C3 O 4 U) ci ai O cri ci ci ci ci O be 01 O 6 6 6 6 6 T- 6 6 6 6 ci ci ro

N p 2), 4 cy CD OD CV 0- C3 c- c- O CV U) CD OD CV CD CD C3 W CD CD CD CD 0- OD C3 CD CD CD CD CD CD 01 c- U0 CD CD C3 C3 O M 1, O "4 In CD CD CD CD 0 0 CD CD 0 CD c 6 CA O-4 6 6 6 6 0) V.) M cy 0) 6 6 6 6 0 ,- 6 6 6 6 (

N no. t

• COO c- CD C3 CD CD r- 01 0- CO CV CD CD C3 OD CD C3 C) C3 U) 0- 00 CD CD C) C3 CO OD CD CD 4 T- up CD CD C3 C3 r- op las • Tr up CD CD CD CD CD 0 CD CD 0 CD c ci O ai ci ci ci ci ci 0) M CV 0) ci O ci ci ci ci ci 0 ci ci ci 2),

N m C.)

l, CD c- c- CD c- c- 01 0- QD CV CD 0 CD O C3 CD 4 op op c) co r- VD m ite CD CD 4 r- r- CD CD CD CD UD CD CD C3 4 up CD C3 C3 CD 0- 01 CD CD CD CD CD CD CD CD CD CD O '4 U0 ( 00) OCtooOO 01 M N 0) 0 0 0 0 CD 0 0 CD CD Cri O ci teor no.

N le me

4 4 T- QD OD CD T- c- Lc, r` N- Amm. up a) r- cy c) CD CD T- c.) c.) CD CD m r- CO c) CD CD CD 0) CD C3 C3 01 r- 4 0 CD CD CD CD C3 C3 CD CD CD CD CD CD CD .4 up lvern 6 6 6 6 4 6 6 6 6 0) samp N 0) ci 0 0 ci ci cri ci he Ma

t he to

t 01 c- c- C4 OD CD CV C3 CD CD 0- CD CD

f U0 01 CV 00 CD DODO 0- 01 C3 C3 0 h. 0) 0 0 0 0 U) ns CD CD C3 01 c- QD CD C3 CD CD CD

o CD CD CD CD CD CD CD CD C3 CD '4 U0 e 00)OctOOOO 0) fer s M 0) 6 0 6 6 0- c) 6 6 6 ei O ci s is re e O ly Fe 4 oxyg

bov ana er a as ion t be p Fe ro l row

>, l ca is ta ions 15

0 ta csi6b00 t rop 5 m 0 o m g0 0 4 4 Nm m m s = 0 M 0 ic ly *To To 0< Li! 2 2 Z "2 Ca oo 7ti P: u_ :E :E c) Z NC LL LL m ana ine he liv t in 1 O de A. co ble. The Ta

Table. A. 1 Olivine m icroprobe ana lys is of the Malvern meteorite 0< = c C a; _ N M N a N N as E C.) LL (.3 E s E C.) ••• • • • • • 0 CD U)00U0LOCONs cy -Kr ,- ,- U1r QDNs -4-CD 6 cPoicY000 cp r rs 0 M opr-r CV LOODQD CD 01C4Nsc- up cP 6 cm 01NsCOC3CD 01 v-cmQDODc-CDN- CD CD C)rmcm cm COU)CD'4"•- 6 rcrici0 Tm. Ns U)N-CDCO01LO CD 0 CD N-CVODc- CV cmN-QDLO I- 4.. ei CV CV cr CV COCDOD01 cri oci64 ci cc;60000 CD QDC) (c QD 00NsCDcm OD 00 CO r op M co N 0) 6 cP CO N - i 64r 000 CD 6 co 6 06r -4- co r- cy-4- ci c met, cq 6 4-opcy 01 (flCDc- cp upop r -cr opoocp ‘— iri 0000 c- 0 cn -4- cy rO 0 z CD OD CDUl CO CD CO cmCD 1C

00 co CD 01 cy r- C3 CD CID QD E 6

0) 0) N O r C •I 0) CO 0) N 0) cci (0 0) O CO 0) N N CO 0) N LC) O co 0) N Cr) O Ul 0) N- N -

Cations per 4 oxygens N cm CD0 CD C)cmQD c- CDcm0 C) cmCDU) CO IsQDCD c- CDcm0 CDCD C3CDU1 cm 0CD M CV QD cm CD0 6 CD CO N— 6 r CD C3 CO cmC3 cm CDrm0 CD cmC300 C3 CDU CV CDUl01c-C3 O CD CD Ns CD OrIsC3 OD CVCDCOC3 C3 NsCDN.- -4- QDC3C4CV01CDC) cr CVN010)QD N- c-CDCV U) COCD00N0 cr r- op Ns QD 4- -4- . 'TL a i= + CD N CDU1C3 CD r C)CD cm vmLID r opr- ci Or60 co CD . CD NsCV000, 4- -4- r- ulcyN CD CD QDcmCC) CD cm0 cr . at u_ 2 cr cr CD C3 CV c-CO -4-r r- co r- . ) CVr-CDC3 . CV CO01U1Crcm c- QD CD QD oo CD COCV .4- -.4- C . r- up .4- CO CVTmCD 0) . CD rs 01 LO CV CD C3 up OD cg . z CD r- 4- 0 C3 CD CV CDTm co cv up ,-cy co . CD 4- ,- . ._ CD 0 .-- T- . cm CO CO 00 0 0 0 N c\i 6 OD OD CD CV CD c-ri C3 01 C) CO cri 6 CD CD N- C3 CO 6 CD N OD (-6 6 U) ) Tota l cation QD 01 6 CD C3 03 CV CD C3 CD ',- 6 up -4- CD C3 CD a-- CD CD , N 01 r- op CD .4- up CO ci CO LC) 0 CD 6 (D cO ( 01 C3 CD 6 CO Cr 4" O 00 (D 01 UD CO ci LO 0 N s

*Tota l Fe as FeO

The code in the analysis row above refers to the sample no. ( ml, m2), clast no. ( c1,2), probe line ( 11, 12 ), s ing le point (p)

Table. A.2 Plag ioclase microprobe analysis of the Malvern meteorite CV (C clastl-line2 clastl-line2 clasti-line2 clastl-line2 c lastl-line2 C C) clast2-Iinel clast3-line4 clast3-line4 clast3-line4 clast3-line4 clast3-Iine4 in ° N- OCOMCI CV el4U)"Cr0COCDC> CV CDV'COl U) Vo, M sr 46e).-0000r--o666 Co CV 0 U) CV 04cf)c0CD CO c CV 4U) 4 0CV 01 04ul(00) 4 6co cri 6rici cri ciM0ai el0040000(0 CV CICNU)• 4 6r--:cico0 U) CI40C)CDCo Cr> 0N-c 4 CiCDOC) I- 0 4 CiCOC) NY 01- CO OrNJco Nr 4 CiCOOC3CI 4 0 Nr cr ri citriOco 0elCV 0 6 16CO- ci tri6CO CN O co C) O c C) elt-0CD ) CVCOCI0 6 b09 a M U) cicc; el M M CV C)0OcOCDc cc, 4 . Co cv MC)NI cr u- C..)2ZEC.) Z U) .- e- O 1 . C • t 11 0CD N- NI'CO0CI 4 0 1 -• • .0 0CVcl3 c -• 0CDcDCO . - 0CDCICoU)‘- ) 0N • elCV0'U)40 CD U)0 0 NrCO0) • 6 0cicri -• el0COCo4a) ■ -• cOCDCI04CV • ci Dr--:N 4 c U) CICDCOel41 - • CDCOC.4 P C> 0CVU) 0 • r-- 0 6 cc;ciO 0 CVP C> cvCV40 , • alco "L- a; ci 0) c-0CD N- ‘- 0o cr)666 4 .- 0 0 • 6 0ci cl CDCV ci 0 6 ci 4 • - • CV0 - - CVCD elCV 1 5 (NJ .— (s1 0 0 CI c • ) CD • 6

• I- O C) U) CO co O C) CD O CO O (C O C) O C) CO LC) O CO O 0) c Co CI CV e ■ -• ) *Tota l Fe as FeO 7.1 11) 7.) co Ls' 7.) co C a co cc (C co N co 7.) C 17.) co 4 CO CO C (C C C) co C C) co C C) co C co C C) a (C co C C) a (C C C) clast4-line8 clast4-line8 clast4-line9 clast4-line9 0 c4 6 i=Co U) O Cci CICVC;CC. co c)V cd ci46Ilic‘i CO INJC)CD0LO (NJ cri c:icsici06N 0 CVLOLC)CD1— M 0CI 0 elCDCVr 0 U)4 0 0 Ci M0Cfl O el a)r) u) Ci CVO O 4 N-CO0 6 M tri a) DoOM t-, co ri 6cocNi CO 4 4 a)6 N- CY) 0)LOCOa—CIN— tri CN1 0C (2) 4 CI0LO 4 0CICD LO N- OC)cvCIMU)04 • -• CDCOcNel - el ci Occi 4 CDelCV 6 r--:Oci C> CD 0 6 0(ci ci U)csi0 C> C30Cr>CV 141 CDelCV40I CV 0 D CDIN-r•-• 6 c:iOLcioici

p 0 LO CD V C) CD 0COa)00CV CV CD 0 CD 0 nen 4 N-00CD 0 , Tn N- c0 a- n- *- -• Nr LC) OM CD cl) - COC> N hi CV CD 0 CI - U) - U) ci 06 CV CIJD Cio Ci V ci 06 CV 0C> CD 0CV 6 cv 0 cD 0 U) CN 9 4t CD O • ci c C) 0 CD cc) C) CN1 CNI - (Z)

0 CI C) , CD .- co - CO LC) 0 M O C'") O 01 O CN1 O CD (N1 O e O O CNI O O O UD O O O U) c ) *Total Fe as FeO

The code in the analys is row refers to the sample no.(m1,m2), clast no (c1,c2), probe line (11,12), sing le point (p) • • — -

I1 Co CV CO 1- a-- CV 0 C) I- CV CV Col DI I— CV a-- Col a) cfl CV CD Ca) OC> CV ICI CD C> CD 0 act 03 CO 0 CD 5- tri ci 6 6 6 0 ci 6 co 6 6 6 6 ci 0 ci ci 0 0 ci 6 6 O ci sr O lvern-

11 ma LC) CV 0 CO a— C> Co Co VI 0 V) O Col 0 CD 0 0 N— NI" CV a— 0 M C) F C) C) CD CD •Ct 0 C) CD 0 CO CI) 0 LO LC) C> 0 Co 0 LC) a 0 0 CD 5- LO ci 6 ci 6 6 6 ci ci ci 6 O U) 6 O ci O O ci ci O O ci ci ci O V O d" CID O lvern-

I1 ma N- Co 0 Co •Cl• CD 1.0 cc) h.. C. C. 0) (NI C') (SI CV co co co 6 c) cc) 6 co 6 6 Col Co V' OCD CD CD CD CD CD CO 0 C> CD 0) 5- cc) ci tri ci 0 ci ci ci ci ci ci ci tri ci Lc) ci ci ci ci ci O ci ci ci ci CI O Co rn- co lve

11 ma co CD CD sr co a co a 6 CD LO IC) Co C> a— a— st O CV N- CO M C:$ O CV CZ) to 0 0 CD CZ) •cf' Co CD Co 0 LO LID CD V' LO 0 0 CD Co OD OD 0 0 CD co 5- • • • • LO ci u-i 0 ci ci 0 ci co a a o O 6 6 6 6 6 6 C) 6 6 6 6 6 6 O O 'Tr cc) O rn- lve

) ma

1 st cct a co <- a co 00 cc) co a a) M M C> O CI> CD CO CD 0 17 t (p N- O Col 0) CD 0 0 0 r--- CO a- 0 CD Is■ CD C> O co co co 6 6 CV CD CI> C> C> CO

N- 6 6 6 0 6 6 6 CO 6 6 6 O ci O V ci ci ci 6 ci co ci ci CT in line

C) o t4- p le las c

Co CV a) a) CI C.) 0) 0) CD VI -cr in s- co co co ap O ing ct C> CO a) 0 c> 0 c) 0 La a) co co CV CD CD 0 CD CD CO 0 0 CD CD N- 6 6 6 6 6 6 6 (D ‘- 6 6 6 ci N: 0 LO 0 a do do a CI 0 Ci s O —• O 12), 11, (

1 0) CD V LO CD CD a— 0 CD N- •11- 0) CO a) CV a— CV CD Co CO cc> 0 Co co Co N. LC) 0 0 CD Co CS) LO a— 0 0 a— Co N- CD CD CD CD LO CV• I—• 0• 0• O

cci ci cci O ci ci ci ci 6 ci ci N: O V ci O O ci a a line line M O V O be 4- t o r las p

1 c co CD CV Cc) C> CD C> CV UD 2), 00 C) N LC) C) CI CD O LO N- CV CD C) N- CV C) CD CD 0 co co• a a 0 0 c ine cO ci ri ci ci 0 ci ci CD ci 0 6 D C c c - o a a l Cc) Tr 1, t4- las

t no (c t no ite

1 c 'If CV V" OD Cc> CV 0 CD Tr CV CD C) CV CD CV CD CO Tr CO LO CD CO V 0 Co CD 0 CV C/ CD 00 0 0) N C> O Co CDN-C4000

ai ci csi ci ci ci ci ci cc) ci ci ci CD O R CI Co CD Ci O N- •- a 6 6 las line r O teor c 4- t 2), las me m rn 1,

1 c Co CD a) CV CV CO CV CV a) co co co ro O CV CV C) (0 0 CO CD 0 v- 0) 0) 0 CV co a co sr a a CV 1- C) 0 0) C/ 0 a) CV Co 0 O C> N- N C> C> C'D . . . . . . . m lve 066660.— 0 ac)C> O V ci ci ci ci O h ci ci ci ( line O O t4- Ma no. las le he c

f t CD CV CD Va— CD CD CO CV co co co N LO co co CA N- IN CV LO a— CD CD CO CD Cc) CO 0 a— CD LII Cc) LO CD 0 CO MOCIC0000001 ,— 000 0) o C La O csi ci ci ci 6 6 6 6 6 cd 6 6 6 6 6 0 ci ci ai ci 0 ci O is =. • sr 0) co O samp

s 4 he ly

10 t to

ana ch N- LID CD a-- LO a— el Cc) CV CV N- CD CO CO Cc) CV CV 0 N- 03 CV CD 111

CO a CD LI) Co 0 Co Co V O 0 CD Ca) 0 CV 1.0 CD CD CD 0 CV CO C) CI CD Tr. rs C be cci O ri 6 6 6 6 6 6 6 6 6 sf ci CO 6 ci ci ci ci oi O 6 6 6 O V O fe a-- ro

0 re w N icrop cy, CD V' N- 'Cr CV CV C) Co CV (L) •Ct Cc) CV coopooac) cot-- 6 CV 0 C) ro < 1— a— CD LID 0 CD CD 0 CV s-0 o U) a) 0 .cf• CD CD CD CD CV C) O CD 0 0) m

O M ci ci ci ci ci 6 N ci ci ci 6 6 6 6 6 6 6 6 6 6 6 0 O s is co IT- Co C) ly

lase - 0 co co 0 Z ana ioc Fe Fe

he as as 10 y t

CO Fe Ta l in l Fe

2 Plag 0 ( 4), O O O f0 b60 0 0 ta 66 ta 6 o o 0 ° o de 0 CsI a, C 0 Cy) m o 0 C 0 o (s. 0 c, 6,, 6 A. C *To :( in I= u: 2 E u0) to i= Lt mEzuz *To le. co b The Ta -

U) CO (.13 rs sr 0 0 N- 0) 0 M U) 11 0 0 U) CI 0 n CO CV CI CD U) 0 CV CO 0 CD CI CV C31 U) CD CV CV N. C.) NJ- U) CD 0 n 0 CD C) Nt 3-

n N - D C C n CC D D C> t Ni O LC) n O C> O C) Co ci ci ci ci O O N1- O las c 2-

CO CO 0 N- 0) co o) C> C) IN N- c0 CO CV L- U) 11 m cO 0 0) CV 0 0 CD CO C) CD CD 3.- LO 01 L- CI CI 0 CD .1: NI' 0 CD 0 O n 0 0 0 0 N-

13 CO 0 CDCO

3- co C3 CD C) C) LC) CD O Ci t ci O 6 6 6 ci ci co ci ci ci ci O

19- co C> las c ll-c 2-

) CD CV NI- N- CD N.- CO Nh NI- 3- CO 11 m n CV CD n 0.1 O ONt 3-- CO 0 CV U) N- O NI- LO 0 C3 CI 0 CO CO CI 0 CD CO

13 ma N. 0 0 Nt 0 O C) CV N. n O o 3-

cri ci c‘i ci ci 6 ci ari ci O 6 O t ci 0 ci ci ci ci ci cc; ci ci ci ci O

19- O C> c las ll- 2-c

C) CV 11 m ma n n n OD CO CO 3.- CD co 0 U) V- .4• NI• 0 0 U) ce) V NI: 0 0 Ict N. CD U) U) CI 0 0 CD n CD 0 C> U) 13 C31 CD CO 3- 3-- 0 CD CO 3-

U) U) O cNi M ci 0 6 t ci Lri 0 ci ci 0 ci cd ci ci ci ci O ci ci ci O 19- ch CO c las ll-

2-c ) m

ma N- CV cO CD NI: CV VI C) CO Nt Nt L- CD N- CO CD 0 L- t (p CV CD C> CD 0 c0 CV 0 O o

13 CO CD O LO 0 CD 0 3- CD CO CD 0 0 3-p in 6 6 6 cri 6 6 6 t CD ci cci ci ci 6 6 ci ci ci 6 o 19- O V) p ll-c le 2-c las ing

ma 0 CO Cr) (0 01 CV N. CD 3-- 0 CO 13 m Nt 0 CO 0 C3 C. Co r") r") LO CD CD CD CO 0 CV LO 0 0 0 0 CO Cr) 0 0 C')

13 V' 0 0 V•0 0 0 3- LO s 2- M. C> C3 ci O co ci 0 ci a t U) 6 Lri 6 0 ci 0 6 cd 6 O ci C)

19- cc> O co O 12), las ll-c 11, 2-c (

ma N.CV CO n 0 CO N- CO CV 0 O 13 m CO VI Nh M cO CV CV 0 CD 3.- h-- U) 0 CO CD 0 CD CD 0 M LO O CD 0 U) N. 01 C \ I 0 0 0 0 CO (0 C, C. C.. 00 line 13 2-

n: O ri ci ci ci ci 6 6 6 O t I- 6 (-6 6 0 ci 0 6 N- 0 6 6 O

19- co O co C) be las ll-c ro 2-c p m

ma CNI

13 N. CO tll CD C> CO 01 CO CD 0 -7 CV C) CY) (.) U) O CD Ill 2), 0 CD 0 0 CV 0 CD CD CD O 0) C/ CV U) CD CD 0 0N.- CO CD 0 0 U)

CD 0 0 c 2- l5-

t O t Lc; ci ari ci ci ci ci ci co 6 6 6 O Ni 6 tri 6 0 ci 0 6 cc; 6 6 6 6 O O 1, c las las c c ( 2- l-

no t m

m cO CD co ite 00 M U) CD CD 0 N.- CD CV el 0 Cr) CD CV CV LO U) V' 0 CD ID CO 0 N 0 0 0 U) N- C) O 0 CD UD U) C) 0 CD 16 CO CD l4- las

t C) CD Ci Ci O n CD 03 CD O ci O co 6 6 ci ci ci 0 CD ci ci ci C) 19- M •-• c teor las 2), l-c m me 1, rn m CO 3- CO CD 0 N- Nh O U) Nh 3- CO CI •-• N-- CV •)- V CV - co o C> 16 mall-c L) 0 01 V 0 D D CD 0 CD CO CD CD 0 0 3- CD CD 0 '1? m l3- (

t U) 6 6 6 6 6 Q1 6 6 6 6 O 0) 6 6 6 6 U) 6 a o O 19- O

c • las Ma lve no. ll-

l-c le he ma

f t n CO V' V) 0 CV CO CI CV n n CV C> .-

16 m CV 0 V' n O 0 O M CO CO CD CO

16 N- CD I,- CV 0 0 0 .L.- CO CD 0 0 CD CO

UD CD U) U) 0 0 0 CI M O C> 0 CD amp o tri 6 tri ci ci ci ci 6 ci ci ci ci O cci ci c ,- 6 ci ci ci cci ,-- ci ci 6 ..- 19- s 110- O -4- co .,- o c

c ..- s is he l- l ll- ly t ma to cv U) NI- el (1) 0 0 CO CV U) U) 0 CI C> CO 16 ana e- 0 CO 3- 0 n '1" 3- CO 0 0 M 3- 0 CD CD .-- CD CO 3-- 0 0 V) CO 0 CO U) CI 0 0 0 CO CO 0 0 N- 16 ma O cc do 1-: di a 6 ci ca ,- ci ci 6 6 be U) O U) 6 6 6 6 6 n 6 6 6 fers 19- 110- co O -4- o .-- c ro re 08 ll-c ll- 4 Si)

C) -4- ,- -4- co CV ,- CV 10 0) NI• 0 0 0 1.0 row

16 ma CO CV CV N C> N U) Ul CO 3-- CD CV

o o -4- is M 0 0 c0000.-c00006 O 16 ma CD 0 0) CV 0 0 0 ,-- ...- N. •-•-• m icrop ‘-- ci ci 6 6 cri - ci ci ci 6 s (Al, Lri ci ci ci ci ci ci N ci 0 6 cri ci 19- 110- O co v- C:. ly

c ."-- c Ca)

lase ll- ll- na O Na, a ma ma Fe FeO ioc

( . : he as as t lase Fe in Fe

l

co) l 2 Plag

ioc 0 0 ta ta CD 68 6,:b 0:20.2n o ciloB de A. 66qb1.2000,, 099,00-A

*To *To Plag Zt Li 62E 2 2 2 Cl2 C.75 i= a LT. v 2EnC22811 2 co le. b The Ta

Table. A.2 Plag ioclase microp robe analysis of the Malvern meteorite N N 7.) r7- N 00 c-4 N 00 N 00 CV O M E U E E U E E E E €) E E m2-roundcl- m2-roundcl- o cs,661.0000caco coact6 1.0 C)N.CO7N0NtNr CO CD 0COcc) CI) 00)U1CDCT) N- Nr C1Lci Nr CO 0 N CO CDNr0C)cr0)) (.6 Oci LO O(Dc)ina)6 CD N. 0) 0LOCO N CD Nr NI: 6'xi Nr CV 07CDCON- C') N00)MC) M 07NrCo(D N CDCIDCo7cc)0 010N(00000017000 00 COU)•-•NOC)v-VCD 1- 0 N Cr)NtCD0N.Cc)Nr .4- si O(06ciai CD 0Nr Nr " cr ci 6tri O 06 CD C) Nt70CDCO Ci U) 00 O V O Lri O N CO C) CoCi ci 6ai 0* CO CO (D (-- CO CO co U) ( . 4 — ( O cico ci (xi N CDC)7CO0 CO ci oi cn a ci N- CD0C)N • C. 6 C) CD V..• (t) ci cci • 0 94 2EEoz Y fru) Nr 6 ciOco U) OCO 0 co a Nt OCoCOL)0CD • N CDCOCo N- 0 U) 0 • CD N OU) CD ci co CI O 0 • CO (D 0)Nr7CV CO CD0C) CO CO N-Cc)CV cci CO CO N O0C) CV 000Nr • ci 06 Cr) CDCo0 ci O6 0 iC) N 7CVCD - m •

0 - 0 •7 '.71 0CD 6 ci • CD ci co • N 7 7 • To O (0 O CD O CO O O O O co C) Ci N O CO O O O CO 1.11 O O O C) (D CO O Ci CO O Ci O r O O N O -

*Total Fe as FeO

The code in the analys is row refers to the sample no.(m1,m2), clast no (c1,c2), probe line (11,12), sing le point (p)

CD Tr CD CD CD rs QD 01 N 00 CV r- v- CD CD CD 01 u) v- cn CD CD CD Cal CO CD r- CD CD CD CD Mr CD OD Cal CD CD r- CD CD CV. Cal. CD . . . N 6 Ti cP 6 ci OD r- CD 6 00r-:66666M66 O a- 00 0 0, T- O C*41 a- CO

• CV CD vt CD QD CV CO CO Tr Tr OD O QD Cal CO CD r- Is cq 01 CD CD CD v- CD r- CD 01 UD CD U) rs CD up • CD 01 OD• • Q1• OD• U3• CD• Tr QD Ch C3 Tr CD v- CV CD CD CO v- CD 6 6 6 6 6 6 cP 6 oi 6 6 Tr Ti 6 O 00 v- 01 T- OD

71.

v- LC) Is CD QD T- 0, 0, Is Ns UD CV CD CD r- CD CD OD 01 C.1 CD CD CD CD T- r- OD C3 CD CD CD CD CD v- QD CD CD Tr CD rs • 0 11, 0 6 Tr CD• r-• • • • 6M6666 , 6 r- 6 6 6 cP cP 6 ri 6 6 01 OD rs r- CD M CD v- OD 0) r-

• Tr r- Tr CV CD C3 CV QD r- CD Tr cq 00 CD CD C3 Tr Tr Tr CD C3 CD CD T- C3 Ul CD CD Cal T- T- Tr OD CD 0 CD CD CD 0 v- ti CD O CD a-- CD ci v.) 6 6 6 6 6 r- 6 cP c5 6 6 cP oi 6 6 cO ci ci M r- O co 0)

Tr r- OD T- CD CD r- up Tr cy op op CD CD CD CD CV QD Tr CD C3 C3 0 cy up up CD CD CD r- r- Is CD CD CD C3 CD CD CD r- rs CD C) CC) CO CO • CD CV 6 6 6 6 6 6 6666666M60 CD 666 ions

M 6 t 0) - la lcu r- CD CO 01 CD r- CD QD QD 0 r- Tr c) CD CD CD cn Tr 4 ■ rs CD 0 C3 • M cy CID CD CD Ul v- r- CD r- cq CD r- CD CD CD CD rs CD •• OD 1.0 up cn • 6 Ti 6 6 6 ui c\i 6 cdr.66666c.i66 • M 666 ca N- O for

r- d de • CD CD Tr co C3 CD v- CD OD OD CD OD CD C3 C3 r- OD Tr U) 666 CD N- 113 O C3 CD CV v- CD CD CD CD CD CD C3 C3 r- Ns CD cocvm CV 6 6 c5 CD CD CD 6 ui cY 6 6 6666666M66 nee M r- O r- r- t CO r

C) no

d • C3 r- r- CD CD 01 QD C3 v- r- rs CD r- CD CD CD QD CD Q1 O CID 000 CD 01 Tr CD 0 OD Cal CV V1 CD 00 CD C3 CD CD CD CD rs C3 01 CD CV CO CV de 6 N 6 6 cP ui N 6 r- 6 6 6 cP 6 6 6 oi 6 cP cri 6 6 r- were

lu co r- O r- ides inc ox rs C) QD v- CD CD OD 00 01 U3 QD CD CD C3 CD CD 00 u3 a- CO r- 000 Ul UD CD CD CD CD CD rs- 01 QD CD C3 C3 CD CD QD OD C3 0 CD CD OD Cal s be O 66666r.:66 6 cdr.:66666M66 M 0)00 iou m •••• O t- ev dme

Q1 Q1 OD C3 CD cn r 00 OD v- v- a-- 01 0 CD 0 01 CO CV CO - C3 CD CD ll Pr CD CV r- 0 CD CO 00 CD LID LAD UD CD CD C3 C3 CD Tr Tr CD CD OD Ns UD . . . . . . a t h en CD 6 CD 6 6 r- r 0 cOr.66666M66 03 r- rs C3 it 01 v- O r-co bu w t C.) • bu • 00 03 01 v- C3 OD CD OD QD v- rs C3 r- CD CD CD CD OD OD CO OD 000 bers. CO • OD OD CD r- MN CD 0 mr QD• CV• CD CD CD CD CD CD CD r- Ul CD r- r- 6M6666 , 6 r- 6 cP 6 6 cP cP oi 6 6 oi Tr oi co r- O r- op lvern r- dmem Ma

01 CD OD r- C) v- CD ry CD N- CD Ns CD CD CD r- 0 UD CA • 01 CD O CD en CD r- Tr CD CD QD rs CV CO CD CD C3 CD CD CD CV CO CO • CD QD CV Cal

for . . • 6 ri 6 6 6 QD v- CD r- 6 cP 6 6 6 oi cP 6 03 Qi 0i r- ta 01 v- CD v- OD CO r- hows s da C.) it be 01 OD rs 00 CD 01 r Tr CD CD QD C3 Ns CD CD CD Is- C3 01 OD CD CD CD

ro OD 00 CD Tr Tr CD CD OD. rs. v-. co r- C3 CD CD CD CD CV QD C3 Tr • cP 06 0 6 6 OD v- CD 6 cP cP cP 6 6 M 6 cP op 00 r- CO r- because

C.) t Micr Tr Tr cn Tr CD r- CV CV Ns 01 CD r- r- r- cp c) OD r- 6 N OD 000 CD 0 mr CD CD 1.0 CD CV OD CD C3 CD CD CD CD T- CID CD CV LID 01 ren • • lase 6M6666 , 6 cx566666M6O 1- O OD CO diffe

C) ens lag ioc is d- C3 Ch C3 OD CID 01 g Tr CD CD C3 C3 p • 01 r- CD Cal v- rs OD UD Tr cn r N- CDQD C\I r- r- 1.0 CO OD r- CD 01 CD r- CD CV UD CD O 1.0 OD Ns ble • 04 C) (.0- - 6 6 cP 6 6 6 6 oi cP 6 O 446

O N r- OD ta CO 2 oxy 3 same

r

C.) lase e The p

U) ioc

2 . C

>4 lag

ions O A. CO S•JC)000 0 cNO N .2aiw cm mmc.i wcmmmm CO C p is ble 65 .7Z u_ :E op C) Z NC Cat C.) < 0 Th Ta

• • ▪ N • r- 01 ul CD CD r- CD CV CO uD CD C3 CD CD CD CD c0 OD 0 co v CD CD CD C. CD rr uo CD CD CO LO CD OI CD 00 CD CD C3 CD CD 00 r- CD O CD r- 4 u0 r- rt 0 Ca 0 ci cn 6 ci Ci 03 0 0 O ci ci ci 6 6 O L.C5 4 if) CD Ce) CD r- CD

CD r- CD rr CD CO CO rr CV CV CV CD 03 CD CD N r- I— rr C4 CD C3 C3 CD CO O CD CD CO CO CP r- CA r- CD CD C) CD CD c.1 CD O CD r- 00 C3 CV 6 ui 0 6 c5 o5 6 6 6 6 6 c5 c5 6 6 oi 6 c5 O u5 4 cY c5 co r- CD CV en r-

01 CD UD 01 CV CV Cn r- CV CO O 01 CD 0D C3 CC) CO CV CO 00 CD C) CD CD 0) OD CD CO CO CO C3 CP rr c) r- Lc)uo CD rr ti r- CD CV CD CD CD C4 U0 C3 CA C5 05 A-- C5 C5 QD r- C3 6 6 6 6 6 6 6 oi 0 0 CY) CO 4 4 ci 01 r- CD - r- 03 -

Ns INs C3 r- co cq C3 00 rr rr co rr M O CD CD CD CP r- CD r- CD CD C3 C3 CD CC) CD CD 00 03 CD UD C4 r- CD CD CD CD CD QD 00 CD cp CD CD .4- 01 01 ti a5 ci ci ci 6 ci ci r- 6 6 6 c5 e5 6 oi 6 c5 ci CC) 4 cNi ci O N r- 0) CV

C4 01 CD 00 r- r- 00 rtrr c) CD r- NO r- OD c4 CO aD 03 CD CD CD r- r- ONO CD CD 0, LC) CD aD CD CO r- CC) C3 5- CA CD C3 00ul C3 C5 05 C5 C5 CO 5-- CD ci 6 r-: ci ci ci ci ci CC) 4 ri CC) 6 r- 00 ions

01 O t C.) • ‘- la E lcu 03 cA r- CV C3 T- Cq UP a) r- co .-- CD CD 0 0 CD CD CO CC) r- CD CD CD CD 00 QD CD C3 01 r- CD OD 01 UD CD r- CD CD C) CO 4O O CD r- CD CO 00 ca N 6 ui c5 c5 c5 oo r- CD 6 co r-: ci ci ci ci ci ci O I.15 4 6 cn 6 01 r- O CV CO a..

N d for de r- r- 4 r- CD CV r- CD r- CO 00 CD r- C3 CD CD r- 01 CV N C3 CD CD OD CD CD r- C) CD CD CV VD CD 0) CD Cn 00 r- CO CD 4 r- CD CD QD. 00 T- 0) CY) 0,5 CO oi 6 C20 OP c5 6 6 UD r- CD r- 6 6 6 6 6 c5 oi 6 6 nee N O - r- oo t Ce) r-

N no C.)

LID 01 ere d 00 CV CD CD CD CD 01 CD co uo CD 0 r- CD 0 0 CC) rr rr CO CD CP CD CD rr r- c) CD 03r- h.- 00 C3 CD r- CD CD CD CV ul C3 CO CD CD CD Cn r-• w de ci O ci ci O c6 ci 0) CC) 05 ri rr r- 6 oi 0 0 6 CO r- CD 6 ti r- r- c0 lu N 00 r- O

N ides

inc C.) ox rs • r- CD CO r- 0 CD CD CD 0 r- co 1.0 CV CD CD CD

OD 03 u, C4 CD r- CO rr s • CD CV CO CD CD N V- CD N C0 0 0 CD CO .4- CD O CD r- 00 u, N be N 6 ui 6 0 0 00 r CD 6 6 ti 6 6 6 6 6 c6 6 6 ci Lx5 4 O CV co iou s.. N dmem ll prev n rr00 CD r- 00 00 0, r- UD 01 CD r- rt CD CV CD CD 00 01 CC) C3 CD CD CD CD CD CC) r CD 01 0) CD CD r-- QD CO r- r- CD r- CD CD CD CV UD CD a t h e oi 6 6 c5 CO r- 6 O 00N 6 6 ci ci ci ci 5 4 4 C 6 it O co r- r- T 03 bu w

t ;rt r- 00 41M1 CD CD C3 bers.

bu 1 CD C4 a) CV CV CD CD 01 CD r- CD CD CO UD CD UD C3 0, rr r- CC) CD UD CD CD CD CDV). C3. co CID CV CD r- CD CD CD 0, Ul CD CY) CO CD 0) 1.15 ir5 ci ern 6 oi 6 c5 6 a) 6 6 c5 c5 6 6 6 oi 6 6 O 01 r- c) r- r- 00 lv r- of dmem Ma

C3 CD CD r- a) CV Ul CV CD OD CD C3 Cn ts) rr a) CO CD CD CD en • CD rr uo s

for CD r- u, C3 C3 CDul r- r- r- CV CD CD CD C3 C3 CV Cl) C3 0) Cn CD 01 00 CD

• 6 c6 6 c5 c5 r- CD 6 ti 6 6 6 6 c5 ci 6 c5 0) U5 05 4 c5 ta O 01 r- CD r- r- co r- how da

amC.) it s

be D CD 00 CD C3 CD CV r- UD UD CO CD CD CD o 01 r- MOO CD 0D CV UP UD C

r • CD CV CC) C3 CD U0r- CV r- oD CD CD CD C3 CP CD CV UD C3 CY) cn CD CO r- 01 c5 06 6 c5 c5 UD r- CP 6 ci 6 6 6 6 ci 6 6 CY) CO 05 CC) 01 r- • 00 O r- r- CO because t Microp C.)

UP r- CD CD C3 CV 4 00 CV C3 4 CV Q) CV UD CD CD r- CD CD CD ul CD 0D r- en CD c0 .4 CD CV. . OD. CD CD CD CD 0 C) CD T- CO CD CO CD CD a) r- CV lase c5 cY c5 6 6 CIO r- CD r- 6 N.: 6 6 0 0 0 ci 6 0 CO 05 CC) CV C■I

O Ce) O r- iffer n- r- d ioc

ns is lag

ge

1.0 N- CO '- 01 01 00 CD CD r- 4 co r- CD CD CD le

p UD CD CV OD CV CD 01 OD

CD QD rr r- cv r- co r- CO r- CO CD OD CD 01 CD CD 4 CD rr r- LC) M N b cci 6 ci ci ci 6 6 0 ui rf uo r- O ci CC) ci ta me ci CC) O C*1 O Cal r- r- co 32 oxy sa lase er The p ioc

s Cn 2 . co C

>. laa

ion 0 A.

To , 0 000020 t

(.1 D c u cvwcmmmc., cmmmm (0 is Ca ble iT)TO=Ii_22moz NI <<0 Th Ta ▪ ▪

• CD O- CD CD U/ CD 6 CV CV OD CD CV CD CD CD 01 Ul c- ••• CV CD CD CD C3 U) c- 0 0 TrCD CD . .4- co CO CD CD CD CD CD CO 01 CD C.D CD CD CD 01 66666coT-6 6 06r-66666o-566 O • 4 0666 M r- O CV CD • r- MD c.) • UD co CD CV rs. Ps CO 01 CD CD QD c- CD 0 U/ CD N- C3 01 CV Cl) CD CD CD 01 • CD CO V) CD c- U) co r- co CD OD CA CD CD CD CD rs CD 0) • CD 6 Ns 00 CD • c6 r r- 0 6 Cl) r 0 6666666c-666 4 0666 c.) CO 0) CO

r- r- N.. CV CD CV cr 01 CD 6 CV CD CD CD CD CD Tr co LO 03 000 • CD U) UD CD CD CV QD CD 0/ V- OD CD c- CD CD CD r- cy 6 O CD N- CD 6 6 6 c6 6 6 6 T- o6 0 6 c5 c6 6 oi c5 c6 O cr 6 cr 6 ol r- CD CV 0) CD C.) CO CV Tr r- r- OD c- Tr Tr ro T- C\I V- OD CD CD OD 01 CO CV CD CD C3 01 CD CD Tr o N r- CD r- Cr CD CD CD CV CD CD CD V- CO CD 0) • c- CD01 OD • 6 cY r- 6 0 LO r- 6 6 o6 Q6 6 c6 6 6 c6 oi 6 c6 0) c- CD CO c- OD C.) r-

CD CO OD CV CD CO N- OD 0> Tr c- CD CD CD CD C) r- V C4 CV CD CD CD c- CD CV 6 CD CD CV QD CD 0/ V- 00 CD CD CD CD CD r- cv CD O CD Ps Cr C 6 a5 6 c6 c6 6 6 6 r- o6 c6 c6 c6 c6 6 oi c6 6 O uiri6 C M r- O 0) 1) CD C.) c) r- op up op .1- uP CO 4 CO CD CD CD Ts CD Ul OD CD C3 UD CD CD T-CA Q0COO C3 c- CD CD CD CO VI CD CD Tr 01 CA 666660666 - CO 6 6 c6 c6 6 oi 6 6 O OD c- CD M r- O CD C N c E a -c V- CA CD QD 01 01 CV Cr) CD Tr T- Tr CD CV C3 CV 01 CD zr CD CD CD a CD QD CD CD CD Ul CO CD CO C4 CO CD c- CD CD C3 CO 01 CD O ..er up. . a r- CD 6 CD 6 6 c6 6 6 r- cON:66666o566 0 op r- ,-CD C O CV 0) 1-- C CV C a

d r- co .1- c) CD 01 U) 0) r- c- CV c- CD CD CD Cs- c- CD CD CD CD a CL CD C3 r- CD C3 CV CD CD OD 01 Ul O— CD CD CD 6 01 CD O T- CV U/ 01 de 6666606.-6 o6 6 6 c6 c6 6 ri 6 6 0 6 ci ci v. lu r- cp rn a

inc C CD Ps OD C4 c- CO -4- N- 01 6 CD CD Tr CD CD C3 Tr 00 C3 O CV C3 CD CD CA Tr OD CD CD Tr ch CD CO CV CO CD a- CD C3 CD CO 01 CD O T- Tr CO r- bers ti ui 6 c6 c6 o6 6 6 O 06 0 6 6 c6 6 06 c6 6 O aj r- 6 C CNI co CV a

dmem C U) OD c- 01 CV CD U1 CV 0) CV OD c- CD cr CD OD Tr c) 0) CO 000 CD 01 01 CD U) c- CD CD 01 01 Tr C3 CV CD c- CD U) 01 CD CD • CV Ps C4 a- Ts h en I- 6 Ti T- ci 0 o6 6 6 ICS ccioN:cicicidOcOdd CD cr CO 6 it CV co

w N t a bu OD UD N- CD Ns r- cn C3 CO co CV c- CD CD CO O'— N- CV CO Ps 000 .c C3 CV OD C3 CV CV U/ T- CO N- C3 CD C4 0 CD CD CV 6 CD CO • CD cr CO CL 46 (Ni r 0 6 a5 c6 0) O ti O O O O O M O O 0) LC) ci CD T- co a lvern E .0 E C Ma

r a N c- 01 CD Ps CD Lo Tr T- Tr T- CV CD CD c- 0 0 Ps 01 CD Tr 00

fo CL ow coo o (pc, N- CV Ps CD CD CD CD CD N- CV CD CD Ps CV c-

01 ui ci 6 6 6 o6 r-: 6 6 6 c5 c5 oi c6 6 CD 6 cr 6 3 ta ••• r- CD CA CD C 0 c- da E be 01 CD c- cr CD OD 01 OD r- N- r,.. cy a) cy op CD 00 Tr C4 U) CD CD CD C3 a ro 0, c- UD 01 c- QD OD Tr c> CO c- OD CD OD C3 Ps CD CO U) CD c- CO Ch CA CD ui Cl) ci N o6 r- 0 a5 6 ui c6 6 c6 c6 6 c.i c6 6 C3 oi

rop cY 0) CV T- co C.) a .a Mic E

ta' • oup,T-66cym co CV Tr CD OD CD CD CD CD V) c- P- CD CD CD • 0CDC0.000)M0 CV CV Ps CD CD CD CD CD P- 01 CD C3 T-OD. Cq a lase c6 ui 6 c6 6 o6 c6 c6 o6 6 c6 6 6 6 06 c6 CD CD OD V-. C3 C•1 O CA CD

ioc r- N

lag - r- Tr CDCDCO 0 p CD cr CV Tr UD cr cr CD N.- V- 0/ V- Tr 0 (0 CO CV C) • CD CD 6 CD c- UD C3 P- V- CD CV CD CD CD CV LOO x 0) • c- • C)

me CD 01 c- C3 CD QD c- CD cdr-:66666o666 Ch 01 c- 'C r- sa E ea The -

2 . 0 C/) C co A

ic 0 A.

Ca 00000 0c.1 c.1 t Tzi uc\l cu cmmm oj cmmmm ble 1-

CD OD v- 01 CO 0, LID Li, co 4 r CD QD r- r- CD CO Ns y- CO 01 CD CD C) CD r 4 CD CD CV 6 r- r- 00 O CD CD CD CD Ns C4 CD CD QD CV 01 66666666 61--:666660l66 CD ajo-i ci yl CD N cn r-

co r- op r CD cn CD V" 01 LID Ul CD Ns CD CD CD CD 00 r- CO CO CD CD CD CD 4 4 CD CD 00 CO CD r- 00 CD CD O CD CD Ns CV CD CD 0 O T- ti CNI 66666666 r- 6 6 cj 6 6 cj ol 6 6 • cY 6 01 r- CD N r-

0 C.1 CV LO r 01 00 c- 00 CD 01 CV CD CO CD CD C3 CV CV cy N 00 00 0 CD Q1 Tr c) op CD. N-. CD. tt O r- CD CV CD CD CD CV QD CD r- CD 4- up CD CD r- CD 6 00 r- CD 6 6 uj 6 c5 6 6 cj ci 6 6 oi ai 06 ci CO 6 oo

N LO 01 CD CD CD 4 LA1 CD CO CD CD CD CD 4 (NJ T- CO 4 CD CD CD CD CD 4- C3 CD CID CD CD CO CD CD CD C3 CD CD CD CO M O CD 0 O CD. Ns CV. 6 6 6 6 6 6 6 r- 6 6 cj 6 6 6 (.6 6 6 CD 00 r- CD 00 CD N co M C.)

r 01 r- r- r- LO CD r- 4- op cn U) 000 Q1 r- Ns CO 00 Ns CV ,- CO • CD CD CD. 01. CD. r-. CD. 00. r-. 0) co op CD CV OOOrC00 00 O CD 01 Ns 0) CD r- r 0111■ LO r CD O 6666666c666 CD ti N\i 6 CO ions 01 r- CD t la lcu CV CD r- CV CD 4- up Tr tt r- r- CD 00 CD CD CD r- r- LO CD CD CD '7 0 00 (00 0 4, CV QD CD CD CD C3 CD QD 01 CD O LO. 01. CV. ca 66666666 6 6 ti 6 6 cj 6 6 06 cj cj CD 00 r- CD CO co N Ch r- for d C.) de • M 4 op N CD CV QD CO CO CD CD CD CD 01 CD 'Cr ON N U) CD C3 CD CD CD Ns CV CD r- CO CO CD OD CD CD r CD CD CD CV LO CD CD • CD 01 CO LO 0) Ch • 6 6 6 6 6 6 ol 6 6 4 646 nee CO N- CO t

0 o n

d 4 up r- up CD 00 01 4 CV0a- 01 ,- 0 40 CO CD CD CD r- N- CV CD CV Ul CD CD QD. CD. CD O 01000000000MCD CD were de O 666 CD ui 6 6 ci oo x CD r- 6r-:66666c666 CD lu 00 O N N ides inc

ox rs C) 01 00 CD 01 CD CD CD CD Ns r- 0 CD CD CD

CD CD OD r- CD 4 4 CO s CD CO r- CD CD 01 . CD. CD. Ns OD QD CD CD CD CD CD QD 01 CD CD 01 •0- be 666666 , o ci 6 ti 6 6 cj cj cj ol 6 cj CD • 0/ T- co N CD iou r-

C.) dmem

00 00 r- 00 CD 01 CD U1 CO CV CD 4- CD CD CD ll prev CD 4- or) CO CD CV LO QD CD C3 • CD cn. r-. CD. r-. CD. CO. r-. op cn op CD r- CD CD CD r- QD CD CD CV CV CO t a h en 0) • C3 N- N- CD CD QD r- CD 6 6666666c666 - Is: CV C3 it r- M 1— r- 00 C.) bu

w t E bers. bu • 01 CV QD CD CD N- CV 01 r- CD 4- CD CD CD CD CD r- CD r- CO CD CD CD CD 4- CC) CD CD QD CD CD CD CV CO CD CD CD CD CD CO CO C) O r- CD 00 CV rn 6 ui 6 6 6 6 6 6 6 cj 6 6 6 6 cj 6 CD 4 666 CO CD N cn lve N dmem

C.) n Ma

Cr 0/ T— cn r- op CD cn CD 4 CD N- CV CV O 4- CD CD CD e 4- CD • CD 0 CD CD CV CD T- V- rs. 4 co op CD r- CD C) CD r- 000 0) CD CV CV CD for Cr) • rr CD CD QD T- CD 6 6 (a 6 6 cj c5 c5 6 6 6 4 CO oi 6 ta 01 r- CD ..- co 0 hows s da it

be CD Ns 111 r- CD CV Q1 4 CO CD CO CD CD CD CD CD QD Ns r- 110 N o O o

ro CcDi g Cg (Cf) :c:o5 CD 01 CO CD CD C3 CD CD CO 01 CD O • r- CV LO CV 6 cor.:66666c666 O 4 CD 6 6 op 01 r- O N cn N because

C.) t Micr 4 C3 C3 r- op r- op CVQDr- Mr- MOMLOr CO Ns CD CD CD • CD OD CV C3 4 OD CD CD "4- COCD r- Or CD LOCO CD O N CD cn cy lase 6 CM r 6 cj 6 6 cdr--:66666c666 CD 6 6 6

M r- C) N cn ifferen N ioc d ns is

C.) e lag CD 01 4 O 6 4upcyr-cyom4 ,- CD CD C3 CD

p 4 op co oo OD

co Tr O Ncyocvo ,- oLocyo r- CO CD ble up 4- cy co CO CD xyg . . . 66066r.:c■i66 6 646cYcic.i6cY66 O 00 T.- CD N- O N CD ta 32 o same 112 lase er c The p ioc is Cn 2 . s lag ly

A. 0 ions O

(T3 „( 10 0 00 0c.10 " t

N p MCL- le voJwcmmm" m cmmmm

b 22mOZY Ca Ana i=

CD 0q T- -4- eq r- OD Cr .4- CD OD r- r- CD CD r- 0) OD C4 CD CD CD up c) CD 01 CO CD co01 UD CD CD CD O C3 CO 01 CD 0) 01 CD CDOD CV O 666660666 6 cors:66666M66 0) ui 4 r- .--- CD 01 O r r- 0) C) T-

• r- r 0 T-.• 0/ Cq CD 01 4 CD -4 r CD CD OD 4 Cal op co CD CD CD CD 0-- CD CD CD OD CV CD r- Ul OD CD r- 0 CD CD up 4 C3 O Op CDCO 4. Ct. O o01-:66666M66 O tri4 r- OD CD C) 0/ CD N r- OD r- N E • r- 01 01 CD 00 CD OD CD 4 CD CV CD OD CD r- CD CV CD 0.- O 01 CD CD C3 • CD OD 6 CD CD CV CD 00 M CO OOOOOCOMO CD r- Ul OD 0- C:) CD Ni c5 6 6 6 r 6 icri 6r:666660166 O 6 4 CD 00 r- 0) N OD C.)

CD Ul 4 6 01 CV CV -4- CO C4 r- C3 CV r- CV CD CD C3 T- Ca 6 c) c) • CD CD CD C3 -4- r- OD CD CD r- 01 CD CD C3 r- CD 6 01 C3 4 OD r- c) co • 6 ei ui cP cP 1. 6 6 N 61--:66666M66 O ui 4 M O N r- 0) O r 01 C.)

(Ni up r- CD CV T- C3 CO NO UD CD VD CD N- r- co OD CD CD C3 CD 01 C3 C3 CV OD CD 4 NCO 0 a- 0 0 CD COM 0 O 00 CV CO 0 co CD 6 6 6 6 6 6 cOr-66666M66 O 1.11 4 CD N 0) ions r- t la lcu CV Ul r- r- CD CV N CO el co -4- CD C3 C3 CD N- NN U) OD N- O o o • C3 C3 c7 CD CD CD UD CD r- OD CD CD CD CD CD 0.- Cal CD O CD O ca co CD 6 6 6 6 6 6 6 cP 05 6 cP cP 6 6 ci 6 cP O CC) 4 ui 4 6 M O N r- 0) d for de CD CO CD 00 CD r- 4 up op CD OD CD CD CD 6 CV 01 CD CO CD C3 CD CD r- Cr CD C) 0 UP CO r- OD CD CD CD CD cp.r- cq c) O CD 0 OD CO N- CO 6 6 cP 6 6 6 cP 01 cP 6 O U) 4 U) M ci 6 6 cP cP cP 6 6 6 nee

O N 0) t N E no

d r- v- CV C3 OD CD CD 00 CD 6 r- CD CD 01 0 0 CD T- U1 r- C3 CD CD ere r- CD 0 4 0 CD OD 01 UD CD CD CD C3 CD UD 01 CD O 00 cn op co de CD ui 6 6 6 6 r 6 6 . 6r--:66666M66 O CO 4 w 0) lu M O N ides

inc C)

CV CD CD 01 C3 OD CO U) 4 CD .4- CD CD CD 01 r- CD CD 0s CD C3 CD ox CD r- CV CD CD CO 0s CD 01 r- OD CD CD CD C3 C3 1"-. CV CD O CD CD OD OD 01 s bers CD CID CD 6 6 6 6 6 6 00r-666660166 O U0 Ni ' 6 N 6 T- O N - 0) iou N dmem

n 4 CD 01 r- 0 UD 01 01 OD CV r- r- CO CD 0 CD Ns 00 T- 01 Ch C3 C3 CD CV Ul 0 0 UD CD CD LC, 01 VD CD CD CD CD C3 co co CD C3 CD CD OM Ul• CV t all Prev h e 66666666 6 61-.:666660.566 O Ui OD r- CD

it N `1- 0 N r- 0) bu

w N t

E rs.

bu CD CD CD CV C4 00 4 CD 03 6 OD OD CV 4 CD co T-• CD CD CD 01 CV r-- CO ,- be CD C4 01 CD CD CV QD 0 OD r- OD CD C3 CD CD CD 0- CV C3 co CD r- 0-- OD Ul rn CO 6 6 0 cP cP cP cP 6 6 cP cP 6 6 6 ei cP cP O U1 6 00 6 m O N r- 0) lve N dme Ma

• co 4 00 CV CD CD r- 0- 01 0/ T- CD CD O CD CD CD 4 cq CO up CD CD CD en

for • CD OD UD CD CD ODUl CD 4 UD 01 CD r- 0 CD CD 4 up CD 0) CD CD OD CD .4- 01 6 01 6 cP 6 r- CD 6 6 6 6 cP 6 6 ci 6 cP 0) 110 Ni 01 6 ci ta N 01 T- 0 r- ,c0 N r hows da

E it s

be 6 r- CO CD OD 01 01 co op 4 r CD r- CD CD r- C3 m c) CD CD CD ro CD C4 6 CD CD N- 03 CD 4 oi UD CD CD C3 CD CD 01 CD O cn Nr- 6 6 6 6 cP 6 6 c5 6 6 6 6 cP cP 6 6 ei 6 6 O 4 N N 0) c.) M C3 N because Microp E t

01 0s CV CD a- r- 4 C3 a- Ns a- U) CD 6 CD CD CD r- CV 01 01 CO CV CO 4 en CD 00 0- C3 r- CD ti CD r- C4 VD 0 Y- CD CD 0 0- CV CD O 00 1- OD CD N lase c5 ui cP 6 6 co 6 6 r- 6 6 cP cP 6 6 01 cP 6 O 141 4 6 01 CD r- 0) M O N iffer ioc

C1) d is

C.) ens lag

• Cr 01 Ul CD OD CD CD C3 OD C4 r- Lc) op r- CD CD CD p CD Ns CN.1 r- CD CV CV CO UD 00 CV CD .4- up CD CD CV VD C3 01 r- 00000001- NO O cn C3 ble xyg 6 6 6 6 6 6 cP cP r- 6 I cP 6 c5 6 cP ei cP cP O LO 4 tri

•••• 0 CV r- 0) ta Tr a- same lase er 32 o er The p

U) ioc U) 2 . 11) C 0 lag ions A. ea 5N,J 0 0000c.10 _Ldalmcmmmc.1 WC 0/03COM co C p is ble 41C 1=< < <0 Th Ta •

cq (ID r- ce) CD OD CO 4 r- CV 6 CD 00 CD CD CD C3 CO 00 00 6 CD CD CD CD CD 0) 6 0 CD r- CO cp 00 6 C3 CD CD CD up 4 CD Ch 1- CD. r-. CD. O 6 ui 6 6 6 ,- 6 6 6r66666c...566 O 1.6 T OD CV M r- O cy r- T E r- CO CD r- CD C3 OD 01 I- 4 CD 01 C3 CD CD r- 6 01 cy cy CD CD CD r- r- CD CD 6 CV v- CD CO cr CD CD CD CD 0 4 4 c) 0) 6 m 6 Ns .OD . 6 4 6 6 6 N.: r- 6 6r-66666ci66 0) CO ci T r- CD co r- O T

CV CV CV CV U) OD r- CO cy T- C3 OD CD cr CD CD CO r- O up up CD CD CD CD CD CD OD C3 r- 00 CD CD OD 4 up C3 r- C3 C3 CD U) 01 CD O a) 6 01 Cr M CD 6 0 0 6 r- 6 6 6 6 6 6 6 6 c6 6 6 O ui 6 6 6 CO O r- 0) C., E CV OD rs CD CD r- CV 6 T LA, OD CD 4 CD CD CD CO Ns CV CO 00 CO CD CD CD CD Ns CV C) C3 00 01 CD Ul 4 CD 0 CD CD CD 4 4 6 0) CD CD OD OD• 4• Cr 6 6 6 r- 6 r- 6 ti 6 6 6 6 6 oP 6 6 0) 'xi 06 rs.- C3 C3 T OD r-

Ch CV r- C3 C4 CO OD C) r- CD CD 01 CD CD CD Ul 6 CV OD r- 6 CD CD CD • C3 CD CV CD CD N- CV CD r- CO 4 CD CD C3 CD CD 4 4 CD 0) 0) cv 4 • 64666r- , 6 - 6 r-: 6 6 6 c5 6 ci 6 6 0) 6 C6 r- 6 6 ,- T co ions cp r- t r- la c.) lcu C4 CD CO 01 C3 r- CD 0) c) 4 CO c) 4 0 CD CD 4 CO CV CO CD CO C3 CD CD CD CD CV CD CD r- C4 C3 CO U) at CD CD C3 CD CD 4 Tr CD 0) ID 03 CD CD 6 • ca 6 4 6 6 6 ti r- 6 r- Or 6 6 6 6 6 v.-) 6 6 0) 6 c.-) T N- CD OD O T for d C., de r- e0 OD CD CD 01 Ns U) N- 00 CV CD 01 CD CD C3 Ns 00 r- 0) CD CD C3 CD cr r- CD CD 0.1 CD CD OD 01 co CD CD CD CD CD CO 00 CD 0) 6m CO CV CO CO oi 60 ui 6 6 6 6 r- 6 6 6 6 6 6 c5 6 c.6 6 6 0) 6 6 6 nee CO r- O 0) t o n C.)

d • r- op 4 up CD 00 01 CV 6 CD CD OD r- CD CD r- CD CD Cr C3 CD C3 CD CD Cr 6 C3 CD N- CO C3 CV CD CD CD CD CD CD Ns 01 CD CD CO r- 4 10 were de 66666666 O 6 6 6 6 6 6 (-6 6 6 cr cv r- 0) lu O a-

N ides

inc E ox rs 01 00 CD CD CD 0, T- 00 EV Ns ti r- Ns CD C3 C3 r- co r- up oo CD CD C3 CD 4 4 CD 0 00 OD CD cy CD CD CD CD C3 CD rs CV C3 O cn CD C4 CO cy be 66666666 6 OIL c5 6 6 6 6 ri 6 6 O O 6 V) co r- O r- 0) ious C., N -

dmem E

CV CD VD CD CD cr r- 01 r- VD CD CD Ch CD CD C3 OD CD r- co CO N- CD CD CD ll prev 6 CV CD (0 C) CO If) c) 4 up CD CD CO OD CD C1 CV rs CD CD CD CD CD a t h en 6 6 6 6 CO 0 6 6 61.-:66666ci 66 O cr it co r- 0 r- 0) bu

w N t E s.

r r r- ‘4- 1.0 CD C3 CD CD ber bu CD O cr CD CO 01 4 Co r - CD CO r- CD CD 0 CD CD 6 CO CD CD Ns 00 CD 4 cy r- CD CD CD CD CD Ns 01 O 0) CD 4 .4 cv 6 6 6 6 6 6 6 oi 6 6 O ui -cf ern 66666666 VI CO r- O (-NJ r- 0) lv -

N dmem

Ma E r r r- r- CO 0) CO CD CV rs CD r- C3 CD CD CD r- T- 0) Ch CD CD CD CD en - CV CD s CV C3 00 01 fo co r- 4 CD CD 4 OD CD r- 01 CO CD CD CD CD CD CO 01 CD 0) Ch CD . . . CD 66666666 r- 6 6 6 6 6 6 ci 6 6 0) 6 cr OD r- CD ta CD 0)

C6 how r- da

it s

E be T CD 0D CD CD r- 4 cv T N- CD 03 CD CD CD 4 VD T- 00 CD cn CD CD CD ro 6 up up CD CD U) r- c) CD Cr) C) C.) C) CD CO C\I O 0) cn al 00 r- CA CD 66666666 O cdr:66666c666 0) ai (.6 6r-id 0)

rop CO 0 because

Mic E

CD CD CD C3 CD T- CO 01 CO T cr C3 cn CD C3 C3 Ul CD r- 6 CO 00 0 6 4 up CD CD VD 00 CD 00 01 6 CD C3 CD CD 6 01 CD O CD CD r- cy CV rent lase C, 6 6 6 6 6 6 6 0 6r-:66666c666 O 64 ffe M 0 C \ 0) i ioc d ns is e lag

cy CD U) r- CD CD CD C3 01 CD CD CD CV CD r- g CD CD CD p cy CO r- r- C3 00 CV CD CD Ul . CD. CD. r- op r- 6 CD CD CD C3 CO M CD O CD CD CD 0) ble 666666 , 6 r- 6 c5 6 6 6 6 ci 6 6 O 6 cr 666 CO CD C r- 0) ta r- 2 oxy 3

same r C.) lase e The p ioc 2 . CA ns C

>• lag

0 io 0 A. CC 5, 80000cN o 'c7) t *.r.= 1 p ocmmmm co ble 1--< <<0 This Ta

(\I W/ UD CD C> CD c- CD CD 01 O to (D Cr to CD C) CD OD (0 CV4 CDCD O O r- CO N N c- CO to CD LO CD CD CD V- N O CV C) CV N C) CD CV c- Ul CD C) cn OD UD O C/ O CD C) Y- C) co C) CD CV C) Vs C) C) C> CV Tr CV 0 CD 6 Ti 6 6 6 to T CD 6 0 ci ci ci ci C> 0 0 CD 0 4 UD CV CO co Tr T-

Tr - 01 CD O 01 4 UD C) N Cr CD CO cy r- co CD CD CD U) CD 4 CD Ul C) c- c- co Tr c> cn Tr C) CD C) ca CO 00 CD CA CD CD CD CV Vs C> CD CV c- CD CD CD CD CD CV CV 01 c- C) 00 C> CD C) C) V- Ul CD 6 T ci 6 ca 6 ri T 6 6 0 00. CD CD C) c- C) V- CD CD ci 6 6 6 6 6 T 4 oi ui 1- N O 0 6 6 6 6 6 4 01

01 CV CT) 01 0 (D CD CV CV r- to CD 4 CV C) ca r- r- In CD CD CD 01 Vs CV C \ 1- V) 0 0 LO LO C) C) N Ln CD Nc- CD N1- CO C) CD C) 01 r- c> CV C) cs CD Ul • • • • • • • • • • CD C) 0 CD C> CV C3 CD C) C) Vs CD CV CD CD C) C) 1- CD cn A- C) C) CD C) c- CD CD C) . . y- to 1- CD 6 0 6 6 6 6 0 0 Ci 0 0 Ti 01 Ti ci 01 01 to

to T- 01 r- r- Tr cn N CO CD O c> O C) to to CO CD c- C) 1-0 0) (D C) C) U) 01 CD T 00 CV CV Tr a u) 01 a ca C.) r- 01 C) LII CD U) 01 to C) cs, co a- CD 0 CD O 4 Vs c- C) C) V- co C) ci )- 6 6 6 a>. CD. O C) CD CV CD UD CD CD 0 CO C> O T C) N 6 6 6 0 ci ci 0 CD 0 0 C5 y- cri Tr csi 01 01 N

V- CO to N U) CD 01 to (D .- 01 '- Tr ca Tr Tr C3 CD CV C) Ul U/ CV 4 C) UD 4 00 u) v1 vs cD c- O C> C) CV It UD CD CV UI C) CI A- CV CD CD co C> 4 4 CV CD CD CD CD CD 01 CD UD CD CD 4 C> Ul C> CD CD C> CO V- CV 0 0 Csi 0 0 CD T 4 CD 0 CT) • CV •-• c- CD -• 0 ci 0 6 6 6 0 ci O ci ci T 4 CON N 01 CO

- Tto c- Ul CD 4 V- QD CV C) 4 CD 01 CD y- Tr cn cy CO UD CV V Vs Cr CO a Tr N to UD to ,- CO N CO OD cr CD c- to c- C) CO CD CO CD N to CV to a N C) CD 4 CD Vs co to c> a co CD U) C) T C) OD CD CD O cn CV 4 V- 6 csi ui 6 6 6 6 cri 6 ca N- 01 6 0 0 ci 0 ci O 0 0 0 0 0 - C5 0 ci 6 4 CO N

V- LO ED 4 N 01 CO UD CO CD CID CD C) CD 01 CD QD 4 V- CV CI T- UD C) CD CD 4 CD CV c,' vv ,r T- to C) 01 CV 4 CD CD 0) 0 V- co 0) (0 Y- r-• 4 •QD • C:)• CV• Ps• CD• 0• V- 01 O 1.0 C> C> CV CI n O C> CD CD CV C) C) CO CD C> CD 01 ID ) V- C> CD C) C) V- CD CD oi . . O T C) N 6 0 6 6 6 6 0 ci 0 ci ci CD 4 a T- ca N 01 01 01 CV t (p

LO in It CD o A- CD co co to cr C) O CO co a) '- LO rs 01 0> CD CD Tr 01

CO CO N 01 N CD c- p (D 1- 01 4 to C) 4 OD T- CD co CV CDU) N. CD CV Ul c- CD CD o C) cy cn cn CO 01 • • • • • • • • • CD C> C) C') O OD CD C) CO CD CD OM 000 le C) c- U) C) C) C) C) CD C) CD CD y- c. T 1- 0 6 6 0 6 6 0 0 0 0 0 1- 01 C5 CD V.:

4 01 N ing s 12) CD CD 4 V- Vs C) Vs CD V- CV Ul Ul O CD co CO 01 Vs CD cn u) 01 e- CD co C) 4 03 C) u) r- u) C3 CV 01 A- CD N to 01 O Ul N 1- N CO C> n- CD cn CV c- 11, CD UD CO c- CD CD CD el CD to CD C) CV CD V- CD C) CD ( 4 6 6 6 6 ci co 00 O c- C) N CD 0 C> 6 6 ci ci O ci ci c- 01 Ui e- CO CO 01 CV l ine be Tr 01 CD LO 0 O (D CD to ,- N- CD cr CD Ul CD 4 V- U1 CD CD 01 Tr Tr c> C) CD O Vs CV 01 OD 03 If) V- CD 01 cn co Cr) (D 01 CD CD c- CV c- 4 C) CD CO CV CO CD CD CD C) CV c- Ul ro Cr> CD CD CD 4 C3 C) C) cc) C3 Ul C) C) CD O a CD Vs ci 6 6 6 oi cci 6 6 0 • • p O CD CV 0 6 6 6 6 6 1- C5 CD 6 ca 6 a-- 4 uCO 03 c- CV 2) co a CV CV 4 c

)- Tr 1, tt

4 N 0) N C) el CO (DO O Yr V) C) CV Cr Ul CD CV r- 01 ul c> N- C> Ul UI V- (c 4 V- Tr N to C) 01 CO C> CD Tr r) CO CD c- 01 CD Tr CD O c> - 0 CD A- CD CV 01 UD 0) 0 CD CD C) Tr c> u) CD C) CV C) V- CD C) C) CD CV 1.0 c-

ci cri ci ci ci oi cd ci ci no.

O N- 6 6 6 6 6 6 - O 0 ci O 6 4 cri cY t CV co 01 CV 01 las

0 c a) to N- to U) CD N CO to CD CO CO CO CD 03 03 Tr a CD 4 CV C) Tr C) CD CD QD CO CO 01 UD CT> CV QD C) Tr 00 C) CD CO N N U) 0 4 0) 0 LO CD CD cn cy 01 CD CD C) 03 01 CD UD C) C) CD C) T- CD m 2) 0)0. . CD CD c) c•-) O LO CD CD

ri 6 6 6 to 4 6 6 1, y- to - ci 6 0 ci ci ci T C5 C5 C) 6 6 c- 4 C5 oc; cri E co CV 01 N 01 (m

CO cn - QD 4 CD 0 0 cr 0 CY) CD T- UD CO N- CD C> N- to UD C) no. To U1 UD CV CV CD CD Ul 01 CD CD CO Cr 0, V- CD c- c- CD U1 CD CD C) CV 03 CD C) CV a a> co a> 2 6 6 N 6 6 6 to to 6 6 0). cn CD CD cr C> Ul C) C> 01 C) QD CD O a co co le CNI O 6 6 6 6 6 6 - 6 ci ci ci 6 ,- Tr 01 co to

o mp •-• 00 01 CV 01 .1- 4 5 # (.) sa

N- CD 01 CD CD to co •- 01 to Tr co CV C) c- Vs 01 cn c> CD CD cn CD 03 a- 03 1- 01 he - 03 CD CD CD T- 0cn ( D 03 N- N C) 4 UI C) c- 4 c- CD (N/ co c> Nr t a a CD C) CD 01 ID Ul CD C) C/ 00 C) CD cn CD cn 01 • c- N.: C5 C5 C) C5 cri ca ca CO

N to O CD CD 0 0 CD 0 CD 0 0 0 C5 T- 01 cri oci to To co CV CV rs 111

co fe a) CO CO V- (DO Vs CD Ul c- C> .0 4 C) N Tr N c- 4 CO V- c- 01 CO rs 01 CD to to CO N- C) to re C) UD CV co a T 0 C) C) UJ cr CD CD c- CD CD UO CD O to N 1- C) CD CD CD OD C) 01 • • • • • • • • • 0) 0 CD C) C) 01 CD CD CD 1.0 CD nt CD C) 0 CD C\I CV a- O T ul CD C> C) T.- CD C) CD • CV T- 6 ca 6 6 6 6 O ci 6 6 6 ca ,- 4 CD 4

N 01 Cr row, is s ly to N Tr ca T- CO UD CO -- C) c- 0 C) Cr CD ua cn UD - Vs. CD C.) CV 4 r- u> a OD U) CD CD A- C) C) N V- CV 00 Tr C> CY> CD 01 CO . . . . . . . . . . CD CD C') CD C) C> c- C) OD CD CD 0 0 C•1 01 (0 C) CD CD CD C> CD CD O y- c- N to 6 6 6 6 6 6 T C5 C5 6 ca 6 T 01 c- cri ana 4 CV N he Fe

t in as O. 4-, Fe

U) de

C om l

0 ta

TO co b 2 0 2,) ,, 0 173 .I-. 0 .17; (13 0 4 4 0' oCcocu C (/)

. z F u_ 2 z I- I-0 7.W IL *To 1° CL _J P: 7ri ti 6 2 E 2 (1) < u- 0 The

• • • •

Q3 C) N Tr CD Tr N 03 CO Tr N rs Ul N C) CV rs. CV 00 1- C) 01 CV r- CO CV CD 00 Tr CD CD C> r-N C) V/ r- c) TY Tr CD CD C) QD CV CD C) C) Cal CV Ul C> CD CD Cn Y- CVO CD . a- CD COO CD Tr CI Ul C> C) CD Cn CO 1- CD s- 6 6 6 6 Tr v.) 6 6 CD C) C) CD C3 CD T- Ci CD Ci CD a CD CI - 0 ci 0 ci ci ri Cs: ci N 'I' r)

N el P- O N N CO N N Y- rs CD CV y- CD Cn 01 Tr CV cn C3 U) 03 C) C) N CD CD 01 CO C3 N 00 y- Tr C) CD CD CV CO C) C) CD CD CD CV CD O C) CO CD el C) CD CD CD CD C) Tr 6 csi 6 ci 6 6 T- 6 6 6 0) CD. C3. CD ONO CD N T- 0) C) N 6 6 6 6 6 0 - CI O ci O 6 y- 01 V5 Tr CO

Tr 0) CO UD Y- 01 C3 OD N CO CD CV C)CD NnC) CD U) co co OD 0) 01 OD OD CO Tr - 6 Tr c) el C) CD - CO Oa CD y- y- 03 CD 0) .4- a a CD 01 CD rs Cn U) 00 rs 6 ci ci 6 6 ci ci ai 0) CD cn CD C) 01 C) Ul CD 0) O co a a C> . . . . 1- N 0) •• O - CI CD CD Ci CI CI O 6 ci 6 6 c5 01 y- Ch CO Tr N N

CD N 01 N N CO CV CO C) CD CO U) C3 CD CV CV C) CD CV y- r- CD T- 00 TY CP CO Tr C) 01 I 01 ,- el OD C) CD UP Y- C) CV 141 Tr CD UD CV CD y- C) C) CD CO 01 CD CD CD CD Cn CD Ul U) CD CD CD C) C) CV C) UD C) C) U) CD CV C) CD CD CD CO CO CV O N co 6 000 6 6 a Cs; . . . . . Cal 0) y- CD N CD CI CI CI Ci CI 6 0 ci ci ci y- Ol CV CV M LO

C) el UD CO y- 04 01 U) Tr C) CD CD 00 01 CD 0) 01 C) Cal T- Is- 01 Cal p- r, Ul Ch CV CD CD r- O C) C) CO N 0) C) CD CA C) ul C) 0) V) V) Tr 0 c. 0) cn rs- .- C) C) CD C) CV C) rs- CD 0) CO CD el O0 6 co CO Tt C3 O OUOOOON0000 co ci N 0) s- 6 ci ci 6 ci 6 ci ci ci ci ci ci ei u5 cd Tr el Tr

CO el r- N Tr T- CO N CD CD l 03 01 ON CD CO Tr C) 01 ODCDOD CD 00 01 N CD CD CD CO C3 C) CD N 0) 00 CO CD CV UD CV 00 C) C) Ul ,- 01 CD CD C) N ‘t OD C> 0) C) CD 01 CD COO CD CD 00 CD CD O CD CO CD QD O.- CO c5 6 c5 6 6 6 6 0) . . T- 0) C> s- 6 6 6 6 6 6 CD 6 ci 6 6 a- Tr 6 cri (0 Tr CV N

CV C°7 V CO QD TI• CO C) el C) co 0) C) 01 C> CD CO 0) CO OD N N CD C) C3 U0 OD y- • 0) Tr (\IWO CO CO CD 0 N 03 •- C) CV C) ,- CD U) C) 0) OD N CD CD CD CD CD Tr aa 00 a- CD CO C) 0) Ul CD Tr CD C) C) CD 01 OD CV 01CD O CD C. ) 00 ,- 000 V 0)0 0 O CV y- O 1- 0 N CD CI CI 0 ci 6 O C5 c5 6 6 6 y- 4 cri ri CO t (p in o C) r- CO N O CO 01 CO UD Y- C) C) CV 03 U/ Ul C) CD CD CD CD 01 T- CV N CD 01 0) u.) p 00 .- COOV) T- CD CDCD Cal C) C) at C) c) c) CD Tr ,- 01 C) C3 C) CO CO U1 • 01CD O C) N C) N CD C) CV C) r- CD C) C) C) CO 01 CV le T- CO .- C> CD N N CD C) . . O 0) CD N 6 6 6 6 a 6 T- CD 6 6 ci 6 T- Ti CO 6 CO

M el N ing s 12) CO CD 01 C. CO CD COO 0) O C.C. 0/ Tr CO N C3 C) OD TY CD 0) CD azt CO

OD CV y- Ul CI00 CD C)CD Cal CV r• C3 CD C) N el OD C> C) Ul y- CV CD CD 0) C7 CO CO c0 11, r- C) 0) C3 V' C) CD O CD C) CV C) U) C) C) CA CD C3 ( UD C3 0 a.- N 00 0) y- 0) C5 N 6 6 6 0 6 6 - C5 CD CI Ci V CO CO rs: M 01 N line be UD 03 a- el U) CV Ul CV Is- y- N CD 1- O UD CD r- Tr el N 6 a-- CD CD Tr 01 CO 111 Is- C,) 01 •- a- 0 0 CO r- CV O T C) CD CD 01 (D CD C) CD CD 01 r- CV ro CA C) O C) C) 0/ C) UD C) CD QD ONO C) CD CD CV C) r- ci 6 c5 c5 ci 6 6 6 6 6 N p C) 0) T- C) N CI CD Ci CI CI Ci ci ci ci ci ,- 01 CV CV Vi 01 Ul 2) c 1,

QD rs Ch y- Tr U) 00 C) co •-• 6 el Tr CV CD CI Y- UD CV UD CD U1 C)r- r- (c CO VI VI UD C3 OD CD CD a co C) CD CC)) CD Cal el CV C4 CD CD UD y- CV C) CD CD C) C) 00 01 0) Co CD CD CI 01 C3 UD CD CD T- C) OD C) CD C) CD 01 Cn Tr cri ci ci 0) cc; ci 0 ci ci no.

0) •- O a- 6 0 ci 0 ci ci 6 6 6 6 6 ci •- ui t Nr el N

las ite c

01 r- CD 01 CD 01 CD 00 T- UD rs 01 C) CO 00 CV Ul CD C) Y- CO CV UD 1- 00 Cn Tr r- CO 2) cn CO r- co teor 00 Tr C) CO Ul CD Tr 01 CD CD NCO C7) C) N r)CV •-- CD (1) T.- CV CD CD CD UD m 0). 11. CD CD CD 01 CD CD C) T- CD 03 CD CD O CD. CV. CD. .

a X00000 6 6 6 1, 0) CD - 0 ci 6 0 ci cri 6 6 6 6 6 r, CD CO

me Tt V) N (m

lvern el r- CO CD CD QD CD OD CO 0) r- 0) rs CD Y- 0) r- Y- cn - O CD r- U) Ch N CD Tr no. LL) CV Tr CV CD C> 0) rs C) CD (NI r- N O Tr 0) CC) 000 C) Cn C3 r- CD le

Ma cr) o O C) C) CV CD CD C) 0) rs ONO C) CD CD 01 U1 CV

O •-• 6 6 6 6 6 V 00 co (.1 0) T- ci N 6 6 6 6 6 ci O ci ci ci ci ci T- C) O) V Tr M mp he f t sa o

r■ Ps CD r- C) 01 CO CO 01 CD C") UD UD CV CD Q) CV Tr Y- C) CO Tr CO CV C) Ps C) CD Tr C) he U) 01 O ,- Tr y- CV C) CD CD 01 r- CD CD CD CD CD CD T- Ul rs. 00 01 CD C) el el CD C) CD . t UD CD CV C) CD CD CD rs Y- ses 0) 11 cn c) 6 el CD CD CD CD 6 6 6 6 s- 00 6 c5 6 03 . .

y- Tr CV CV (-6 to ly C) 0) 1- CD 1- 6 6 ci ci ci ci ci O ci 6 ci T- el U) fers ana e ■ C) CD CO CD CV C) el c) r OD CO O 01 CO r, CD C) r

be 0) CO c) CO Tr c) c) Tr O N 0) r- CD C) N CO C) C) U) 01 ID C) CD CD CD CV U) C) C) r- CV Ch C) CD CD C3 Tr CD CV ■ CO C) 01 CD CI CD CD CV Tr CD ro CD C) CD C) ONO r CD CD CD T- ei 6 6 6 ei 6 6 6 05 N 0) y- C5 CD CI CI 0 C5 CI 6 6 6 6 6 T- Tr ci ci

el Tr row, rop ic CO s is C ly

m CO r- N Tr Oa CO el a- N O C) r U3 D C 0) N CO CV CD C) C) CV CV 0) COCO I- 0-0 C) C) UYD- Oa N 0) CD CD CD CD CD CV CO

N CD na C7) C3 C )CCCCD C 0) Ul C) el CD CD CD CD r- T- 0/ 000 c5 c5 6 6 cri 00 cd a

ene X 0) O Cs/ ci 0 6 6 6 0 ci 6 6 6 c5 6 T Tr co 6 c5 Tr el he FeO

rox CO t Py as o. in 3 de l Fe

A. C

— o ta + To co le oo o + + c, -• b U 52 co (0 c) o a) ca O

Z F- *To H Q u_oEzEozs F— 0 cn F2 i= 2 E F u- The Ta ▪ ▪•

M CO 00 N el CD Tr O Tr T- UD TY CD ol T- CD N Tr CD CT r- 01 a rl CD r- C) 00 CD CD Tr Tr N- CD CD N C3 C3 ul Tr O Tr CD Tr cn 6 r, N el C3 C) Cn r- V) CV Cn C) ca CD T- 0 r- CD Tr C) ul CD C) CI CD Cr) ul Ci T- 6 6 6 c5 Ti ri ci 6 . . T- C) O ci O ci ci ci O CD a a a T- oi ui T- C3 CV LO It C.) CV Tr C) 00 el a rl 0) 000 0 CD UD Tr O CD C) 00 ul CV a C) T- ul T- rl a a U3 a r- C) ul 01 CD CD CID co O Tr OT- T-- OT- O C) CD CV r- CD CD O C) e- ol CD O C) CD rl CD UD C3 Tr CD Tr C) CD C) CD C3 Tr el Ci T- cr 0000 6 ca O cn CD O T- Ci N ci d ci ci ci ci ci ci ci ci T- t cV CV CV X el Tr CO CL *up E 000) N- r 00 C3 00 00 ul CD ca 6 co Tr oa ca C) CV CD c0 Tr C) Tr CD r- ul r- Tr Tr LA T- ul CD T- CD C. C) V) N ulC) CD C) 00 CD a N Ul C) CD -4- c) M ul Cn CD 0 Cn CD C3 Tr 6 Tr CD T- CD 00 C) C) CD C) CD 01 a ci ai 00 0 co ai 0 0 a 0 0 CI a a T- O CD ca 6 ci T- Ti cV TrN O Tr CV Cl CD N 4t E el el C3 Tr Co T- a CO N T- LO NJ' Ul cn CD CO UD Tr CD U) C) Tr T- CD T- (O 00 ul ul a T- ul C) el 00 CD O NT N N CD T- 00 6 CD UD NTr c> c) M Cr) CD CV uD C> cn CD CD Tr 00 a • O 6 6 6 6 ca 6 6 6 ca co CD CD Cn CD Tr Tr CD O 00 CD O a CD CD 0 a a O Ci a a 0 Ci T- ei T- Tr CV C.) 1- Tr CV cl CO eq E ul a CD Oro r- 0000 O CO N CD Tr CD el CID 00 C) co r- cq cn M ul CV T- oa CD T- CV CV 4- N O C) T- u) ON C) O Tr c>0 6 C) CO co ua ua CY C) T- C) 03 C) CD O C) rl CI C) co co CD el r- • 6 6 Tr 6 ci 6 Tr ci ca cci CD 0 CD CV co Y- C5 N Ci 6 ci 6 6 CD a a C3 a T- pi Tr Ci T— TrN Tr LO y- CD It C.) 0) CD el N- N- CD N CV a C) CO CD CD O QD u) T- CO CD M CD a a UD O Nt NrO el T- Tr C) UD CV CD r- O V ul CO r- f0')l O N- C) 01 N a CD CD C) N el N O N- CD 0) CD CO O M CD T- C) Tr C> C) 00 C) CD CD 0) CO CV a) O OOI-OOOh00 0 N . . 03 C3 N ci 0 ci ci ci C) ci O ci ci y- ri 6 cri Tr cq nr CO it u 00 N 00 CD Tr C) Tr N Tr C) CO O co Tr c) Tr ea CD a CD N C) rl C3 a CD CD ul Tr Tr a C7 T- a C3 Ul r- CD C) N a CD r- CD C3 C3 NCD Tr CD N- 00 CV 0) CD 00 CD C) 0 CD (NI Cl C, ) a a oi c; OD ci ci co cr? cn C) C) Tr CD ul CD N- O T- ci 0 0 ci ci ci O C3 aaaa Ni v- 6 CV C-, Tr N el (p CI t in

at E o U0 CV aD CD T- C) Tr CD el N a T- CD C) 00 u) T- • N Tr N N- CD T- CD N CD N p CD Tr N el CO C) C') 0 C) CO r- N Co C3 C3 el Ul CD CV Cl) Tr CD C3 C) CI Tr a Tr Cn CD CD C) CD C) CD C) CD C) C) CD C) 6,6 a Cn le ••• a a cri ci ci ci ci 05 . . N • CD T- C) 6 6 ci 6 6 6 O 0 C3 Ci a Ti T- 6 co

Tr Tr ing C4 (.4 s E 12) • Tr N a r- CD u) T- 01 a CO LO U1 O co ,- oa 6 r- CD N CD el r- V) CV r- CD r- ul el CO C) 03 r- T- CD 0 CD 0 0 N ca co ,- C) CD r- N 00 T- CD CD CD r- r- a 11, a CV CD CD CD cn r- CD CO CDCD 0 C) C) CD C) 0) CD CD ( dl• Ci 6 6 6 6 ui CO 00 CD ‘a. N CD 1- CD N ci ci ci O 6 6 6 6 ca ei ri 6 6 line

) CO * C.) be Q1T- N Tr C) C) MN CD co 00 C) CD Tr Tr rl CD CD CD CD C) NT- CA T- a el a CD CV TT 00 C) el ul C) C) cf CD a CV CV CD CD CV CD CD T- ro CD C) CD C) cl CD a C) CD Ul CD Tr CD CD CD CD CV T- O ci C D O ci O d ai O ci O p CD T- CD ci 0 ci ci O O a a CD T- ri 6 csi CO CO ,- M Tr 2) y- c

LO CO 1, 4k C.)

N- r- 6 CD 000 UD CD CD el cn r- C) C) CD rl a T- co 00 c=) r- (c OMr CD co CD 00 CD cn e- T- N Cn CD. r-. 00. CD. C3. CO 01 el CD C) CV UD CD CD CD el ("1 u) C) CD CD. CD. CD CD C) CV C) r- 6 CD r- CI CV CD CD O CD. LC). LA. T-. O Ci Ci 0 a 0 r Lc) CC) T- 01 T- LA T- T- ci ci ci ci ci ci - ci O ci ci ci no. t CO CI CD T- el ul O

•"" las Ul CO ite

* u c

• C) Or yl 0 CD a N C> CO U0 r- c) co Tr Cb Tr CD CD r- C) Tr N C> C) N Tr a 2) CD 01 00 C) C) 00 el r- teor T- CD cn u0 CD CD Tr 00 Tr 00 CD Tr T- rl CD CD C) C) T- CD 00 C) CD a ONO CD C3 Tr Ul 00 m • O Cn CD CD ci d ci ci 4 ci ci 1, co N CD T- C3 a a a 0 a Ci 0 C3 a Ci C3 Tr ri csi

me Tr Tr co '-

M CD (m

ern * C.)

lv Tr CD Cr) CD CD CD CD r- c0 Tr Tr a N LO N N- 00 el .-- CV 03 Nr +- no. cv CD N 00 rl UD 03 T•-• O LC) CD CI C)O CD CD CD N UD CD CD 14) T- CV C> CD CD ul . . , . . . le . . . . CD CD C) CD T- C) 00 CD T- CD 0 C) CD CD 00 T-O C)

Ma O T- 00 CD 0 0 U) CD CI C. T- cV O ci 0 ci ci ci ci 6 ca 6 6 O Ti cP 03 Tr Tr T- he CV ‘- 01 CD f t it C.) samp o

111 N I- CV OD rl r- C) 03 N O CV CD CO N- T- C) CA CDa Ul C) C) CD ul CD a he CD a T- T- CD CD CD CD 00 T- M Tr r CD el C) cv cn C3 C) (D Nt O A- CD NY N t . . . . . . . . C) CV CD r- C> C) O C) CO a N ses 01 C) O CD CD C3 C3 CD C) N T- CD C3 CD CD a r- CD CD T- 6 c5 ca ci 6 Ti Ti 6 CO to ly a- CD C) N 6 6 0 0 0 0 M Nt t7) N fers

ana * C.) CD C) • N- 00 CO CD CD Cn T- C) C11 CD 00 r- CD 00 ol CV OD CD ul CD CD T- CD Tr C) Tr re be a CD • CV Tr CD el aD C) T- ul C) CD r- T- CD CD a T- T- CD C) CD CV r- CD CD CD CD r- , u, r- CV CD CD CD CD ea r- cn ro 6 • a a CD 01 CD 0) CD CD CV C) CD C) co ci ci ci ow, N CD 0 0 CD 0 0 ci O O ci Ti ci 6 6

NI- r

rop ih c7, ic s is at C

LL ly (11 Cq m 41 MMM Tr a T- CD C3 CD u) CV CD cv T- O M N 0 ul CD CD CD ul N QD 01 Cn CD 01 0) CD CD LO (D CD cv T- r- T- c0 C) O CD rl 000 CD CD co cn

ne 3+ CD CD CD ONOCVC) a CD O a C) rl C) C) 6 CD u/ Tr a r 6 ca 6 6 6 ca 2 co X • • O ana CV 0 a CD CD 0 Ci O Ci a a C3 T- Tr ri ui 6 xe o cp co Tr he Fe

ro CO

L.) cse t 4-•" 43 (.) in

Py tei as o. 3

C C de (I) l Fe

A. C

X 0. 0 ta CO o + (13 + a 76 co 2 E .,0 ra-, o ble o 00 0 0 o 0 ns e5 4' co a) - as

u- F LL(...)zE ~W U. *To u) < u_02z2ozY U to •ec m2 The Ta •

to O C3 00 N CD nr co ,- co C, 00 UD C) co cD C4 OD UD oO CD CD CD N 4 C3 C3O cl CD COD C> C) CD CD C3 CV N OO N CD I- 0 CV C> r- CI cn c, nr nr co N ' 6 6 6 or O O O ci ci 0 ci - 6 6 6 6 6 ci V V CO 4 Ca 01 N

nr CD Cn CO CI el co to CO C) N Ca Ch NI- CV cv 03 cv uD CV c0 CD O N N VDCV Ch Cl 141 C■ U3 CD C) 00 O cn 4 N- 0r- CD CD . . . . . . . . . . C) C) 0 r- CV CD r- CD CD O O •- C> C) C)00 C> 01 0000 CD - N.... Cr) 0 ci ci ci ci CI CP CI O ci oi M op N 03 (.4 OD E to CD co 1.0 up cn nr co ,- to nr cr M CO N- el '- CD OD u, 4 nr CO U) C3 CD Cn CD C3 nr co c) O N a) M 4 O C) CD CV 4 CV CD O N O N- C) C) 00 CD CD co co nr CD •- N ci O ci N ci ci ci O . . . . . N O 6 6 6 0 6 6 O C> CD CD C) Oi UP 6 cr CO 4t •• co U) N- op r- N N r- to ,- O CD CV 4 op CD CV ul 4 CD 0 0 el .0 M nr 0D sr 4 QD OD 0 00 CO C> r- CD ul cv cv - cr-UP el CD QD CD CD el C3 CID CD CD 0 C. CO Ci Ci 0 6 6 0L— )6 6 6 O Tr N V- CI) 6 6 6 ci 6 6 - CI Ci 0 ci ci 4 0 4 c•1 M el el 03 N E 03 N- 0) oq nr c) Cn Cn CV ,- to UD ul C) N ul N- CO C) C> CD aD 03 cv CD co 00 ul Cv C) CO 04 03 C> Cn UD C) CD Nr Cn CD co in CD 0 C) C> NCO C3 C> C3 ul r- r- • • • • • • Cn Cn C> ONO r- CD C> CD CD el CD CD C) C) CD el ul 0 CD 0 0 0 06 6 6 CD N O ,-- O - 6 6 6 6 6 6 Ci CP CP 6 ci UP U3 cc) 4 M -- 03 uD * CD ol al CD CD C) r- or 0 or CD ,- O sr to Cn N C3 CD OD C3 CD cn nr r- op U) op nr CD ,- el CD to ul O V- 00 0 O 4 0,- elf')00 Cn 03 ul r- . . . . . . . . . . Cn O C> C) NO COO C> CD OD 0 0 C3 Cn CV sr ul O co CD CD CD CV CD CD cri . . N N O ‘- N CD CP CI 0 0 CI 0 Ci Ci CP CI fh up C4 -- el N 03 I.- * C) 00 In 0 M N 0 O s- CD to el C3 01 4 el 0 O O to 0)O O 4 c) c) op c) C) el• 0 LID• • r-• CD• ul• CD• C3• cD• a) O CD cl N C) CD el cv nr c) CD O 0 ul C3 sr CD C> O c) •-- nr up CD O OO CD c0 C) ) CD C3 nr c) c) c) CI; N O CI N 6 6 6 6 6 6 6 6 6 6 6 niN ' N t (p in o CD CD C> el U) N CD C) Cn cn up CO C) O Cn up 00 4 CD CD U) Ul 4 el N N- p M N r- co op c) CD N CD CI) 1.0 cn co el N CV O CD c0 CD cn N op to Cr) 0) 0 0 s- CD OD CD CD 00 C> C3 CD 00 CV le N — r 6 6 6 ni oi 0 O O . . N O -• O -0 CI 0 0 Ci O 6 6 6 6 ei ei N N

4 4 ing

CO a-) s 4t 12) • OD to cn O4 N 4 NO CO - up CD CD 00 oD CD h 0 0) 0) 4 CD s- CD M O to CD CD U) a) N N- CD N CD 0) (JD N CD C> cID ,- CD O CO N O C> to CO to 11, O C> uP cl el CD C> CD 000 03 0) UP CD sr CD C> ( ci 6 N ci 6 6 ni 6 6 6 . . . . . N O C> - CP CI CI 0 CI CP O 6 6 6 6 ci 4 el

co line

4t ul N CD el N- N to 4 N O 4 UD O 00 •-• CI) CO CD r- Cn el CD CD CD 03 cv ul CD 4 CO 4 00 ul r- C) C> - r- N O M 0 c) rp Cn CO C\1000 C) CD u, r- ro be C) O oo cn to O 4 C) CD C> CD CD UD CV 0000 ni cri 00 0 ) p CD CI N 6 6 6 6 6 6 CD 6 6 6 6 6 ni 06 ei to

N 2) nr op c 1,

4 sr el 0000 CO 4 C) N- O to to CO cv C3 CD 00 el 0 CD C) ul C> (c 0(00)(00 4 4 CD C3 O :r O ccl C) N CV O CO•-- CD C) CD CD CD 4 CV CD CD r- C) CD 4 ,- ,- N CI 6 0(N 0 6 6 0) . cD. O C> CD N CD r- 4 06 no. O CD N O 6 6 6 6 6 6 6 6 6 6 t M op N

las ite r c r- 4 CV 4 C) N- aD N CD C3 cv CV 0 C4 U3 01 Cn CD ul C) CD N- CD cy CD

teo N- to nr CD CD CO CO CD C) O 10 el o0 CD r- CD CD N N r- 0 C) CD 0 N. N- O CD CD 00 cc) m 2) 6 6 6 6 6 ui 0000 06 CD. C>. CD 0 0 CD CD CO C) CD CD C3 01 C) CD CV O CD - 6 6 6 6 6 6 CP CP 6 6 6 Nr 06 ui ui 1,

me 4 el m ( E

lvern ul C) cv 00 03 nr co CD ul CV c0 U0 Ul cn QD cc) Ca Ch QD no. uDCV N- op to 0 ct co ID c■ Ul CCD V- UP V- C3 CD e, r- CD CD C') CD sr el 4 OP CD Cn CD CD CD co co CV CD r- C> C> CD CD CD u, C) le

Ma O cv CD CD C> 4 cn O O 6 ci ci 0 6 ci ci - O ci ci ci ci CI 0 C) nr N he t f samp o

U) cn N- N- N- N el N- N cl 4 r- C3 CD c0 cn Cn ul O C3 O ul •-• N CD CD 0 C•1 he 0 c).- COOCD O op CD CD cn cn nr op CD el nr 0D cn o o ul ul t ...... O cn cn Cn ses 00 C3 O 0000000 O C) CD QD CD CD r- nr o o cr, uD CD O0 O . . . . .

ly O O CI CP CI 0 Ci CI 6 6 6 6 - cc) N el to CO Tr N rs fe ana ul 0D O CD CV 0 sr sr N co n Ul N r- CO aD r- ul CV C) CO QD s- 4 O CnuD •-- re N cv C> ul op nr CD CD 0) U) up C3 4 CV CD O CD •- CD CD nr nr

O cn oo up w, robe 0D C> CD 00-0 00 O 01 CD r- CD .) C7 4 000 ni N.: 00 W . . O O - 6 6 6 6 6 6 6 6 6 6 6 oi ni N et g V) TT N ro — "- is icrop a) * E s

u- ly

m r- CO C 03 C3 NCD el O CD CV r- r- nr CD cn CO N C) CD CD sr co CO 0) 0 CO CO In 0 0 0 nr CD CD Cv 4 CD CD CD c0 CD c0

ne r- CD CD CD CD el Nt O•— ri O ci ci M cri ci cri C3 CD C> CV C3 r- CD CD CV CD O 2 O 6 6 6 6 6 6 6 6 ci ci ci Ti 06 06 ,- ana M el N he ci Fe

roxe

v.) t Py as ci in 3 c Fe a) 0 de

C.) l A.

X el co ta 0 9( 0 co 2 E IN b 00 0 g ble o), ea 0 0 O °

7:i 1 :E 2 <.- to- t) z I-- 3: UJ U. *To Ct. CO -I 6 2 2 The Ta • - •

(1) V CI CV C,1 0) LC) LO 0) CO C> CO C3 CP V) M CD CI 0 CP CY CO v- r-- '7 C) 4 co) a a LO C0 aancyac) CO e- Co CP - O CNI CNI . . . 0 •- 0 CO CP 0 CI 0 0) 01 CD O C30.-0000 ) O T- 0 0 0 Cr C> CD 0 C> . . N O N- CD CD 0 0 0 0 0 0 0 CO Ci 4 ai

C") V n- (p t in

X c..) o CD 1.0 0 0 Y.- CI CO CO 01 CO 00000 .1- 0 CO 01 it) 0) CO N co a r-- p (D LO CV CO CD NY r-- a N C(1 U) 0 C.1 CO O U) .-NOCIO 01 'CY 0 CT) 0 0) C3 CD CI CD LO C) O M C) h C> OP 00 le ci 0 6 ai 6 6 6 0) O N O ci 0 ci ci ci ci 0 CD Ci 0 0 cci tri CO C•1 N ing CO - 0) et s 12) OCINM 0) 0 CO 1- CO CI -• O CD LO (D C3 0) CD CD CO C. CO 111 0 01 CD .7 .7 0) VI LO CD .7 C3 0 CD N CO CO CD •(- al C3 CD CV C> CD 0 .7 •c- 11, • • • • • • • • 0 0 V .7 CO cr) c) 01 CI CD .7 CD LO CD C.1 CD CD C. ( CD 0 CO C> CD cri N •■•-• O ci 6 6 6 6 6 6 CD C> 0 ci 4 coi(0 co) N co) line

be s- CO CD N- co) 6 a CO el 4 I,- a a)co a C1 N- CO ‘7 CICD CD CV Tr 6 6 N- 0 CO CD CD 0 CO c.1 N- C3Cl a co CD c)acNacra CV a r- co co) ro a)a CO CD CI .7 LO O Tr a 6 a a O a r-- ci 4 6 ci ci cri 4 ci ci O p CD 0 ci ci ci ci ci 4 ai

CC) ci 0 ci ci 2) cs, N CNI c 1,

U) COO)CD CD CD CI LO r-- LO O %- O CO U1 N .7 CP CO CP Cs1 CO (c r-- N- a co a a N- (OD V) O p •-O . Oh O N N .7 CI a CO 01. 0 0 CD a -a- a co a O Trot/lac) O 01 N- CO ci ci cri ci ci ci cri csi 6 6 O

O O N 6 6 6 6 6 6 O ci ci ci ci ci h: CT) CNi t no. cs, C \ CV cr LO co ra) las 01 et

(.1 c 0 N- (11 0 CO CO N CD r-- 0) CV 0 CD CV LO NO Cr) N U) CD N CD - co) N 2) M.7 0 N-• CD CD .7 0 0 (D CV CD r-- O N CO C3 C. O0 .7 r- CV CD CO m O. 0. a) c.c.-Tacna O C> LO C> CD a a

6 6 6 6 0 6 oi N 6 6 ai 1, N O CD ci ci 0 6 6 O 0 0 0 CD 6 N N (m

CO CP N- co) N- C3 LO (OO ON CO CO CV O O a) a C3 "7 no. Or N (0 (00 (D CO 0 0 O O co N N- C3 0 CD C\I M CD C) O 0 CO CO 0). O CD C> O r- C3 MO 0000 CD 0 CP 0 CO le • O. N-: 0 6 6 M 4 ci ci O -• O ci ci 0 6 6 6 O ci O 6 6 C) 4 cri O CO

N V CNI mp sa

CY COCD N. N-N OP NY V c) 0 CO .7 0 CV LO 1- CD CD CD .7 Cl CO CP t•••• CO I'- he CD VI .7 M 01,-00 R c,) co 6 a co co a a O el CD CD 00 CnN .O t CO CP CO CO 0 - N ci O ci N O ci O CO. CD. 0 0 ONO N- CD O .-CD C000 00 N O CD N CD 0 0 0 ci ci .- O O C> 0 0 TY l•-• (Li 6 to n-- .7 C.) CV fers

CIC1. 7C0030.701CIC) CO Tr C*1 CD 01 CO CD 0 .7 CV CV C7) N- r- re 0) 0 CD CO CV I,- CD C) 01 0 CD aa co M CV 0 CO co) n. . . . co) u-) . . . . . . O O 0000000 CD 1- 0 P.- CD 0 O 0 0 w, O . 01 CD C> 0 U) 0 0 CD O a O 1- 0 0 C> 0 0 0 ‘- CD 0 0 0 0 cri -4 M Tr ro is

Ca s C N. 1- 1.11 CO C> CO CO CO .7 CD 01 C> '7 CO 0 ly C.1 V CD 0 co) CD CD 0 .7 CO O .7 CD a • 0 CO VI LO O CD CO 0 CD r- 0) CI CO CD C> O U) N C> CD O 0) O LO 0 .7 >+ CD CD O CD CD CV CD Ns C3 C> CD CO 0 0 0) ID CC) CD .- . CV 0 CI 0 N C> C> ai X 0 an N O I- 0 0 6 6 6 6 6 0 CD 0 0 CD CD Tr co) N CO CD LL he t C) 0. C) in

ca de C.) C To Ta To co 6 b 9, 0 0 g o 9. TS' T3 o O O *-2 '4 4 O O

LL Z2CzY C.) in 12 12 .17 The • ▪ ▪

,- el cn 00 N C3 nr v- CD co C) Ch CV C) el CD v- U) CD 0) CO N CD Ns CD C3 Ns 0 6 Ns CV nr CV 01 Ch CD OD nr CD C) O Ns ,- cn O CD C3 Y- 00 CD 0) 00 Ns el y- C3 CD O CD 01 OD 01 cn CD 0 CD CD CD CD O CD OD CD CD C3 0 OY- 6 nr 6 6 6 6 6 6 6 ci c) ai cn C3 N •ff O ■-: CD C) C3 C3 C5 CD 0 CD 6 ci c) 6 y- ni o 4 4 Ul nr

r- U) 4 CO h 000 N 01 N- CD N N C3 C) 6 CD CD OD C3 C3 C> 6 00 Ns C3 nr CD el CD C) r- Tr C3 C3 (0 CO y- C3 CD C3 C> v- OD C3 C) 00 CD MODOv- C3 O CV CV el CD 03 C) C) C) C) C3 CD v- Ch CV 6 6 cci 6 6 ci cci ci ci ci ai CD CD CD C) 0 0 0 cn 0 O ci N 0 d ci ci ci A- 0 0 0 ci N- 4 d 4 u) ,r

Ns el ni• O CO N CD CO CD C3 (0 01 Ul OD CD N 0000 y- C) v- CV UD C) CD CV CD CV CD CD C> V) CV el cn c> r- el 6 c> Cr) CO v- cn CD C3 CD C3 OD C3 OD Ns el Y- C3 CD O C3 .0 C3 00 CD 00 C3 CD CD C) C3 CD CV N- nr ci 0 0 d d oi CD O CD 0 0 CD CD CD CD CD cq y- O CD 1— 0 0 0 6 6 6 - 0 0 0 ci T ni CD nr nr Ul Ul nr U)

CV rs CO 0 CONO00 (D C3 C> cv Ns Ns nr CD 01 CD CD OD CD C3 Ps el 00 Ns CD CD U) nr v- el Y- VI Ns el OD CD V) el c) c) Y- CD C> C) C) CD CO 0 C3 U) CV r- C3 CD CD C> Ns 6 el C3 Ns CD v- CD CD C) el UD V1 O d M 0 0 d co V ci O CD C) cn C) CD C) 0 CD CD CD cs, O O d d ci ci 0 ci ci ci T nr CO N CO 6 VI Tr N

U) CV OD v- CD N UD CD CD Ul O el C) Ch 00 CD CD Y- CD CD CD C> CD C3 e) el Cl 6 CV CD C) 4 4 c) CD co Ps 0) 0000 COO CD CD v- CV CD C> CD CD C3 T- C) CA Ch CD CD CD 0 CD CI CD 0 CD OD C3 Y- C> 0 C3 CD Ul MU) 00 6 C5 6 6 CO esi 6 6 oi • CV O 1- CD C5 CD C3 CD C5 CD T CD Ci 6 6 ci c) nr M y- 6 4

M Ch CO Ns CO CD Y- 00 4 N- C) V CD Ul v- CD CD 6 v- OD CV el CD CD CD UD nt' 4 es, N 00 Ul C) U) Ul CI CD CD CD C3 CV N- 6 CD CV CI v- UD CD CD 4- CD CI OD el CD nr Ul C) CD C) CD CD CO CD CO N.. CD CD ci tri T ci ci ai CD CD CD C) CD CD CV O a 0 0 ci 0 ci - 0 ci ci ci 0 ci T Tr T CD CO Ns CV

CO 0 CO Ns 0 C3 CD CD 4 ,- CDVOD CO 00 CD CD V1 CD el el c) CO CD CO CO el Nr a) U)N cn 6 00 CD C3 C3 O CD y- CV CD 6 C) C3 CD CD CV CD CD C3 CD 6 C> C> CD OT 0000 C3 Ns CD Y- CD C3 C) 0 CO CV CO 0 000000440 0 -• O 7t O ci ci d 0 ci ci 0 0 ci T ,i Co 0i 6 0 nl• E N- r- CD CV v- y- CO CV CD CO 6 el CD N- 4 CD O N- 4 6 N v- CD CD C3O CO C3 CD 6 (O U) CD OD U) O C) (f) C) C3 v- U) CD O Tr r- 1- CO CD CD O O UD Ch 0 nr nr CD C) C) C> C3 CD CV CV nr co ci ci ci Lri - O o oi 0 CD 0 CD O O 0 0 ci c) c) 6 O 0 0 0 CD CD ni CV n: cy Ns CV E CD v- CD OD 6 CD QD CD O M CV CD Ul CD C3 CV CD CO 4 c) M O r- r- el nr CD C3 el OD CD U) el C) CD OT 00 CD CD CD en C3 CV CV Ns CD CD el 6 UD UD el CD CD C3 CD CO c) CD OD C3 CD C> 0 CD 0 Y- UD CD c) 6 c) 6 6 6 4 6 C5 O . . . y- N y- O ci ci ci ci ci ci ciddddd T 4 CO 6 6 4 4 N E O 00 Ch V CV 0 CV CY) 10 CO Ch V1 CV CV C3 VI Ul CD CD CD el Ul Ns nr CD cn 6 CL C.0 CO nr CD 0 A— 0 0 ,- el U) CD nr OD v- 6 CD CD CV el CO CD CD nr CD CD 6 CD • • • • • • • • • cr) Ch C3 C3 CV CD QD CD C) cn c) 6 CD 0 C3 CD 01 OM Y- CD Ul CD Y- C3 T N C3 CD O • C) M O T- C3 d d ci d Y- Ci CV 0, m- C 141 Of cn CO U) T- It LI • CV U) CV N 4 co CD co co c) cn C> VI C3 OD CD CD cn 4 6 el 6 0 C3 v- CO 6 T- UD V' OM CO CD N OD v- C> OD CD CD Y- nr C3 CD OD U3 Ns CD C) 0 0 CD )Cr r- CO. 'Yr V c) 6 c) 6 6 6CD UD 7 CO T 60000 Ul v- CD CD Cr; CDC) C> CD CD CD CD CD CD . . ,r T T 4 a) CV Cr) T C) N ci ci ci N- 6 ci 6 6 6 6 C 4L- C.) rs• CV ;; E CD 6 nr ul c) c) CV N NO Ul CD Y- Ns OD nr CD C> CD el CD CD CV CD U) C3 CD el C3 O V) nr 10 CV CD CD (0 V O C3 CV 6 N N- CD v- UD C) CD CD CD el el C> CD CV CD Cl CO y- C> 0 CD C) C> CD CD CD CD T CV UD Tr 6 6 6 6 6 6 ui 6 6 oi cn c) Ch CD CI CD C) CD CD Col O ,- 6 - 0 0 d 6 6 ci 6 6 c) 4 esi 6 ci U 4 6 a— U E U 00 CO OD TOO N Cl) c) u) 6 O CO CO Ul Ch CD CD O CD CI CO CO N CD CD Ns CD CO nt CA CV T O OD 0 0 CV O O C) CD CO 000 O CD CO el N- c) CD C) C3 CV CD CO O O 000000 CD O a) ul cv C5 CD ci CD Y- O Y- Y- 0 0 O cn c> O C3 CD CV CD QD CD C M y- O 6 N ci d ci d ci ci ci ci ci ci ci ,- ci el 6 (a .5 el UD CV Ns Ns CV el CO 4 6 co (0 000(0 Y O CD Ns CD Y- v- el r- Ch 6 6 N 01 6 cn N co CD N- el Y- C3 CD Y- 6 CD Ul C) O CD v.- N nr y- CI CD CV el Ns 0000 CO CD O 0 OD C> v- 0 0 C) Ch h- M ni• E OT 6 6 6 6 4 0700 oi eg O ci O ci ci d ci 0 d ci d oi (.6 6 6 V V E O Tr CO M Ul C) nr 000 O CD Y- 0 CO CD CD cn C3 O CD nr C CD Y- 6 C) Ch CV 4 c) CD U) 0(00 nt C3 O c) cn el T- C3 C3 CV CV a) O C) CO C> CD CD C3 CD y- Ch 00 -00040 00 ol CD CD Y- 0000 CL M y- O ci d ci d 0 0000 0 4 044 4 6 E co U) a) U) N UD Ul C> v- r- C') el (6 nr nr CD CD el CD O CON- Ul CD N C) C3 CD el CD Ul N (0 QD U) C) Ul Ul CD C> M CD CD T Tr C3 O Tr r- QD 0 CD CD CD CD Ul 6 . . C) C) CD CD CD CD O nr nr CD CD C) C> C3 ON CD Ns OT (l CD CD CD U) Y- CD CD CA • • • O T CV 01 6 6 6 6 ci c) 0 c) ci 6 c) 6 T Tr Y- CV h CV CD E o" .0 CO Ns el CO v- CD CD CD nr Ps CD Y- Y- CD CV CI O CD T N- U) cl CD C3 el v-C> 01 el CO y- v- O el CV C> CD O C) v- Ul C) cl CD 0 M ul CD C) O CO r- r- CD 0 CVO Ns. a 0 CD CD CD CD CD CD O CD Tr Ul C5 C5 ni C5 T C5 CV v- 6 c) 05 cl 0) 0 0000 0 0 00000 OD CV N.: 6 O M 6 U) Ch C el r- CD Y- 6 CV v- v-N LOU) O CD Ch CD ts nr C3 O CD N- nr Ns CV y- Ch CV r- 6 Ch CD la 01 6 NCV CD CD CD CV CD C) N- O y- CD CO CD cn c) O 0 QD el C3 cn c) r- Cr) C

O CD OD CD CD C) CD CD cn r- 6 C5 C5 ni C5 C5 C5 v- CV C5 C5 cri. ?:E. 0? 0. O CD CD CV CD COO co M o) 0 d ci d ci ci CD 6 6 6 6 6 M yi 6 6 a) CO .c Feo Zr) C as a) U) .171- U C l Fe O o U To To ta 00 0 00 0 n o 9,, 0 a + a) M .- CD .- CD C CtI 15 15 .c v: zi L! 6 2E E 2E 3 2 2 C.) in < 1- < LL. z I- 2 u. z F- F- LLJ U. *To Table A.3 Py roxene m icroprobe analyses of the Ma lvern meteorite 4:k e- 10 UD C.) 4t a- 10 QD at CD at CO at r- -

M N ' 1- et 01 M N r M M el U et ,, 0, E E E U E U U E E U -

• - • • ' 4 ,-, CV 6s-C) C5 0) up 6 C3 CV UlU)C)UD O0 00 01O.-Os-NCDC3 s- 01 6 cU • M 01 O.- 6 CV 6 01 C3s-CDCV OD QD C5 6 ,- M 0) s- st O CV Ul 6 CV 01Sr.-CDOCA U) U) cnca•- 6 ci N 0,CD oa cn•-Tr C5 05 s- "6b 6 ci Tiu 6 M el r-c) UD CV M6 OD 0) M Ns- C5 si 6 UDCV •- c) s- OD 0)COel 6 r- ul up r- sr sr N el 01Ch ua N- N ul N OD NC CD 000Ti CD M U) 01 is: CO Os-C,N 0) 0 N. 03NCD01CV U) op N r- cu•- Ti V m - 6 02z2uzY 6 op•- CV Ch N. 0)CDODMM 6 r- ou 00 O.- 6 oici 6 0) sr N- 6 O. CV •-• 6 •-cicU .- 0000210 op •-• ca CD N 6 Ch CD 0Is-0) ua 6 N- C- CaV)CON OD CDN St C ■ • CD ODC3 CD c) 6 N 6 CD ca cla CD C3 U)CDNC) C3 OD 6 CD C)Q5C3 C3 CD C5 CD N CD 01 ODs-6 CD O• Tr Tr • oa OD s- cn upc) N N s- C) Ch N O COC CV6 6 OD •- cn Ch NM r- N- N•- St 0) • 6 N 00 r, UD CDC3 OD CD CD CI N- CV CD6 6 NC3 sr s- 600 el N- 03 • •

6 CD CD CD C, CD ca 0 0 CD 6 ci 6 CD C3 C) 6 CD C) • •

ca Q O C) CD • •

0) 7, CT> O O co CD 0) 0) 0) 0) U) 0) 0) Tr 0) 0) co O O O N- 0) C.) co 0) 0) OD N 0) 0) co co co 0) O oo 0) 05 CO 0) co 0) M O O N V o 4 U N< CO o C 0. a) co a) C 4 •- a) 6 N. co 0/CD co N co c) 01 0 Ch 0)0 01 Ch CO s- CD N- 11) V 0 s- C3 V' CD 01C) UD 03 h. Ch C) 01 6 Ch Is- CV O el a) 6 01 0) OD V Ch hi 6 6 up 00 f- f- - - • . co

Ci O CD s- co O O O N O CD N- O 0 (C O CD ,-- 6 6 6 -• D - .

0) 0) 6c)oa cn OD Cs N O O 0) C CV 0) 0) CD O N O O 0 co N O O O 0) OD up 0) OD CDNQDC) CD C co 01 0) OD O Tr up N O 0) N- N- - 6 - 6 O - 6 - 6 O C)C4CD6 "). 6 CD C3 C) CD CD C)00 CD CD CV C) CDODChC3 0000 s-COMO CD 0CVC)h. CD s- CD 6 ca CD CVCs C3 6 0 0 COCD CD 0CO CD 6 ci O OD 6 c) C) s-6 6 6 ca CD CD CO CD ODC-C 6 CD CVC-C3 CD ca cnopora 6 CO CD C3CV CD CI10C3CV CD OD s- CD01 C.03 0, el C)cnr- CD CD 0 6caci ci 0 CO 0 CVN- N- CV C3 CD Tr C3 CVCDC-f 6 •- 0) sr ONO 6C)CV CD OD CD C3 op upr- CD 6 0 CO0) N cn CV CDT.-C) CD fs.COs- N- up CD Ch 03U) 0 sr Ch CD C3 up N-0 CD CV sr ■ cn c) cn c) QD Ch CV C) cn cn 01 cn ca CD CDC N- Sr CD CD C3 C) CD C3 C) 6 CD CD 6 CD C3 N- C3 6 CD CD

CD CD CD O 0) 0) 0) O 0) 0) 0) CD CD CD CD 00 CD 6 CVCDC) C) CD C3 CDCV01 CD CD 0C) • CD N- 0 C) CD CD C) O CD CD CD C) C) CD C) 6 CD O 0) 0) 0) - Eu_2(.) C> 60 CD 03 CO 601sr U) CD 6 cica C3 ODCDC, 6 CD ODs- CD TTM.- r- op Tr C3 sr 6 cica C3 COC)CD CD 00ODCVC) el OD el 0 6 CD 6 0000 C> 0 C) sr 6 s- CV C> C3 CO0CDC> CD 0) CI srCh CD CD CD 0 6 C) Ch CD s- C) 00C-CVN- ca 6ci CD CAC) C3 s- C) CVOD CD CD 6 • — • N c) el 6 ul C) r- N 6 StChCV ci 0 ci 6 CO 0N- N- s 0)0 U) sr o r N- r) UD ONO CD d ci el CD 6s- CD C)CIC3 0 o-) VD CD 6 el Ch el M T.- CC)CDC) ctrico ChC) ci 6 el N- N- 6 C3CD U) N C) CD ci 0 0 ci C- s- CD 6 co N- CVC) s- St CD fs- C3 CDC)

z CD CD CD C3 CD c) CD 6 co CD CD CV s- 00 CD

CD CD CD C) CD CD CD CD CD 6 CD

To CD s- co CD 01 0CDsr s- C, CD CO s- 6 OD CD CD C'') C) M CD CD 6 op CD CD CD QD C)6s- CD 6 6 CDODST s- O O O 0) 6 03 CD 00001 O N 01 ChCD • s- 6 N- O sr s- s- CD CD 00)C- CD e4ODCV CD 1000hl si s- ei 4uico Ch 00Is cn 00 6C)Cs- CD 0, c) CD s- ei oicri U si Ch CVs-C) cn Ch 01CV CD 01C) c) •- CD CV10 C3 ca cnua C) s-Ch C) C) CD St CD CD C.-sr CD s- C3 N-01 05 s-Ch Cl) COStCV a) 1-CI Ch 0)elN- CD oi c.11 Ch cn Tr Si CVC.: Tr V- st 05U) si C.:U5 Ti uicri oc) U co 0301 3: QD U)CV Tr r-cu up cU ui6 CD UD oi caco CO 6C- r- caco QD ChU) cn opTr OD ui 06Ti cn cu 6 el fs. Trup tu 6 up Tr ei cU OD UD op 6 (NI op CO CV UD 6 CO hl 1.11 01 OD sr M up ca u3 s r- C') OD M M up C.) U) op ua cv, - C-

sr 05 up u. CD CD CO CV ua Tr CD 6 Tr h. 6 CO ci Is- 6 co CfD 6

*Tota l Fe as Feo

The code in the analysis row, refers to the sample no. (m 1,m2) clast no. (c1,c2) probe line ( 11,12) s ingle point (p)

Table A.3 Py roxene m icroprobe a nalyses of the Ma lvern meteorite MD Ps 't op Tr Mt 0) Ps co CO 4t a.- N CO CO Ur CO C0 ;; E cn cn 1- CV cy N O c 01 N 13 M C7 U U U 0 L.1 E U U . 4 )

• 8 PziLf6mEm322 O0 N6 CD NI'CVvscnTr Tr NU) 6 r C)(D C)U/01CDU) 01 Tr C) 0CDr CD O C) U CD Oc5cia Tr c)co Tr CD U) O C3 N- NrM NI'rONT01CD O NNOOO c) r-cl 0 CV 0) ul ,- upr- U)01 N COCDC) c5 CV TrcyCVvsCD0 CD 0 ,- N 0)ppU)Ne cyCs1 CVC3000)CVCDCI 0:boZ 0 OrCD op U) Ves01 CD 0ciOr ul 0C)ONe co el 0) C)aD CD C) C) CD NI- Ci CO000Mrc5 (0 CDNTr CD esVDUD 0) coN 0 4 Tr ap ci Tr l CDU)ppcpupcp N NT CV (10 M Nt csi 0) cf) 0NC)CDCO N cy es CO es CD cci 6 U) 01C)UlUlCD N. 03 cnT- U) ul(0 el 0) 6 O el 2 CD es CV el O 00 aici cn 00 CD Ps C)CDN CD ci ri el OOH r • 0 es UDel C) N0 CD U) N. CD 0) el NM T- a CD CD vsNC) el C3 a g • C1 01 r CD M U)CDC) CD N 0) NU)0 csi pi ei r ul cna es 0)C) op °a r 03 00UD c0c0 01 0 Tr T r N r- cn - • • 0 CO 00 C)v- r- 0) csi ei es 0 OD CD N. a 9„ • • Tr CD CD ,- C) a 6 6 CD cp CD vs C) a C) a • • • 0 a CD c5 c5 CD CD CD o a

• • • O O O ci Tr O O U) 0) 0) (0 co 0) 0) r. es 0) 0) N. a) N 0) 0) CO O C3 M el 0) CO N. 0) 0) 0) O cd co U) 0) 0) U) N. 0) 0) 0) 0) 0) CO O

03 CD C CO cn (0 N CV Ul 0 ( vs 0 03 0 CO CV • cy Tr 0)O ChC) O C es CV T ( ,-: 0) C) 0 UD v- cn UD Tr cn c) ap co el r- 01 0 CD CDCD up 0)O ul Ne NI* el CO C) es '- 01 CO • • Ch CD up Tr UD r, 0 Ul %- CD vs CD cn • D (V O CV D Tr - C> ) CI es c) a 0 N CD 01 c Ne O a C) Ci c Ci M v- CD UD Tr i i .

11 CD QO CO CO C) CV *7 0) 00 N. 0) CO cpac) CO es CO OD CO 0) O N O O O es CD es N O O 0) CD es 0) CO ,- 0) CDONOesC) N O O O CD O CD U) 0) CD CD N O O O o 4.

vs CD CV C) a el CDCO C3 C) es CD a it CD op CD esQ0 C) C) cp CD01 CD C) 0 CD vs03C) C) CICA V) esCD CD C) c)

O c5 CD CO T- 121 CD up cn CD v- CD CD MO 03C)

es E z Tr 1- aD C) Op C) el CD 01 CD r- NO CA es C) N. ul CV CD 03 N. C) CD N- C3 CD C) CD a CD C) CD CD O ' CD 01C) O 0 O O O 0) 0) CD C) CD vs C)0ci O C) C) C) 03Ne01 C) O C) ClCD CI C)OCVCD C) CD C) C) CD C) O 0) 0) 0) C) 003CD CD C3 a CD C) ,E co ) .

UlU)vsCVCD Eu_Euz • cy aO co 6 U) NT-CVCD co (0 0 r 6 03 CO 01CICD • 0 Ci CD 01C)C3 ( 6 es v-CVCD 6 CD 00C)vs CD CVelUDC3 O 6 CV 03esCD CD 03 C3 CD QDelO)r CD 0Ci r esC)v-CD 00 CO 6 a C) 000 O0) clCDC) 6 M CDC) N C) UDN a r-r, O 0)N-U),- 6 el UC)CD CV esC) co 6 el U)C)CD CV es‘-CDC) CD es D T- 0 op op Trco 0 ci M 0CD r 01 CDC) T- CV N. Or up coTrCDC) ci 0 CO CS, 0.1rq 01 0 CD N. CA T. vs CVC3C) CA CV O el N es. CD T CNICDC> CD cy a CV CDC) CV CD C3 0 .- CID C) es Tr T cp a CD C) CD C> CD CI 00 vs co -

CD a CD CD C CD CD T C) C3 D

-

Cl M OCDes CD CD es 0 CVCO CD Ne C) co ar-ul O C)CVQ0 CD O C)UD,- vs v- Ni^ C) M CDVIesC) 0) 0) CD vs O C)CVc0 CD 01 v- C) CD 0) vs O O CD O O a)N.co U) OCD03Ul ,- v- CD vs. vs C) C) CD Ni ciT• CD CD vs CD 01 C) 01U/CV C3 CI 0 CI NI CDCV0 Ti c5eiui ni O CD a upr- CD CIDcycn C) a r- CD CD es C) CVcl C) es00CD CD elCV C) CV01a- C) CD upcnup C) COCVNr V) 01NiCO cn upco Tr eiai Tr N141 Ni CVai C) CDUlCA C3 Ni CD CVUlcl cp cn CONI-el co UD NI: Tru5co CD elulUl CD ODTr pi eiu5 a) a CD ODcn CD C) esNI- CD 01CV CD Ni CVu5 NI CVu5 es CO CO CV vses Ci Ci MU/ 0D01 00 es sfCD CV cp ce) CD up Tr CA vs CO CO a- a- CO CO ci CO CV CO CID 03 vs cD U3 el aD CO CV co a) 01 LC) U) azr 01 M U) CD 0 CV es el vs CV CO CD r- Tr U) a r- 141 4 N NI- CD

*Tota l Fe as Feo

The code in the analys is row, refers to the sample no. (m 1,m2) clast no. (cl,c2) probe line ( 11, 12) sing le po int (p) -• •- • • •• -

03 M .4' CD CV 03 y- y- C) 01 6 C U C D - C N 00-a-0 • CV 01 0- y- c- C> O) N CD C) 03 UD UI C) D C D DD 00 001 U yp D N OLOMM cn c) c) cs) c) r- c) CD CD c0 C) CD CD C) CD CDNNM V CD CD ci C3 CD N CD CD 0) CDCD a- O y- CD 666666 666660 y- cr cr 6 co 01 U) ;tN E

01 • t-COMt-V•M•o-NNO CO Ch C) s- CV CD C3 t- cn 4 -- cP C) e- .a■ MMCDNe-OWCDOCD CD CO CD C:) CO CD 0) cp N on cr CD C) c> C3 O cn MO 0) CD ON Co to- CD cn c) CD C3 C3 CD CD CD CD 01 en en c) • 6 6 on 6 c> 00 cri e- O O 666666 6 666666 .- 4 .- 01 go 01 co U) O 4tE cs, 4 r- CD 0 CD C) U) 4 (D CD CV Ul et C3 CD WWW01 01 00 e- CD CD CD t- C) a) 03 C3 OD CV CD C) CD N 01 QD C) CD N OUIMUD • • • • • • C) 0 CD W(0WW 0 C5 e- O CV 01 C) CD O)cn 6 CA CD CD CV O 0- C) 000 Y- 0 0 CD e- 6 666666 666666 c- cr n 6 4 01 co a) O No.i 4tE t N CD N et N U) U) CV e- U1 CM c> 0 01CD y- C) U0 CO CD e- C3 4 OCIDCOM 01 CD CD c- Y- 0- CD CD 01 cr CD CD CD OCOMUI CD UD C) et e- CD QD e- CD CO N WWWW 6 6 6 6 4 6 6 co CD CD CD C> CD Y- 0000 CD CD CD CD C> CD CD O „_ ci 666666 666666 Y- cr Y- cr CV t° M cr U) cn N *0 C) e- el e-. e- U) cn 'et CD c- cr 01 y- C) CD CV CD el c- CD OD CD UD CD r- C UCDV e eO C C D 0- N Cr) C) C) y- Y- 0- CD CD CD CV cr 4 6 6 C3 U1 en CD . . CD CD CT) CD CD Y- CD OD C3 CD CD cn c> CD C) CD CD cf) UD CD c5 6 e- CD e- CD e- CD CD Co e- Cr) —6 666666 666666 y- y- V OD 01 U) CD -N UU UD 1-- CV CD et N el' CD CV CD 03 03 e- 0> C> CV 0- U1 Ul CD CD CO U) nc- CD O UD ro- CD 0 CV .7 CD CD 0- 01 C3 C) N U1 01 oD C) C) Y- Y- QD C3 CD 0- 01 CD CD C3 e- Co et t- CD CDC) cn 6 C3 y- 00 CD a) C3 coD Co CD CD cp O e- e- 00 6 6 6 6 6 Ni N 6 6 0) e- C) - 666666 O 666666 e- ei ei r- Co") 4 u) cn 2= N *0 et et N U) OD CD r- r- CD 0 on CD el CD y- CV VCV 0) CD CD CD CD CD C) U) CD UD Ul CV • C3 CD C) V 00 CD CO CD CD 01 QD on CD C> CD CV Y- (D OD C) CD 01 t- CD CD CD CD N CD CD

cn c) C) C> C) Y- 0000 CD cn CD CD CD C3 C) OD CD 01 CD O'- O'- 6 4 6 cS i ) M c 666666 O 666666 y- ci CV cr CV co eI-

Q) N t (p ato oin y- OD CD c- 0■ cr 00 CD CD C3 CD 0- C) CD W CDMa-0 NO OUDl c y-• 0 0 0 C0 CO 111M NOO C) CD y- 0- CD CD 0 01 01 U) C3 CD 0- p C" • MO CD 00'— 000 CD C3 CD CD CD CD CD M 00(0 0- le CD Y- CD a- CD .4 CD CD to: . . a-CD 666666 666666 M Y- ci CV

CV V U) ing cn

N s *0 12) UDLOMNNNNCDcr O U) U> CD .4' .c- CV UD CD 4 6 01 C> CV Ul Ul 1,

1-0.1N0-W 0a-a- CDO 4 un cr) c> CD CD CA r- c> U) C1 N OD CD C3 CD 01 00 1 cn CD CD CD C> 01 CD CD N CO CD C> CD CD C) CD C) c- cr CD C) ( '— CD CD CD Ci CV CV CD C3 0) • N y- CD 666666 666666 .- 4 on on oi U) 01

W= line

N *0 be

01 U) Y- 01 N C3 U) cr c- C3 01 03 CV CD V •er CD 03 cr CD CD Ul CD Ul y- CD CD CD 00 0- UD o y-CD U) QD U) U) UD CD C) C) u) 4 CD CD CD CD a- 0- CD 0- 4 CD UD CD CD CD CD CV 03 Ul r > cn 6 CD C> CD CD CD CD C) NU) 0000 C) C) O CO t- '- CD CD CD O N'— CD CD p CV CD N 666666 666666 e- ei N on CD 2)

C12'- c

* 0 1,

CD CD cr N C> cr U) y- C> CD 0-M CD CD el C) UD c- C3 CD 0- 01 0- (c cn u) r- 6 CDUl CD C3 U) C3 CD CD CD Y- OD CD C3 N CD CV UD CD C) CD CD CD 6 NI- MO CD C) CD cn c) CD C4 UD CD C) C) CD CD CD CV Tr on CD CD CV 6 6 6 CD CD O

N O 6 6 6 ci ci 6 666666 4 C‘i e- u1 t no. u) t° W el a) co t- a- CM las 'C *0 0 c a) MO) .7 CO CD CD cr OD CD Co U) N 03 a) 4 c) r- u) 6 UD C4 y- CD CD O CD QD CD Ul 2) e- 0) CD U) t- CD C)t- CD Co CO CO 01 C3 CD CD Y- 0- CD C) Ul 1.11 CV t- C) C) CD OM COO N CI C) 01 t- QD m 0 0'- 6 6 6 or c) CD Co CD CD C) CD C> CD C) CV UD CD CD CD CD E N N 666666 666666 y- cr CV CV 0) 1, v. U) el C 02 '- m a) ;to ( > U) 01 cr CD QD QD Y- C) 00 01 01 CV et CD CD CD t- t- U)

U) C1 CD on on on cv on U) UD cr no. To t■ CD OD CD CD 0 V u) CD c- C) CD Y- CD C) C) CD Ch CV 03 CD CD O 6 e- CD t- 2 cioi6666oicici O)0 CD CD CD CD C) CD CD C) UD C3 C3 C3 C) O C) t- CD CO le a) co t° N N 666666 666666 cr N cri U) .c '- .- N

5 *CD samp

u) 0)0-010e-CDWO0 ,- N MY- CD CD 10 CD 0- 0- CD O) M CO 01 41 N CD CD cr cr CO he CD CD QD CD CD a- Y- a) CD N 00 Y- CD CD CD CV 0- QD

a) t N- r- CD 0 C) C> CD cn cq H 07 MO Co CD CD CD CD cn cp O) >, ,- O CD 6 6 6 6 6 on 6 to N LC) N 666666 li op '- U) 01 C N m *0 fers N 4 cn cn N Jra it CV 03 0- 0- 03 U) Ul 01 y- yr N 00 N CD Y- 01 Ul N CV CD UD re N CD 00 a- CD CD 01 C> Y- C) r- N CD N. CD N CD CD CD CD 6 U) on 03 0 C) CD CD OD t- CV 55, z N CD CD CD CV CD UDC) O CD ap CD 0 0 CD 01 OD t- cn 6 6 6 6 6 N 6 6 i L C M 01 c N 666666 666666 .- on 6 6 2 ww14.- row, 0 is -ai Ft Cl) s

E 0. ly CD U) CD OD U) U) CO 0- on N Lc) (Y Lo co OD CD CD cn Nt 0) CD el OD 00 el %- M 016010 C) Tr on 4 (NI CD C) CD e- CD CD C) ou 01 CD CO CD CD CD cr) CD 01 Ch O C> U) CDNODF--

0)O CD C) CD CV CD QD CD CD 01 CD CD C) CD 0 MM0...- 6 6 4 O'- O'- N 6 6

a vk ana M co X oo- 666666 O 6 6 6 6 6 6 Oi si Ni 6 0 M U) he gc070._ U2 Feo 2 ›.. — 47 E t in

a. as aii; c 0.

cl Fe woo U) de Ix xm... l

a) ta t P 17i + co 2 E II c: 0,,. a 0 o0, 5)0g 0 9. M >. M 0 C o 0"ocmm O 1-au.oazauz H U (0 cC al-woaz au.auz F- *To I- CL CO -J The

Table A. 3 Pyroxene m icroprobe analy ses of the Ma lvern meteorite CV 04 CD * N CD * C4 '- N CD N 2: 4t CO v- CV co * OD e- * CO I* • N cn CO a- E CD a- e- 01 O N CD -- M CD Tr CD -- M '- M co -- U, CD CD C) E -6.6;o6o 0 • • • . O N-• etN0ChUlCD (O NCDU)OOOUDCOMN 6 ci 00.- 0 (0V CD C) CDUD0100Ul Tr alcnup O cico CD Ul01COUDCVCYC) 6 NNcric4 C1 U) O00v-COOUDCVNO 6 Tir r- 0)U)a CD CV CO 0 CD el-CO01C)00CV O 6 cicriTiMOO CD PsNTrCO(0U)C) 6 0-•O-•Ti C) Ul CD UDOD OD CVU)UDCDN0104 Ps el' Ps (0Nv- 0 6oTr 6 criy OD CDU) 0) Ul 6 COOrc) v- ODCOetUDC)Ps -• 6 r:N00 CD etUDNN-• (0 (0 0)N-•C)00PsCD r- 0)COU)T-c)ca (f) CDUlODC)VI 6 criv-Lci‘-•e5 01 UlC)CON v- 01 QD NU)CD et 141UlC)PsCD Ps -•-• CD0-•0 oa Trel6 et CVM-•CDODC)

M T cn Tr6c)u)T-coc> 01 N N Ps COUl N 01 N v C) Ul QD01U) N cy CO N 0, rl CV O-• Cv O-• c•- T CO et CDC)01 C) N CO Tr CO .

6 criN Ps CDCO C 9(3) cO° CD C) 6 c4 N C)et'v-UlCD - • 6 TiT-ci CD 01Psv- 0 O N W 6 a c) v- el . • T- v- -• -• v- etCV v- e -DC N MO CV v-CD v- cy co 000 cn N et CDN T- i c46 •

0 0 v U N C> OD NCD CV CD Tr .- r- CD CV cn - • 0 . 01 0 CD CD v- N CD C) CD QD . • v- ci CD N rq . . • ro ND • ••• • • v- C5 C CID 00 -• e- CD 0)O CO N 00 CO e- C)0 CO C v- CDCD QD CD C) 0)O Ps CA CD UD ••- 0)0 LO O CD C) CA C) OD CD QD CD v- C) U) Tr ul v- CD Ps N v- CD COC) U Ps N CV CO ‘- a) U1 Ul v- C) 01CD Ps N Ul v- C) 0) C')) el CD v- • Tr c> v- CD CDCD et U) v- CD CD r- r- cy A C) zt D 01 . 01 O N Tr O c Tr u-) O N Q) )

.

0) Ps CO v-- 0) 0) 0) (7) 0) N O O O N 0cid C)00000) CD 0) c)acn 0) UD N O O O T- 6cie5 0) OD CO CO CO N O O O 0) 0) OD N O O O O O O 01 CO N O O O CD CD CD r- O + C) CV CD C)Ul CD OD ci 0d CD C)v- CD C) ci CI C)v-CD0 co 6 O NT-Trel ci 0 C) CD C) CDODC 00 v-CDCh N ci d C) CDC)CDCVCO C) CDCVPs C) 01CDet CD OD 6 C> 0) UlCDPs03v- 0 CD C) QDCD C) 01 0 O 6 coelT-Tr CD C) C) CD CV CD v- 01CDQDC>C) ci d v- C)PsCD C) 0-•CDOD C 6 C) CDCh C) CDv-Ps0 CD ODC) CD C)CI 01 C)CDv-et tt v- UICDet0) ci 0 CD C) CD CD CVU/ d CD U)OC) C) CDv-0 C) CD CD v-C)OD N CO ci 0 N 10 CD0

u_ N etCD N v-QDC) CD N- v- CD00C) v- CD C) CD C v-- v-

v- CCDC) 0 OD QDCD co op al r-c) 01 e r- u) CD P r- N C) Ul CD OD (0 cn c) 03 cn N (5 Ps Ps CD CV v-

0 z CD c) 0 C) 0 CD c) C) CD CD CD C) cD ) I— 7i • O O O • O O O 6 cica 0) cn cn O 0) 0) v- C) CD 0) O 0) CD CI C) C) CD 0O000 C) CD CD 0) 0) CD 6 cooa T- 6ci v- CD CD C) co CD CD CD O 0) 0) 0) • O 0) 0) 0) CD C) CD 0 C) CD C) v-01CD CD UlPs 6 ci C) C) v-01UlOC> CD TrPsC)v- ci 0 c) ‘r 00)00 CD ODv- T- 6 ca (0 e-CV0)00 Tr ci 6ca CD CAC) cy c)elVa v- 01 ci 0 v- Ps0000 01 Ulv-00 co; ci 6 cn C) CD01Ps CD 0 •‘- CD PsCV 0 CD 0 CD C) O CD CD 01U)C) v- COCDC)CI OD v- T- r-coc)cpc> Tr coT- cn ci 0 CD CD v-V)Ul cD v-U) 01 ODCD el c)•-co v- etOD01CD ci '-CO NPsC) ci CD C) 01UlCD Ps N C) v-ODCDet 01v-03PsCD

u_ 2c.) z ci cn CO 03Psv- Tr cn cpc) CV COUlC) cn Tr 0) v- 6 caci cn QD C)CD cn c> cn c>cocp6 0 CDC) OD ChCVC) N CD CD UD Ps N 03 CD Ps ci 0 c opc>c) CO NI. a C) cn c)a CD C> C> N 01C) Ncr 01 C) N CV 01 v- 0 CD C> CD CD C) a s

0 CD c) C) C) C) CD CD CV 11 v- U) T- CD C) co 6 yir: cp v- C) CD ci VTi6el 0) 0) 0) CD 0) T- O a a ay)tr) C) CO Tr acn v- CD O coT- CD 0CV v- 6 O v- 01 0 CD 0 CD01 CD CD CD 0) 0) Ch -• CD O C) C) v- et C) co CD 0U1el'01 a N- T- CD v- y- 0 CD 0 , 1 0 a 1 01 CV CD ODPsU1 01 PsCOCV cn CD CD CV01UI CD CD C) 0103OD CD 01tsCI CD Ul c> a)r-cn CA CDv- CA 01 cn ooop CD CD PsCV CD ulv-et c> °ar-r` Tr T- Ti CD CVTr00 c> oaT-Tr Tr et CVPs CD ODel' CD e- e CVei CD C)CV C) 03 CD Ps01el- CD v- CD CV C) CVv- CD COv- CD el: CVFs:OD a a el0.1c) yi c4cri6 01 0) NCOU) '-' Tr -•O Ch COPs a) elc) r- op cq T- CD c4 cn Ch COPs 6 yiCO N ODv- v- Ps CDCV c4 6 cn Tr QD CO el"Ul 11) CO Ps

LfJ 6 cri CO Ps Ni 0 CO 05 C) v- -;c 01 ul Tr cn Tr U) Tr Tr co co el r- co CD cn Tr co Tr Ul (C) V) C> ari UD cn OD Tr 01 cl• et Ul v- uu2 U) CD U) U) v- CV 6 CV cn OD U) Cv co cn 0) Ul . )

*Total Fe as Feo

The code in the ana lys is row, refe rs to the sample no. ( m 1, m 2) c last no. (c1,c2) probe line ( 11, 12) s ing le point (p)

OD yr C> el Yr CD el N. CD •- CV 00 CD Ul Ul CD Ul yr CD CO CV UD P- Ul CD CD CD CD 'cr N CD Ul Ul. CD. 00. ODCD. . 0. up yr CD CD CD 0y-I. C3 CD M03 <- C) CD CD CD Ul OC) CD . . . . Ch CD O CD CD CD CD CA CD Ch yr Tr CD 0 CD CD CD CD CP co co O O '-U) CD CD CD UI CDC) y- CD 6 6 6 0 ci 6 6 6 6 6 6 6 6 y- V C4 Y.. Ti N N N. CA CO - M it U UP ‘t (0 N. cn c> (0 CD Cy <- 03 CD CD CV CD <- UD CD CD UI el CD y- CV CD CD CD CD CD • 0 0) N el (0 6 cp N. 0 CD CD Yr O 000 <- c0 CD C> CD Yr N CD N(0 CD CD CD CD CD CD CD y- N CY CD CD 0 0 CV CD 0 0 W CD. CD. O C) CD CD CD cn CD CD CY) y- CD N cD 0 6 6 6 6 <- CD CD 6 0 6 6 V CD C) N N (CI el E CD N. cn N. N c> CO N N CD Tr cv op O N. Ul CD OD NO CD CV Yr UD <- CD CD CD 0D O00 —Na) Ul U/ CD OD BOO CD up Tr O CD CD 0y- r- CD C) 01 OD y- UD C) CD CD CD Ul a co . . . . . . . . . . CD OO CD Ch CD CD Tr Tr a c> a CD O c> c> r- P- O <- Ul C) CD Ul y- CD C) Ch CD CD O . y- N C5 N CY CY 0 CY CY CY - 0 CD 0 0 0 0 y- .ct Ny-. N. yr N. cv CAI - V, 4 Yr UD N N CO C3 0 OD el N a) c> c> O CD Tr 6 N Tr c> C) CV yr a) CV CV 01 C> •- CDy- N CD CD Tr O c> O N c> c> N up c> ,- CD CD C3 0) 1.0 . . . . . . . . . CD O c> c> c> cn cp CD N CO CD CD CD CD CD OD yt 01 CO C5 N CD CD CD y- y- CD CD cn Cr> 6 N ci 0 ci ci ci 0 CD CD CD CD 0 y- C) ON Ti .7) CV CO el Tr (...4

CD CD CD N. 01 N cp 6 c> N. el CI 00 ul CD cn y- N CO CO el <- CD CD C, CA) C) NC) co U) up CD Ul CO C3 C> ul yr O CD CD CD (DO a) N cn +- CO c> cp O CD Ch yr y- . . . . . . . . . . CD C> O 0 CD CD Ch CD Tr Tr c> c> c> c> CD CD UD N Ul O CD <- OD C) CD CD ul <- CD Ch . . <- N CO y- CD N CD CD CY Ci CY 0 O 6 0 6 6 6 6 y- ni N

V)

O CON N OD Y- Ul N N r- CD Ch U) CD (C CI V UD P- CD <- y- CA cn N. Ul N 03N Ul Ul CD <- UI O CD up Tr CD CD CD C> •- CD C O cn Ch C3 CA 0 . . . . . . . . cn a C. CI CD CD Ch C> CD Ul CD CD CD CI CD cn N. 01 Tr O CD y- UD C) 0 CD Ul y- CD CD O O . . . . M N O O N CD CY 0 CD CD CY - CY 6 6 6 ci ci c.P CO M - N. N 01 T- at t.) CD CD Ch N. CD y- C0 I.Y- CD N. 01 CD CD CD CD CD Y- Yr yr y- O 0 N Ul CD N C0 N. N CO CD CD U) OD CD C) 0 Tr 01 cla <- CM CD CD P.- 01 y- CD CD N CI 03 U) CL Ch N. CD CD CD 00 CD y- CD CD CD CD CO V CO U) • CD 6 cV 6 6 6 cV cV cP cP . CD . Ch CD CD CV C) ) Cc) CD 6 6 6 6 6 6 CD 6 6 ci ci 6 <- el o6 ui

C) 01 up (p CV t el E in o y- ul CO CV U1 C.1 CD CI Tr cn e- O N. a CD <- <- CV cl Tr up up CD CD ul CD CD CD CD CD CD N. CD CD Ul r- UD CD .Y1- CO CD p . . . . . . . . . O C> O CD CD CD CD CD CD CD cl Ul 0000 CD O CO CO CV le CD O co a o a R— 0 a O M N cr> CI N 6 6 6 6 6 6 - CD CD CY CY CY 6

Ni '—(ON ing CV "-

M a- s l* CD 12) . CO CD 03 CO CD Tr ,- uP N ci) Ul CD N. 03 N N C3 CD CD Ul Yr Yr <- cn • CD Nr Y- Cc) 0 CDC1c0 CD C. N. 00 ,- O cD cD N y- U) C> CI CD N C0 00 0 C) O cn Tr CO U) 11, CO CD CD C) CD CD Ch cn CO 0 6 6 a OT— 6 a 6 6 6 DY Ch CD CD CD 0 CD CD CD C) C) ( CD N O ci N CY 0 6 6 6 6 - 6 6 6 6 6 6 - ei C5 cc; a n- Tr Tr el CD line * C.) be Tr CO up 01 up cn N. up NI. CD CD 00 N- CD U) C) CD 01 cv 6 Tr ,- <- CO Ul CO N. es! CD cl Ul OD CD U/ h CD CD 1.0 C) N CD C) y- ul CD O cp cp cv N. c) c> C) cn cn CV CD ro O 0 CD 0 CD C) CD CD CD O 01 CD CD C> CD CD CD CO N cn O O— Ch CD CD 6 csi ci 6 O p el N O - CD N 6 6 ci ci 0 ci - CD 0 CD CY 0 ci ci Tr CO 01 2) c el •- * C.1 1,

OD N. <- CO cn up 01 cv +- 01 co Tr O CD UD el OD M Cl 00 N (c 01 N. Ul Ul CD 01 0000 01 To 01 a) c>CD 6 r- c> CO CD <- N. CD CD OC> Ch el N 6 6 a 6 6 6 ci s• 6 6 OY cn. CD. CD C> CD C> CD CO CD Cf) C) CO 0 C) CD CD cp cn Tr up r-

Ul no.

O - CD CD 6 6 cP 6 6 O 6 6 cP ci 6 6 - ri ci t CD 01 „- C0 las ite r

It E c

CD UD 01 T- up Tr cv cn up CD N. rl Ul OD CD el ODel c0 y- CD CD UD Yr 00 Tr CD N CD CV Ul 030 2)

teo CD Ul ct CD 0 P.- el C) CD N. N Ch CD CD T- uD CD C> CD CD el Ul C> C) C) CD P.- P.- P-

• m . . . . 01 C) 01 0 0 CD CD CO CD CD Oa) 0 C> 0 0 C) CD el Tr rp 6 ci cci 6 6 QD 0 CD O . . co N a) CD 0 CY c5 ci ci ci 0 0 ci ci ci Tr csi 1, me .41- Yr O CD

lvern CD Ul Co y- CD Yr Yr CD cn Tr CD 0 CO CO OD N N. CD y- N N Ul CO Ul C> r- el O O CO (m no. CV 03 CV U) (D C) Ch C) O Tr up CD N CD CD <- Tr CD CD CD el CV r C> CD O CD cl e) CO

. . . . . . . . . . le cn. . O 0 0 CD CD Ch C3 CV OD CD CD CD CD CD CD CD c0 OD Ma O y- C) CD CD CD y- y- CD CD cci CY> y- CD 6 6 6 6 6 6 CD C5 CD O ci ci ci y- 0:1 N N CO 01 he O - 01 T- f t

at 4.) samp o

U) N. Ul OD OD el C3 Cl 00 01 Yt UD CD CD Yr el cn Yr CD CD CD OD U) UD CD CD cn CD Yr UD CI he CD CD ,- N. CD 0 CD CD CD CO 01 CD CD CD CD CD CD U) QD Ul y- CV 0 CD. 03. Yr. CD. CD. 0 UD N t

ses cn CD cn CD CD N C) P- CD CD CD 00 CD y- C) C) CD CD cl cp Tr C.) CD C5 Ni O y- O<- N CD c> O . .

ly O <- CD 6 6 6 6 6 6 ci 6 ci 6 ci 6 ,- Ti Ti CO a to cp up fers

ana at E N. e 00 CV O cp ,- yr ,- CD CD C) CD el Yt N <- CD CD CD Y- N r be cv Tr c> O M C> CD CD O N CD N. CD CD O Tr el N CD CD CD C) yr OD UD O UD CD C) cn up a C3 Yt ro CD 0 CD CO 01 0 CNY 0_ 6 Tr 6 6 0 O <- CD 00 CD CD CD CO 0 CD CD C) CD ' 01 O - N 6 c5 6 6 6 6 T- ci 6 ci ci 6 cP Tr 6

TruTil row, rop is

ic N w at C s LL ly m u) CD <- c0 ON U) Ch NO N. CD r- a N. CD O CD N. N T- CD OD <- <- el <- C) N CD O<- <- a It> r> 00 CD y- CD N. C)C) C) CD N CO 00 CD V CD cn C) E 01 U3 01 III up CD CD CD C> na ne cn CD CD CD CD cn CD CD 01 CO CD CD CD C) C) C> CD y- U) C5 C5 a 6 6 6 ei N ci 6 03 cn N O y- 0 CD CD CD CD Ci y- 0 6 ci 6 6 cP T- Ti csi 6 a xe O CID cl ni CO he Feo ro

‘E t

Py C) as a. i.i in 3 C C (r> de a) c) C C.)

A. x ta l Fe + To To co 2 E 6. b c 17.1

ble 3 p , t ° O ; 4 '2- .— "a> c- .— .8 "co co m o ° :E :E z 2 Z 2u_20zY I- i- cai ti *To CL -J N) < u- O The Ta v= • •

mr C3 CO CD mr c) ea UD CD e- cl Co C) e- CD UD 01 C) CD UD e- C3 el- C) C3 0 CO r- CV CD el er y- OD CD r- OD C) C) N- C) C) C) cn c) CD CV Tr CV M C) CD 0.1 0 CO el- CV 0 0 el e- 0 6 c5 ci 6 ui c5 6 CA C) CD CD CD C) C) cn CD CD Yr 0 C) C) CD CD . e- O - 0 C/ 0 0 0 0 0 0 0 CD 0 CD Yr e- e- r- c•4 r- CV 3 E r- r- 00 el N011) CD CD O et UD C3 CO C) 0 C) e- O r- r- op CD CD CD C) C) CD CV ce.1 CO 000 co r-- CD CD Yr C) C) C) r- CD C) 01 r■ e- CD C) C) 01 oa e- cn c) C) CD C) CD C) CO C) CD Yr er CD CD C) C) OCD CD C) Yr O e- ui 0 0 ci ui 6 ci 0> (N (7) 6 CV 0 ca 0 0 ci 0 6 6 6 6 6 y- er C•i CN) 01 N- cy 3 0 yr CD U) CD C) C) C) O ca UD CD e- C) r- y- CD CA mr 0 CD mr c) ca M C) yr el 0 C) el CO CV CD CD Yr 03 CD C) r- y- co CD C) CD CD CA CD OD CD CD U) e- C) C) 0 0 CP C) cn mr 6 ca CD C) C) CD C) el e- ci O h 0 0 0 ui 0 co CDC). . O e- O e- C) 6 6 6 6 6 6 O ci ci ci ci ci ci 4 N.- 0 C4 N- cy 3E CD CV y- cn cy oo- cy ea CD CD CD e- CD 0 O N- N- CD CD r- 1.0 0CV CD CD CV CD 111 CD 00 00 C) CD Li") - Ul C> CD CD C) e- N- C3 CD CV OD r- CD CD ca 0 03 Tr C) CD C) 0 CO C) mr mr ca cp CD CD C) C) 0 0 r- C) ui c5 6 6 6 c5 Cri CDCD. . O M cy O e- C) CY CD CD 0 CD 0 6 0 ci ci ci ci e- Ni CV N- Ni CV ‘- U 01 Co cn r- ea c) cn ea 0 0 CV CV CV CD Y- CD el' CD C) CV CD C) UD CD CD e- r- C) CV CD e- UD C) CV r- CD CID Nr- C) CD C) CD cn c) CD 0 CD CV CD CD cy ca UD cr C) cn c) cr! c) c) ca ca cn c) C) Yr U) C) C) C) C) Cy O ct e- 0 a N.: 6 0 ci 0 ci 6 6 . . CV O O ci 0 0 0 0 0 e- CD a 0 CD CY CY ,- 6 6 U C a E O M r- UD CID C') e- 01 e- C) CV OD O C) CD CV e- CD OD 1.0 r- C) C) CD e- 01 UD CV CV U) CD CD OD C) CD 1.0 CD CD CD e- r- CD CD Cl r■ e- r- C) CD C) C) mr cy r- . . . O C) C) C) C) CO C) CD er mr ca c) 0 ca CD C) el O cm O ci 6 ci 0 6 0.- ca CD cri CD ID ••-• CV O y- C5 6 6 6 6 6 6 m- 6 ci 6 0 0 Ni csi N Ni N.. IN 3 C') CV OD '- CD CV Ch ea mr C) e- C) (0N e- O 01 Co cn cy ca C., 6 (NI O CV CD 01 CD CA QD C) OD CD CID y- N- C) 0 C) C) CD CD O 6 ea O c) CV CD •••- r-

0) CD C) 0 CD CD CD O 6 CD C) CD C) 0 MCC') CO 0 6 6 6 c5 6 ui c5 c5 co CD CD . . ) O CD ci 0 0 0 ci ci 6 6 6 6 6 6 -V e- O U r■ CV (p

O cei t E in 3 o Co Cl N- U) CD C') CV CD MO CD UD O Co U) C) (DO CD CD cn 6 mr cy CD Ch CD CV CD Cl e- CV 1-00 CD Co co co CD CO .Kr CD 000 e- r- CD CD CV r- e- r- CD CD CO C) O cn cy p CD CD O CI CI CD C) CO C) C) Yr Yr CD C) CD CD cn OM 6 6 le O 6 ui c5 ca ui m- 6 ci O . . . M CV O O csi CI 6 ca ci 0 ci o ci ci ci ci ci mr cy m- mr ing s

3 0 2) 1 N- UD OD N- e- CV e- er C) CD 0 cy 6 C) op cn op mr ,- CD CD up r- cy c) ul C) r- C) 01

cy mr ua CV Y- C) 00 e-0 CD O N- cy cn 001- 000 C) C) r- el 01 CD C) CI 0000 e- 11, C) C) C) 00 C) C) C3 C) C) C) 03 C) CV CD CD CD CD CD CV C) r- ( o. O O mi ca c5 6 O U el cr C) C5 ci ca c5 ci 6 6 6 ci c5 c5 e- v (") ca6 6

c). ine l E

a be 1.0 e- CD y- 01 CD e- cy y- O r- y- C7 e- C) UD 01 O Co CD e- cn cn m- r- op CD el C) CV CO CD r- C) co UD CO C) C) 0 0 CO C) O 1.11 CV CV CD CD cs) ro CD CD Cr/ CDC) 0 C) 01 0 0 C) CD C) CD cp ONmr c) o o co 0 ci 0 Lci 6 6 6 CO (D. . . p CV O C5 e- CI 0 0 Ci 0 CY ci 0 ci ci ci ci M m- O oa U N- cy 2) c elO CV * E 1,

CO cm CI to 4 N- el 4 CV OD C) Yr 00 UD 00 el ODr- CD CO Yr CD (c CN1 CO 00 C) 0 OD 0 Ul yr C) 0 CY C) C) 01 r- e- r- CD CD C) CD CO C) ui 0 0 0 ui 0 0 O CD CD O 0 0 CD C)Cr) CD C) Yr Yr CD C) C3 C) CD CD mr co mr

O no.

O ci 0 6 6 6 6 0 0 Ci 0 0 0 m- mi c‘i t re CV CP M e- las ite * c

M CV CV CO Co CV e- Yr ,r +- U) et O e- C) Co C) Ch Co C) el y- y- CD CD 2)

teor 0 el CD CV 0 CD r- r- CD C) Yr r- CY) CD CD CD CD CO C) O CO r- e- 01 CD C) O M ea 0) CD 0 CD CD 01 C) 01 C) CD C) C) cp CD CV e- CV m 6 co c5 ci 6 mi 000 CO cn CD (D. • • • y-- CV CO O 6 6 6 6 6 6 1-• 0 ca 0 0 0 ci y- e- CA Cr) 1, me U UD CV co oi rn E

lve 00 CO CD yr CD Co CO O co 6 cn t- el N- N- CD CV 0 CV 0 NI- O O (m no. CV CV r■ 0 CA 0 0 CO LO •zr CD 000 _(00 O el r- e- CD CY o N- O mr . . . 0CD CD LO le CI)C). . O C) CD C) C) CO CD cr) ..zr Yr CD CD CD C) CD. . . Ma CD '- ui 6 0 0 6 ca ca 0) M CV O CD 6 6 6 6 6 6 O 6 6 6 6 6 6 ,r mr

CV mp he CO 01 .1- f t

* sa o

01 01 CD CO C) 03 (Or- et et Yr co CD e- CD N- c.1 ca O CD Yr CO e- CO CV M Co CV CV cy he - C) CD C) CD cn ca O C) e- MOO C cn cn CD03 0C) e- CV CD r- e- C) t

ses 01CI C) CD CD C) cn ca CO C) C) CD C) CD yr e- r- OOOOOO(MO00 Co . . (3). C). (D. ,_ cc.

ly O O 6 6 6 0 6 0 6 6 6 6 6 6 to • 0 el na fers a ua co <- N- N- o0 CV CD UD r- CV C) VD CD Ul el re be • 0 01 CO 10 CV CV CV ••-• co CV CV 01 000 e-- I,: 00 O ta O co c5 CD e- N- CD O 01 CO e- CD C) CD C3 01 Yr CV w,

ro O Yr Yr CD CD C) CD CD CD el cn - 6 c5 c5 co ci 6 cri (7) O. O C) CD CD 0 CD CD • • CV O e— CD 0 0 ca 0 Ci 0 6 0 V CV Yr

r- CV ro is icrop s ly

m 00 01 QD CD el ul N N CV C) CV C) CD O C) e- r- CD e- CD OD '- N- cn cy CD Yr 01. 01. CD CD r- e- .CD . N- CD CD C) e- CoD C) O COCON MOO CV CD ...‘r M ul CO CD CD C) CD CO CD CD CV OD CD CD CD C) 6 cn V CD CD CD O,- CD CD CD CV C) C) CD ene CV CV 6 6 6 6 6 6 e- 6 6 6 6 6 6 e- cl e- ei Ni ana he Feo rox t in as

Py 3 Fe

co de U l A.

ta r,r + co A, O 0 o o I ble _ = 0 0 t 0 ca .(L "4, O (mii, co co T1 o `-EEmozY r— < F U 0 z 2 L) 2 o z F2 Li, Li *To < I— 12 The

Ta (-) .o .c> To cc; a) p 0 E a) a) 8 0—00—J 2 >. ea a OD 4k r-- a co •- a 00 a E O it ik * 4t CD Ul MD 01 LI1 CO sr up U cm E c4 t OD cs, '8 (8 — QD Tr (0 - 01 0 r- E 9 E (7) E U E a U a E U E C.1 a U E U

• ■ I• • I• • N • Pi(. a 00N.000ui000 CD CV 6 r--:600 CD C')CVCOOC101C) CI CV CV aY-CO O C> C101s-CDC300CO 01 CD00Ch up opco sr Ul CD op c)0) 6 (1 LI)CVIII01Ul Ci s- 01 1- CV aSr 01 U/C3 6 CD srs-CVOa 01 0-UlCA 66 Tra CV sr co Tr CD C) U/01CDas- CV UDa•-C)CD01 CD CD Ul 6 T-uioi0 CD US 0) cm Sr CDCVC3Ul T- r-cm 0- ci 6oi CV 01 C)a0-CDCVsr0 qi 2 gq 0) cm0upop s-N CD ul 6 r-:ci 1- a 000oi Ul t) s-CD(DCO sr C3Ul1.C)0-0 NCO 0) Trcm 01 •

° oi 6ciuiTi CD CV01s-0 N. CV M elcoc) 0q op c) CV 01 CDCJ 0(0 0 CO a 6,- N. CV a 66cNi66 CV N. CD N a N. T- N • ‘ N. 01 N. 6 T-uior0 01 CD0-00 N- N. 6 aci sr CD01C) T- ODO s- CD0C3C> 0 6oiU) • : cm N. Tr coT- op M 001opr)CV oa aolup CD T-CO01srCV r- T-op N. 6 OD CDC>0-C3 CV Ul CD C)CO • Z Pl CV CD Ul CD01 C) srODy- T- sr CD0001 • CV N. CV N. a CO y- •- cv00 A- a N. e cn N.ola T- e-- E - • • CO CD C') T- a) •- CD U)sr cn T- Ti ) • • O ( C3 CD C3 CV CD sr CO 6 ci C) 0 C) C3 6 6 ci ci 6 0 r- • •

O C) c> CV CD sr • •

0) cd CD CO O Csi O O sr r- 0) CD 0) O CO 0) O sr rn ai a) CY) CO 0) 0) 0:50 (N 0) cd r- cci O O cri CV 03 Q) O CO o-

CD a y- a cNi 6 CD 0 CV C) T CD 0 (0 01 OD CV 6 a Tr r- y- CS) CD 01 Ul CO T 01 0 T- a cnca 0) 0) sr r- •- CV CO 0) 0 (D A- CD c0)) C OD co a C 00 0)0 CV C) CD O OD CD If) •- r- up s- CD up N. r- up r- s- C) N- 01 T- c) - - D CD DC) ) O 6 CS el CD O op ci o a- Ul CV C) cm ci a co O CD A- Tr 1 . •

T 0) 0- 0CDC) Cl OD CD O sr O O O O O O cNi 06 C) C3 C) CV 0 CD O CD CD CD CD cn Ococm0r-a 03 CD000 CO CD O O O O O O CD CV 0) sr CV N O O O CV CD CD CD s-sr CD 0- sr - ' 6 CD C) C) CDOD01s- ci 0o CD C) CD C) CD T- 0 CD OD CVCD00sr CD C)00 03 A-CDy-C) Tr sr CVCDs-•- 6 a 0 CV CDC> C) s-00CD C) C>C3 s- CDA-O UD 0-CDs- C) s- C3UlCV CV ci d0 CD C) CV CD01C) s- 0-00COaCD 6 0 0 03CV00s- C3 CDC>s-00C) CD s-CV 0 0000 COC3 CD 00y-000 CD a000.- 066666 CD ci CD M v-a) ci CD 0CA CD C) CD0 CV 000aCD CV U)CDOD0- 0 ci CD s- QD 0 00 C) CD UD01sra CD C)CA CD C) ci 0d 0000)0 CD CVsrC3 0 ci ci 0 4 u. CD d C) CD d 0ci 01 CD C) -0 a) ODCD ci 2 Ul CV CD 00 s- cn C3 CVCD 0.- Tr cn ca CD cn c) up up r- D CD 0 0 CD C) a

F CD CD CD c) 1- CD O CD y- CSCD C) CD s- 0 CD CD aCVC) O 0) 0) 0) O 0) CY) CD CD CD C) O CD 01 C) e- 0 O Q) Q) 0) O CI) 0) O 0) rn O CD - • 2 CS sr UlCD el ClcqC')c)c> 00 0- 01 0 CDCI 0000000 01 aCVU/CD CV 01QDsrC) 6 0 CD sr UlC,CD s- 0 O0 s-CDC) 6 CD 0-O' CD COCV CD CS OD U/ 6 CD CV CO CD C)Ul0- 000 C) 00C3s- 0 CD COC) C3 ODcoCD CD s-UDsrCV CD C)0 C) 01sr CD C) CDsrUls- CD 00A- CD Ul011- 0 ci C3 00C)s-CD C) CD st sr00CVC) 0 ci CD a 0000 C) ODCDs- C3 CV 6 0 d CD 0-ON CD srCVC4 al% c

u_ el a> CD UD srCDM cn 6 0 00000 0 ci UD 000 00 N. OD U/ CVsrC3CD C3 04 el 6 0 6 C') CD C3C) cm a 0/ 0Nc C C') 6 CV ')

CDC) C.) z el 01 CD Cr) CVy- 000 sr 000 01 ap CO C)CD r- up 0- 0CD Tr

CD CD C) 00 CD CI C) O 00 C) Tr cm as c) O 6 CD CA

cn CD 0(haCO cm CD CD CD 46. a coop CV CD 0) CD a- CD CD a- M s- CD C) s- y- 01sr O CDa0-0-- CD CV O CD s- O Tr aoo cnup CD C3N CD 0QDCA T- CD oa CD 00 y- Ul CD s- O C) CD CV - ra c> 0 00Tr co CD CD 0t.C>sr sr O T- CD el CO cn Ch COUlT- CV 01OD sr y-0CID CD 00Ul CD srOD CD 0 CD CV cn Tr CD c> r- c) Tropcn 01 0) CD00CO CD COV)CV CD T-0 CA CD C3 CVOD C) U/01y- CD ODCOCV 01 CD 00 01srCD c) a (0 Tr T- Tr T- sr CD CD 0- 01 CD CD OD Ul00C) sr CD CVVDUl CD o U .

OD 0- el OO op ri Tr CV a-U/ sr r-- r- cr US s- srCV Ul 6 Ti CD s- CV 00 CO CVCD UD a T- Ul CD Tr r- r- o . CU U. N. LC) co (C) CY) 01 e- c) a sr Tr r- Sr sr ul sr cn a sr sr CD sr a Tr CO A- sr st cd Tr up 00 CD N- r- sr 01 CV Tr r- CD 01 sr Sr Ch 0- a sr a sr ca up sr ■ .

cm up r- a CV N r- US sr u6 6 el 01 CD CD CD Ul cn op 01 CO CO Tr Tr (r) .

*Tota l Fe as Feo

The code in the ana lysis row, refers to the sample no. ( m1,m 2) clast no. (c1,c2) probe line ( 11, 12) single point (p)

• CA Co C3 03 CV e- 01 Tr C) CD CO 01 0) CD CO Co 0) Co CD C) C3 Co Co UA 00 0 01 N- Co Co CV Tr CD NY- CD UD Ps CD CD Ps CV C) CD C) OD CD CD CD C) CD OD 01 Ps 0 C) O C3 7 CD CO • • • • • • 0) CD CO C) CD CV CD MD CD CD CD Co 0000 0 0 a) C71. c5 c5 ul c> CD v- C) C.)• 01 CD I-- CD ci 6 6 6 6 y- CD 6 6 6 6 6 csi 6 6 C). M Co alp E M Co T- CD CV Y- 141 Co el CD QD 7 CD Y- Tr CD Tr C) c> up cn el cu 6 CD C) CO el ,-- Y- CD 0) N- N- CD C)0 up Tr CI CD C) O CV Ps CD CD cn QD CV ,- CD CD 0 0 Tr CO P- CD CD CD CD C) C) CD 0) C) CD C) UD CD CV CD C) C) CD CON- CV ‘1. 0 ci ci ci ci cci 6 ci co CV CV CD 0 C■I CD 6 6 6 6 ci 0 0 0 CD 0 C) y- Ni 0 Ti Ti C.) up el CD (.4 U1 E M Q up 6 QD CV Is LO CV CV Ch 03 CV C3 Co N- CI Ps Co CV ,- 41 C) CD CD cn c> r- CV C) 1.0 cn r- c) up UD CD C) CO CV r- O C3 C) CV Tr C) CD C) CV CV LO CD C) c> CD CV Ps CD cnc> O CD CD CI CD C) C) CD 03 C) Y- CD CD CD Ch CV el r- O N 0000 6 el 6 6 C3 T- c> CD CD CD CD 6 cP T- 6 6 6 6 0 6 M 6 a esi r-- cu Tr Tr cn '- 6 Co at C) U) CO Tr cu 6 c> N- Ch U) 01 U) CV Co O 01 N- CD C) CD CD C) 01 Ps '7 01 Y- op cn c) OD CD CV Co 01 CD Q1 C) U) C3 C3 C3 Tr co O Co CD 0 01 Co CD C) Nr- T- 03 CD CD CD 00 0 7 CV QD CD C) CD C) CD cn CD y- Q1 6 el T- T- 6 6 cri cU ci 6 cn CD CD CD 0 CD C) CO 0 CD CV 6 6 6 ci ci ci ci 0 ci 0 ci ci ci O ri O cd CO 0 U) a- * C.) CD U) Co 01 01 yp U) Tr c) C3 Co cn C) UD Ps 01 7 C) CD CD Ps CV 7 CV Ps Ps N- 03 C) N- ' 0 CD Co M I-- O CD CD CV Q1 CD C) C) CV CV 7 C3 C) C) CD Tr C) CD 0)0 C3 0 CD C) CD cn CD CD C) 03 CD Y- CD CD C) CD QD a> op CD y- 1.0 6 6 ci 6 el 6 ci cri T- •t- CD 0 0 0 0 0 CD ci 0 6 6 0 6 Ti 6 a cU r- N Tr Tr co U) Co

Tr CV QD 7 CV C) Ps Tr CD OD ep N- 01 O C) CD CD Ps MO C) CD Y- Ps V) UD Tr C) CO CD 04 01 01 1.0 7 CV Ul CD CD Q1 CD CD Tr 00 y- O cn c> M Co CD CD Q1 y- ca c) CD cn 0 r- cu OD v- O CD CD CD 0 03 CD CD CV QD C) C3 C) C) CD C) 00 OD C) Ti 6 6 6 a csi 6 6 Co T- cy .- CD csi 6 6 6 6 6 0 Y- 0 C) 0 0 0 CD 01 0 Is: Ti CO 0 U) a- ft C.) 7 7 CO Co U) C3 N- Co CV y- U) up 6 CD N- N- 0000 10 Ul Ps C) cn c> CV 03 CV Ps CV CA CO CV Ps C) Q1 op cp C3 0 Co O CV CD Co C) U) C) C) CD CD CV r- CD C3 cn c> CO r- Tr

T- C3 Y- Ps C) CD C) CD Ch CD Ps cn cn cr) ci ci 6 ci co ci ci cn CD C) CD CD CD CD 0 ) CV O C) 0 C) ci 0 ci Y.- 0 0 0 CD 0 0 O Ti csi ci

U) st (p - t

UD in

E o Co ON Y.- C) CV 01 U) O N- cu el Co cp 0 0 U3 0000 01 CD C3 CD CD p CV CV CD Y- CI CD r- op CV Co r- 6 Co03 CD C) C D 0 01 OD C C CV C) Q1 OD cn CD C) ,- C3 03 C) CD C) CO C) C) 0 CD C) Ps Ps cn le 0000 6 C' )Ti ci 6 0) CD CD CV y- 01 6 6 0 6 6 6 0 CD CD CD CD CD 0 T- Ti 6 6 a

13 Tr 7 ing C41 CC) E s 12) Tr Co Tr 01 0 CD N- CV CV Tr O U11- cn cn c> c> CD C) Ps QD 03 CO 1- 0 0) LC) Ps OD CV OD Q) CO 03 C) OD 01 ,- CD • CV Ps oZ) O cn CO CD CD CV CV 01 CD C) CD CD Ps CD 11, 0 CD 7 7 000 CD O C) CD C) 0 Co 0 CD CO CO CD •c- CD CD ( O cd 6 6 6 Ti C') 6 6 O r- CV O CD C 0 6 6 6 6 6 6 O ci ci O ci T- el ui Tr N- '0 7

O) CO line be QD CV Tr C3 C1 QD 01 U) CA Y- C3 Co U) CD CO (V 0 CD rs C) CV CD CD CD 7 CO CD y- co r-- oo cy c> 00 .-- O (V CD CD %- O cn el cu 7 CD C3 cn cp CO CD CA ro cn CD CD Co CD Co CD 0) Co O C) OD CD CD CD CD CD C) QD N- C. ci 6 ul 6 6 ci 6 6 6 ci 0 • p o> Y- CD C) C) 0 0 ci CD CD CD 0 CD CD C) Ni 0 Tr 01

cu 2) up Tr CO 7' 3 c U1 E 1,

00 0 01 Co CD rs C3 CO 1.11 C) UD 1.0 Tr Ul CD C) CD CD 01 CV Y- CD CD N- CV Q1 (c y- OO Tr rs- Co 0 CD QD C) CV C) O CD OD 01 Y- C) C3 C) • U) 03 CD O CD OD CD Y- C) CD O CD CV aa Tr OO OO 6 6 MN 6 a Co 01 0 CD C) C) Y- CD

0) CD 6 6 6 6 6 6 0 ci 6 0 ci ci Ti 6 T- cU t no. 1T) Tr up CO (NI IC) las ite r 7k E c

M O ' a cn cy N- el U) c) CO Co CV C3 CD N- Tr 7 CO C) 00 UD el Tr CD O 00 Ch CV 2) C) Tr C3 7 teo CV CD 01 N- N- CD 01 CD y- 03 O 7 C) cn CV CV 0 CD CD OD CV OD CD CD C)

Tr O m C) CD C) CD QD (D U) CD CNi Ps: 6 6 6 Tr Tr 6 c5 O CD C) Co C) CD CD 0 CO 0 CD CD Ps C) N- cu O C) CN1 CD CD CD 0 ci T- 6 ci ci 6 0 6 y- Ti 14) el 6 1, me UD rn U) Co (m ft C.)

lve CV CD CD 1.11 01 Tr cu 7 03 Q1 CO OD co Q1 CV CD UD CD CD CD r- T- eq no. CD LO 00 0 QD CD cn r- CD CD Tr s CD C(O 0C) 0 C)0 000 Tr 01 CV 01 C) C) 01 CD CD CD LO Co3C) CD CD C) CD CD Co 0 O Y-- CO O C) CD CD C) Cr) CD CV 01 le Ma 9 6 csi 6 N 6 6 6 6 6 ai cu a) Y- CD ci 6 6 ci ci 0 0 0 CD CD CD y- M 0 CV CN.1 mp he MD f t at E sa o

• CoCV Co el CD C) N- OD Y- O 00 01 C) U) CV 7 OD CD C) 04 Tr I-- CD OD C) 03 OD r- he Ul C) C3 CD cm el c> cp CV Co Tr T- -- Y- C1 Ps Y.- CD C> cn 0 C) CD r-- Ps CD C) CD CD t N 0 0 T- r- CO ses CD C) 0 c) C3 Y- CDO OCD 0) c> op c) 00 C) CD 6 6 T- 6 el el 6 6 co e5 ci co y- to ly 0) CD 6 ci cP ci ci 0 ci ci ci ci ci ci ,a 9 • el Q1 oi

na O fers

a Co E 7 7 01 CD A-- C) 0 Ps CV Y- C) UD C) CO CO C) CO NO CD CO re be CD Y- CV Ps C) C) CV U) P-- Tr CV 0 C3 03 Ps CD CV Y- C) C3 C.3 Tr Q1 O C') CD CD CV 01 CD CD Tr CO CV UD C3 CD O 0 7 y- C) CD 0 0 T- cn ro 0)CD CD 0 CD CD cn c> C) CD Ps C) cP 6 6 n: Ti 6 6 C) O N ow, 55 ,- ci T- C) C) N 6 6 6 6 6 6 6 6 6 ci ci e5 T- Tr 6 CD u, up U) 01 r Co Co is icrop m * C.) s

LL ly

m CO CV 7 ,- 01 Co Y- Tr C) C) CD U) CD Tr CD cn Tr CD UD Co V) CD Ch CD CV CD C3 22 y- UD Q1 OD C) el UD CD C) C) CV CD C) C) Co 0 Co CV CV Co CD 0 01 CD 01 C3 el

0 CO CV CV 6 ci ci 6 6 ci ci O 0 C) 0 CD CD 0 C) CO C) C) C) 0 0)

y ci ana cy N 0 6 ci ci O ci O ci 0 d 0 cO d 0 .7 CV .7 CV T- up Tr he W ‘t 75 Feo

roxene

c) ul E t in as

ci .470 Fe

c de 0) 0 C) l A. 3 Py

X cL ta i3 " -6b6 o 0 0 9, 0 To co ble 2E>. CO 0 O m tp 15 *L. — as co ° I— 3: Ili U. *To 0.4)J P: 0 :E :E c) ZE NC I.-

▪ ▪ •

I- R c> co N co a) c) N U) UD U) C> V) CD at ul at CD Ul CO CD CV UD CO co N up co 6 co r- C3 CD 0) r- el a- C> 0 CD a- oD O a- 00 a- CID CD C) 0) cn CD CV 00 CD C) C) CD CD CD V U) 0000 6 cn up 6 Tr 000)00000-00 N co cp CD OD N O ci a- 0 ci ci 0 ci a- 6 6 6 6 6 6 T- oi N cci cci .- (D N (D CD 0 CID CD Tr CD CD N r- 01 CD CD a- C) CD C) CD CD CD ul Tr CD OD CV co r- 01 el a-U) CD al- el C) a- CD 1.0 R U) O at r'a- C> N a- CD CD C3 01 a- CO a- C) c) c) op CO CD a- CD C> CD 03 0 CD CV U) a- CD C3 CD cn OD cl a- C5 ar co 6 ci ci f Ti 6 6 CA 0)O CD 0) a- C5 6 6 6 6 d 6 a- 6 6 6 6 6 6 a- 01 ar 6 ci N 6 co CD Ei (.0 a- * IA N N CO a- CD OD U) C) CD N OD CD CD CD CD UI at CD CD Ul T- ap op co CD C) Ul at CD co Tr r- CV C) C) C) r- a- a- CD CD CD CD el UD C) C) C) CD CD r- 00 CA C) CD cn CD CD CD CD CD CD CA UD N 6 6 6 6 T- ci ui T- 6 6 0) CD. C>. O CD CD C) cn c) N N 0) C> ci 6 6 6 6 6 a- 0 0 6 0 0 6 V CV (0Tr up0 O N E CD 00 N N N 0a— Tr T- r. OD Ul el CD C) C> CD at 00 a- CD CD U) a- 00 Ul elm.- C3 0(D a- CD CD CO a— CD C3 C> r- C) a- C> CD CD a- el Tr C) C) CD CD r- Tr a- CD 0 C) C) C) C) CD cn c> C) 6 cn co 6 CD CD O CD CI CO 03 0 0 6 0.— 0 ui .— 0 6 . . CV 0) a— 0 6 ci O ci ci ci a- 0 0 0 0 0 6 a- 01 CV U5 C5 Ul cy xc E u) a- at Ul N N N N Tr op N cn cy 0) N 00 co N 00 CD ul OD CO C) cn up c> up T- co 6 op CD oD CD O CV OD C> CD CV CO a- 03 CD CD O CD CD QD '- CV CD CD CD CD CD CD CD CD V) Tr 6 (-5 ci ci ci ai ci ci Co cn cp CD CD CD C3 CD COO T- 0) a- C) CV 6 6 6 6 6 6 a- 6 6 6 ci 6 ci T- CM c5 co ui mr (D * ar 0) Ul CD a? CD CD CD O 0) CD CD CD at 00 QD 01 cp Tr In CV CD CD s- CD CO (7) Cr) a- ar r- a- CD CD U) O CO N DO CD CD r- co T- C> CD CD 01 0) at CD C) 0 CD 0 01 U1 CD CD C) C) cn c> CD CD cn c> CD CD CD O C> CO at at 0 0 0 0.- 0 ui .— 0 0 0) 0 CO CV co T- 0) a- CD ci 0 ci ci ci ci a- 6 6 6 6 6 6 a- ar a- uzi T- c‘iLI Tr ill E 00) VI a- 000 CO N CD O 01 r- c) co 6 6 co 6 Tr CD a- CD CD CD Tr cn a— CD a- Ul CD a- CO CD 0 r- CV C3 CD C) a- r- c> t:,O CD CV N Q0 CD CD C) CD cl r- '-

CDCD co c) 6 co CD CD CD CD CV CO CD C) CD CD CD CD CV CD r- 6 6 6 6 6 6 ri 6 6 O . ) OD cy N co a- CD 6 6 6 6 6 6 a- 6 6 6 6 6 6 a- 01 CV ar a U3 01 CD CO t (p 4 o in Tr CO 01 at UD et r- at Ch ul CO op N- CD at C3 C> r- 00 a- CD UD CD CO Tr CO 01 01 cr u1 C4 V- CD OD Ul C) C) en CD CD 01 C> 01 1.0 C> CD a- Ul a- CD CD CD CD CD C) CV Tr p a- C> CD CD 0 OD C) CD CV UD C> a- CD CD 6 a> CD at le • Ti O.— 6 c5 cd N 6 6 CO a- T- a- C5 6 O ci ci ci ci 6 6 6 6 6 6 e- ri O N CI)

LO el ing 01 CD

CD a- s * 12) r- op co T- N op cp cp oo Ul C) O Ul Ul cn cy CD CD C) at QD CD CD co co co r-

U/ T- up co cy co C) CD 01 CD CD CO N CD CD C) r- CD CD CD CD N 01 ul CD C) 6 a) up co 11, C) C3 CD CD0) CD CD CD CD 0 0 0 C) O CD at CO 6 6 6 6 T.- ci Lri — 6 0) CD. 0) 0 0 0 0 0 ( N Ca') 0) a- C5 a- CD 0 0 ci ci ci a- 0 0 0 0 6 6 a- ar CV u5 6 eq Tr up CV line

tt E be r- N 0) CO a- Ul OD 0) op CA 0) c(3 r-- CD QD a- UD r- CD CD CD CO CO cal r- a- C) cn op Tr r- co cn T- CD CD ul Ul CD C) CI U3 CD C) QD CD CV CD O 0 01 LC> 00 01 CD CV 00 el ro . . . . . . . . . . CO C) C) el UD CD O CD 0 CD a- cn r- QD CD CD 01 a- CD a- C) C) co c) c) . p r- Tr T- 0 a- CD a- 6 6 6 6 6 6 C) a- 6 6 6 6 ri 6 6 ci —• N (D

CV '- c2) (D CO 1,

Tr r- cn 01 co Tr O ar CD CD 0 (f) CD CD a- Tr op co up a- cr) (c M 00 LI) CD U) CD a- al- 00 O 6 a) O N a- 0 cal 01 C3 CD Tr up T- 03 CD CD a) a) CA Ul 0) 0)O CD C> 0 0 CO 0 0) a- CO CD a- CD CD 0) cf) co r- c>

0) T.- 6 N 6 0 ci ci ci ci 6 6 6 6 6 6 6 oi oi ei co t no. co co N ES

(.0 a- las

rite * (-) c 0) N co 00 N OD 0) ar a- co r- 01 CD U)CV CD 00 O) QD Ul CD 01 CD CD CD CD CV OD 0 teo CD 01 0) (.10 N 6 0) at CD 0 co ul ar cD a- C) C) a- CD CD 0) 00 N N CO CD CD CD 6 co 6 CV 6 cNi ci ci ci ci ci ci 0) 0) CD C) CD CD CD CD CD C) 0) a- r- CD CD CD CD CY C> Tr cv at m 2) N CV 0) a- CD ci 6 6 6 6 6 O 6 6 6 6 6 6 a- ar a- 6 1, me up op m n CV E ( lver V) C3 VI N co) N en CD 01 CD CD 0 a- r- 03 a- 0) CD r- a- CD 01 CD CO r-01

CD no. CV 00 CO U) 0) CD 0) r- C) CD N 03 N cD a- C) CD a- Ul CD 0) CD CD Cl CCDD CD CD CD 01 a- a- C> CD O CV CD r- C3 0) CD 00 CD a- O CD 0 0) 0) CV CD le

Ma C5 CV C5 C5 CD 6 oi ei c5 6 0) co 0) a- CD 0 6 6 0 0 0 O 6 6 6 6 6 6 a- 01 CO 6 c‘i he — (O CO f t

at CD samp o

Tr 0) 00) at CD Ul CO CD CV 0) O 00a- 0)O C) CD CD OD U3 at CO 0) Tr CO CC) U) he CD CD Ch a- a- 00 opTr U)y O up T- cp 01 CD CD CD OD a- CD a- CD 0) CD 00 r-

MMC00 ID t ses C5 4 6 ci 6 6 oi 00 cnCD O a- OOO OD co O .— (00.- O0 0) 0)CD U3 Ul ly a- 0) a- CD N 6 ci 6 6 6 6 a- CD C5 c5 ci d O cei V Lri 4 to co op

0 rs CD a- fe

ana * ul ul m a- cn cy CO a- op 6 C) CV Ul be 0) 00 CO UD Ch Tr 0) ul at CD LO D a- c> re co C) Tr CD CV el CD CD CI CD r- op up dn et C3 OD r- Ul r- 6 QD rs C) CD 0) UD C C C CD CD ro CDC) CD CD C> CD 0 CD C) CD a- r- 0000 6 6 Tr CO (D w, 6 6 N4 6 6 6 6 6 6 c5 cci o FA T- O a- CD 6 6 6 6 6 6 a- 6 6 6 ci 6 6 a- ar CD 0 65 c, g ul Nr ro icrop W E s is LL ly

m CD at Tr cy op CD 01 Co a- CD CD Ul CD ul a- CD CD CV at Ul OD a- CD C> CD Tr U) r- C) 00 u1 00 0 Tr 000 CD a- C) CD CV Ul CD CD at 00 CV Tr 6 6 CD CD Q0 r- CV

C3 CD rs CD a- CD CD CD CD a- U) r- • O a- mr CD CD ci oi 6 6 00 CD CD CD CO C> r- cy T- Ci 0 Ci 0 0 6 0 6 6 6 6 6 R Ul ana xene Tr

cza he Feo ro CD () t in as ui 3 Py

co Fe d arn de l A.

x ta 2 E 3 6,, b 07, 2 0 (2. 0 9,, 0 + co ble >. o - ) Cr) • - 0)% co co 0 o 0 tn

:E 2 1- 4( I- LL 2 u_Euz U. *To LT 3 c.)2z The Ta

• •

cy T- op 0) op Tr U) el T-- CD CO O cy cn cy CD Cl T- T- CD ON 01 0) CO O O cy ca up CD Ts C) CD C) Tr 01 CV C) CD 0 CD 01 Cr3 U1 CD es 6 cy c) r- 000 CD 1.0 CD 01 ci ci ci ci ci ci 0) a) 6 O CD C) CD CD CD CD CD CD OD C) T- C> 0 O 6 v- 6 6 C) ci 6 6 4 in CV 0) csi 6 0 ci ci ci ‘t 4 O CDel 4t C.) Tr cl ol Tr el CD CD C) U) O CO O 6 CV C) 6 C) 0 cn op op Tr ,- cn CO es Ch y- Ts Ul e- C) el el 6 6 U) 01 TrTr O C) T- C) T- CD C) CD OD Ch CV CDC) CD CD Ul C) es T- UD CD CD CD CD CD cn ca CD ci O O c5 csi ca 01. CD O C> CD C) C) cn ca cr; 0 0 0 0 0 0 C5 M ai tri 01 cy O O 0 0 0 ci 0 c) r-) ‘- CV 4tr. E QD rs 0) OD 6 C) 00 C) N- U) UD Tr CDN- CD 1.0 CD e- oa c) CD U) Tr v- CV UI 01 r- Ns 0) 121 es 0) U) QD CD C) OD CD C) O 01 el C) CD CD e- CD C) C) CV CV e- CD C> 01 CA Ch CD 0 UD CD CD CD CD CD cn OD UD Tr ci a c5 oi c5 0) 0)O 0) CD CD C) C) CA C) CD ea CV 0) v- C) 6 6 C5 6 6 6 0 ci ci ci ci ci CSi Tr 00 CID el y- es CD C) CV 1.0 C) CD O Ul T- Ul e- CV C) CD C) Tr Tr v- T- CD CD CD CV Tr QD C) LO CV CV C> CD CD 01 C) C) Tr 00 CV O CD C) (DC) N O CD C) Co el COC) CD C) CD U1 T- cn C) ci N- tri 4 00 0) CDCD. . O CD C) C) CD cn 0 CD CD e- C) vs C) C) C) CD UD CV st CV v- 0) s- CD ci ci ci 6 ci ci 0 6 6 6 6 a CO NM Tr Tr

UD el 6 cu 6 C> Tr Tr 01 0 CD O CV Tr C) 03 6 CD CD Tr es C) es CV CD C) C) CV cn up T- r- 0 CO (0 CD es 0) a a U) Co CV O v- CD C) T- QD C) CD CO v- CV es CD CD CD CD s- 01 CD 01 0 O CD CD CD CD cn c) CD CV CD C) C) C) C) C) CD el CV 6 6 6 ci ci O ci ci O O v- CD ci ci ci ci ci 0 6 6 6 6 6 ni N Tr T- 6 r,

01 CD QD 01 v- CD 01 CD T- CV U) 0) '- O Ns ,- Ch Ns 6 C) CD C) Tr op cy Ch T- Tr OM Ul CV C) C) vs CD C) CD 0) 03 .1- O CD CD Ul C) CV C) aa co el 0 00 O CD r- CV Ul 0)CD O C) CD C) C) CD C) 0 CD ot-sroc) C) CD CID Tr T- 0 ui c5 0 co Tr c5 0) • CV 0) CD ci 0 ci ci ci ci ci 0 6 ci ci 0,505 es: CN> Tr Tr

N- (0 0) Tr N— CD OD CV CD 0) c0 Ns 0)V cn oa CD CD CI 0.1 0) C) es Tr e) r- 01 Ul CV CD CD co CO CD CD (DCV 0) 0 0 N- 0 CD CD CD C) 0) el co 6 c) c) . 0) CD 0) 0 CD CV 0 hs CD CD 03 C) CD C) CD C) CV CV Ul CL 6 CD Tr CD s- s-- C> C) cr; M a) c5 6 6 6 6 6 a 6 6 6 6 6 6 ei cci cri CL yl u) Tr E Ul CD OD T- op a 0 O es 01 O Tr co cn r- a O st N- e- CV CD C) CD C) Tr o- CID r- Tr a Ul N- v- UI C) ca C) C) C) r- CV Tr OD 6 Ul C) 00 el CD. C). CO 01 O M c) c) T- Tr c) O ca a ca a CD CD O CD CD C) CD CD O Ul CDC) O Tr Tr ca ) CO u-i 6 6 6 Lo a a a; 0) T- CD 0 0 0 0 0 ci 0 6 6 6 a 1- 4 6 csi t (p in

E o T- 00M CD O es 66 CV T- 0) CD CD Cn Tr (On CD el 01 cy cy ca a r- ca p T!' nv- 111 CD 01 OD C) CD CV CD CD O 6 Ts U/ r- 0 T- CD T- Ul CD CD cn CD CV e- e- 03 T- O C) CD C) CD 03 CD el Ul O.— C) C> CD cn cn cy le M 6 ei U),-OO — M OO cd CV 0) T- CD ci 0 ci ci ci 6 6 6 6 6 6 O M 4 n

QD CV ing E s 12) CD 01 C) 01 OD el 6 0)‘f CD 01 C) Tr C) Ul CD Ts cp es 6 01 C) 6 CD 6 CD CD N- C) Ul 6 CD Tr n 0 CD 01 el co 00 v- Co C) CD 01 C) CV UD CD CD M CD Ul 6 11, CD CD UD C) 01 cici ci ci 4 0 CDCD 0) CD C) C) C) cn CD CD 01 C) C) C) C) ( Co O v- C) 0 6 6 6 6 T- 6 6 0 ci 0 ci cNi cd c i CV CV CO 01

cr) "- line CD CO 4t be CV N- el OD v- C) U) (O NO U) Co cy O Tr T- cn 6 CD CD CD C) el Tr v- C) 0) ONTO C) Ul UD T- C) C) Tr cn C) CD oa O CD CV CD U) C) CD CD CD el UD C) CD 0) a up (NI r- ro 0) O O C> CD c) cn a CD CD oa O.— CD C) CD CD U/ 03 UD 6 6 lc; 0— 6 co oi 6 6 ai p v- O 6 6 6 a 6 6 6 4 n cd cNi CV 0) cNi ci ci ci ci 2) Tr st c 1,

Cl 01 Tr CD Tr C)OD CV N- 0) CD C) a) T- Tr CD Ul CD C) CD 01 6 v- Tr CV Ul U1 C) Ul (c a ro co co CD N- CO O M C) cn c) a T- 0) c) C> CV cn el 6 UD CD C) O c) co c) ca co c) C) CV OD C) CD C) C) cn cn N M 6 Csi 0) CD Ci ai ci ci Co

a) csi ci 0 6 6 6 6 s- 0 6 6 6 6 6 CD el el T-01 t no. O el

las ite c

O CO v- OD Ul CD C) CD C) 6 Tr cn T- CD C> CD Tt CO 01 2) cy cn up up op ca OD Tr T- C1 QD Tr CD 01 01 s- teor Tr T- C) 0 Ul v- CD C) 0)) ca O vs CD T- CD 6 C) C) CD e 01 OD CD CD Tr CD CD v- st m CD On 6 '-0 U5 C4 CD C) 0) cna O CD C) C) CD CD CD C> CD OD CD C) CD CD CV 0) T- a 0 0 0 0 0 s-- 6 0 ci 1, me

'7 .7 m CO — ( rn

lve cn el U) T-"CO CV CD 0.1 M 00 UD Tr es N- Tr Tr 0) oa CV O CV Tr C) CD CD cr)O no. r- cn up 6 v- e- C) C) cr UD 01 O CD v- es 0 cn cy 6 C) CD 0) C> CO CO 0) Cr) le CDC) O C) C) C) C) a)0 CV CO CD CD CD CD 0) C) co Ma c5 c5 ci ri 00 O 00 CV O T- CD 6 6 6 6 6 6 s- 6 6 6 6 6 6 6 4 oi 4 6 el he s- amp

t CO CO f s o

Co CD v- 01 CV CD 6 01 Ts O v- CD C) 03 CD CD CD 01 vs C) C> CV Tr v- CV C) 0) C) 01 CD Tr he C) 01 C) CV CD CV CD CD OD 01 00 0 CD 0) C) Tr cy cn CD TY C) el C) CD CD 01 C) O e- CV t C) C) es 0. C) CD CD CD .41' CV ses cn CD C) C) CD CD CD C) CD T- U5 CD v- CD U5 Tr CD C5 ci CD to ly 0) v- oi 0 ci ci ci 6 el 0 0 ci 0 0 0 6 4 r-: co oi

Tr Tr s fer ana e r- cn r- CD CD UD 00 OD Ul O op O CD v- CD cn a C) OD el CD U) CV 0) oa 03 CD CD r 01 es CV CD Ul C) OD CV O CD —• cy r- O op O CA CV CD C) Tt Ul T- r- a CD 0) CD Ul CD cn T- 6 CD v- CD C) CD 03 6 ,- robe cn a O CD CD CD COO CD 0) C> Tr C) C) C> CID Tr Ci C> Co CV T- 0) T- CD 6 0 0 0 0 0 6 6 6 6 6 6 6 cti M M co ow, r rop is

ic C s

m 01 01 Ul 6 CD el v- 6 CV Tr w co a O r- cn oa c) ca el CO T- CD el CD es D) O CD CO v- 03 CD C) e 01 CD CD C) CD CD es CD Ch CV es CD C') cn ca cy ca co a na ly

ne CD OD CD C) CD C) CD cn 03 r- cy ci cn a O CD CD CD CD 00 C) CD

ci cri ci ci ci cd a CV cn ci csi 0 6 6 6 6 6 6 6 6 6 6 6 oi oi U) xe he Feo

to ro t as in

Py a 3 Fe C de

C l A.

o ta To co 6,,b.:5,-,00 0 no + „„ -• o ble C o O fi 4_ 4 "cD Cr) .— he

F Eu-Euz s LLI U. *To u- OE2Eo z2 C.) < 1— < I U. z I-- T Ta 13 < Mc O) a) E O 0- U) 4 >. X CL...., ii ., 0 c I., el ,„ at ft 0 Co 00 LC> E P CO 4 . CO

E 01 • CV Tr 0 E E CL .) • • .6.0:b6,,o • • • O u) QDr-ulCIv-00CVCD 6 riM.-c5n0 NO CDC)OOCAa)c) CD cnu)U)elC)CV4Cn CD 0CYCV C3 N.-6c5oi 04 CV CD 4ChCVC)U)Cn O'- 6cic5Ncsi O csi6cUci cy r-CDU)C)4 CD .4elCVC)4 Tr T-r-c0CD 6 aici C) COv-CVO4CD CV C)ul034elU)CDv- 6 riO,-cic,.1c5 CV r-0ulC)0)CD M CD000)U)v-03elcvC) CY CD6cicocsi C) 00v- CV 00 6 ric5n(.50 CV 4r-elQDCDUlC) 00 6 T-c5O'-Ti CD 0(•-: CD CV0VIIf) CV 0)01COC)a)0CD Tr aDr-0O4v-01CD 4 CDC>r-v-6MO ci c5u5OOri6 6 cUT-ONc5 CV 03CD4 cA CV6QDCDC)v-cl Tr a)CDelCn004v- 6 (io5T-0 - - cvr-ul0C)

'-00 I C) CV 03 C) cn c) <0 03CT , - CV C) ci Csl 0 CV CD Cy

cr) 00 r- CO 0) O O C3 (13 O ai O Cr/ 0) Tr 01 O CO U) O co 01 O 0) co 0) 03 OD 03 CO 0) co co 0) 03 CO 00 a) 0) -cr 0) r- U) 0) 0) O -•

• ▪ ul r- CV .4- UP CO 1- a) 0 a) (0 CY)Cy • •- C) 00 P.• V) v- CD cnc) M UD el ul a) CV 03 CV a) CD 0) C) T- c) cn

- C) - Cn D . C c.4 c) CD 6

O CD O CV O O C) 1"- C) O CD O r- r- O C) C) CO O •- D . .

C) O CD C) Cn CD csi CD 0000000 6 Cn csi 60 CD CI 036 O O O Cn O C)CDCVr- a) CD4CV T- 000000 O CI C3 CD CD C) CD O O O O O CD C) CD CD O CV 0CYCD Cn C CO O CD O O O O O O - CYci0 D CDC • ; 6 ci C) CD03 T- uoc)r-000 0 CD6ci 01 0 r- c)T- r- 4CD6v-CV ci 0 r- CD0103 co oaCDv-aD C) CD CD CD C) Tr C) CDcnc) 6 CD C7C)Cn U) r-c)cnCnCD 6 CD cnc) U) CDelv- CY UDCDel ci CD C)C3cn6 00 CY ci6 CD r-elCVC) 6 ci0 0 000 <- CD Cn v-el 0 CDCY C) CVCDr- CD v-Ul•-CV CD 4el 6 ci0 C) CD M v-CD(0 CD 0000 6 01C)03elv- CD CY0 CD C)IDCn CD OCVC>U)C) Cn CDCOr-upv- 01 CDCVr- CD C)03 U) C3CD40)6 0000 CDCVMO CD CIC) 7 ( i=U. 022 . CDCVv- ci ON 4 CI CVO C) CID CD C)COO CI OelCD CD O,-03C) ci CD C7ChC) CD CY ) CDv-

C CD v-aD CD CVv-C) I 0 (DO CA O C7ulCD CD Ch 0 ul Cy ul CD a) If) Tr T- CD CD c) v- 0

I v- Ci60 cD O CD O CD CD CD CD O O O O 01 0) O O CD C3 CD UDr-004 C) C) O 0) a) 0) 0) 0) CD CD CD CV6C)• CD T- 06 CD C) CD CD CD CD CD v- CD60 C) v- Ci06 C - bo' - 0CD - -

2u. 2U2 el 6CVUICD 03 6 el ulCyC)CD ,- 6CVaDcvv- ci 0c:i CD r-O'-C) 03 elCVulC)CD 0 CY CV COCD ul v-CDQDup r- Ca CD C) 03 6CDC7 CD 0CY CD 03•- cD 4elCVCD CD UDCVC) 6 0ci CV UDOC)CD CD UD03r- CY CD0ci CV QDC)CD C) 03 CD elCVC) CD r-u)00 U) ylv-03EDCD ul CV ul QD03cnCVCD 0 6 cv 6CDv- -4 CVv-CDC) 4 uD C> 00C) ID CVelC)CD O opTrr- 0 ci el cv•- U) uD000)CVC) CD CD 4elCVC) C) elCV 6 CD CVv-u/•- 0 CY C) r- CD CD r-ylel00v- 6 r- 03elCOv- Cr- - r- ) n y (D U, C) el CVr-CD r- •- Ci 00 6 6 (!')000 0 v D - C c C) CD T- ul4 C) el CV DC .1-- r •- CD UD Ca C>C) CO C) ,- C> Cn r V - Cc C) CD st cy ,- CD CV C) CD CD C) Cy CD ca

C)

Y el CD C3 CD v- C) CD cD C) 0 0) CD004 CD CD CnOr- CD C) O McsiNai Cn CDr- cn cn C) I- C) CD CD CD CD 036ul .73 T- CD 6 cnulv- CD el6 O O CD O 0 CD v- v- 4u56ri C) C) CD CD Cn 0F cn 60) cn c5 v- cn CD C) cy 0) O 6ccco 0) 0) 6c)Tr Cn C3 0) cn cn 0 - - Cn 03cv4 c0 CDUlCV I- M 01 CDa56 03 CDCVr- r- CDel cn ro cn C) <-CD ( C7 6el4 C) C) el CD C) 6v-Tr CD 004v- C) CD03 c, c>uor- Co CD ' 4 eiCA CD ri co cnT-u) CD 6 elCDr- CI cncucy C) Cn6 O cn4cv C) CD C) 0 00 C3 1.0CV c) c> M0) cn CV03aD CD r-CVel CD v-•-Cn ei riTr Cn elCD cn CDCV v- Ni Ti 4 6CD 4 eiCA 4 •-v- Ni 0CVcri 11 0 c)c) C 6 ul CDCn CV v-r- •- 6 n Ti 6 6 (60 4 u/00 el clu/ cl CAUD ui 6Ti v- 6 D

T-Tr IL U. MN el 0D U) CD 0) cd ui CO el C) OD 01 C) Tr n U) Tr IC) 01 Tr .4 Tr 6 el r- Cn FN 1`.• CV uo Tr OD Tr 4 a en 7 CV

03 Cn M UD T- 6 c) r- s- CO U) ul ul

*Tota l Fe as Feo

The code in the ana lysis row, refers to the sample no. (m 1,m2) clast no. (c1,c2) probe line ( 11, 12) single point (p)

Table A.3 Py roxene m icroprobe ana lyses of the Malvern meteorite ,...abo0 00°0 • • • • 0 P.7(ii.02zEciz 6,-6666'11.-0o s- sr C. 6 ciU)0 CD rsCVUlOD06C) Tr opNr-Ocn 000 1- MM0MMT-01060 6 C) UD01 CD TrU,M000000 U) Trop sr s-N0)s-NCDCV 6646666c.i66 66r--0.-oup,-00 CD srONC3r- 6646666 OMMN1.-0s1 UlsrMsrMOWA-A-CD 0 NOD0TCVCDCD CV srU/N 0 CDsi N inoTroocomco,- 0 ci1vioi6 ococNTrcoomuloo 6666,-cicsi466 CV srCDC)Ul0 O CD C)Ul.0ODUD 01 CDUDODNs-NO 6 0N CV Ul OD 6666666M66 C> OD ci C4 01ODs-CD0003 ▪ sr CDU)01s- r- Nr•CD01U) c5 CVNI.Osrr-OMMA-0 00) )'

N srC3 6 el co 01-0A-06.-00 NMA-00 U) N0sr000 ,-mmmocoupoo c.)0.-coommc.).- +- cic5 , sr U3Ns- .41 0 oi N oi0 4 . CDOU)OD01N up r- N (NI N 0 CV N N cn m CV 6 - . c5 uioi '-- sr CA ci 6 ZaPcm0g. ci 6 CV C3CDU3 ci Ms-U1WOCOM • 6 CDsr01C) 0) T s- CD01CV +- c5 CD 001-C3 T • 00000 0 6 Nci c5 U) 6 uiei 0 N6 c5 • OD N 0 co s- ••• C) ODs- CD v-C) s- N N ci0 Tr sr CVs-CD h csi0 . - • . OD s-CD T 0) N s- CD , 600 oi 6 OD NC3 . • c5 . el N v- O 66 c5 • .

6 CD C) c5 0 0 6 • . 13 O ai cs) OD O ai O 01 ci) ai Tr O O O cd co O O O N CO O 05 N O N CY> O VI N O O O O O ai N O ai Tr O O cr, O O N O 05 CO O sr ai co N O cd Tr O ai O) N

W CO X 0 C CO 0 C) M 6 C 4i. F)Zt O CD A- 0 I T CD CD OD A-- CV 03 T CD CD 03 M CD T CD 0D v- , T C5 Cr c0 M 6 T CD cn CV 00 N T C) cn r- +- M +- CA CD r- CV 01 NCD T CDs- ChC) CD OD 01 s-OD CDC3 CD CD C) CDCD CD CD COCD CD CD v- T C)N r- 01CD A-- ON T CDN CD CDCD r- NCI CD O • Tr - CV • . ? a ...... CD CD s- r- el CD CD CD N OD N sr CD OD CD +- N CD Ul UD C) N • • ...... N O O O N O O O N O O O CD) 01 01 O O co N O O O CD 0CI O sr CD +- cn CD

D .

- 17 <1--cA.C.)2Z CD 0 01 CDN OD U)C3NCD 0 6 CD CYs-C)030 00s-0r...0 666666 CD A-- CD U) Or- 666666 CD CD CD U)OD 666666 A- ON0U)CD Ul v- CD Ch O CDs-CO 6 0 C) CD v- CDOD0 CD s-CVUD 666666 CD CD CI CD C) CD0 C3 NCYs-CD 6 0ci CD 0 U) s-01CDN 000000 666666 CD C3UDs-CVC) v- C)N010 666666 CD C3CVON O O 666666 C) 0CD U) NTrcq 666666 - .- 00c oocvolno 666666 C3 CD0 1- 0 cp CD CO01UDCVs- U) s-CDOUl 666666 0 CD00 OD CD 0 ci CD srUl CD 00010 6 0 s-CD 0 CD C) 010sr 03 NrsC) s- cp comopcno 0 ci0-06 CD CVC3 CD OD CDUlUDN " + 0 CD C3 a) s- 0 - qor-0 r- CD 00 sr U)CD CD s- C)C3 s- a--CD s-

cn CO CO CD op C) s- cn cn r- cp r- cn CD CD CD c5 cc •- 0 O O O O O O O O O CD C7) CD 0 CD CD O O O O O O O O O O O O CD CD CD 0 O 6 666666 CD CICO O O O O O O O CD 01 CICDCON CD 000Os- C O O O O O C) 0Nel01 O c)cnN O 0 - 6 0 Eca.2UZY sr InN sr CD CD ODC)v- CD srNCY CD s-N 666666 CD 030 CD N0000 CD 00UDU)s-C) 666666 CD CD 666666 T 666666 CD ODC) CD CD UD 666666 C) CO0000 C> CO OM U)s-0 666666 666666 v- Ul CDCVsr v- CDODs- T NCD0 s- CDNUDC3 666666 CD CV 000)a)'- 666666 CD WIcoo CD Nst C) NCDCV 666666 C) NCD0CY C> OD01s-CDC) C) U)01s-CD 6 0ci 6 0 C CD CO0 CD C) C1U3rsCVv- 666666 C> 666666 CV srCD)1- D D UCD CD CD sr s- 01UlCDC) cn )- OD N0000 U) UD CVA--CD OD C3 r- CD 000 CV cn c)cp CO 01 0-- 0 COMSrM C> 0000 s- UlCD Tr 0000 01 CDC) N r- U)O op Nc) CV 1 .

01 CDC) C) OD s- sr C3 v- 00 s- OO Tr 0 T .

Tr CD C) C) c) 00 C +- CD C3 CD CD CD C3 C3 0 CD C . • CY) CD 0CVC30) CD M M O oultoup C5 CD CD cn O O CD N O O CD O601 CD 6 4(666 0) cn 0) CD CD CD CD O A O or-o O — 466— O Sr T O ocNTrr- O O 6 M-466 CD NCACO CD CD T CD CD CD C3 CDs-Ul6 O U) cp cnTop C3 CD T - - - I- 3Ul U. 15 Ticic.iTi 0 01 CD Uls-v- ocor-co onoo Ti cci CD OD cp CD CVC3s- CD NCO CD NU)sr CD sr CD 01 Si N6 01 M Ch CD CD ODsr01 CD U)00 TiM66 CD CV cp up C) ODOUl CD UIsrUl CY 0Ul00 • Ticsicc56 oi ui CD CD CD Ulr- C) C3 CVsr CD 01U/CV oco•- Ti OD sr N Or-M6 CD CD C3 CDsrU/ ommm omulcs, cn up Ch 4 CD CD srr-01 CD C) UlN01 C3 sr oi Ti cn c) CD s- ''--- . cn OD CYUl r- CV N- UD v- 01 T- mU) s- sr u5(0U) Ul CV OD op •)- : OD6 0 N: N sr Ch U sr Tr Tr p OD US U) Tr Tr Tr OD c 6 01 sr 'Sr Tr N ui •-co s- C3 CD U) m N cn Sr sr CD N CD M U) Tr U) +- )6 . csi

r- cd CO N Tr I op sr ui Tr cn 00 cri cn CO CD 03 OD 4 OD M CD CD UD .

*Tota l Fe as Feo .c - .c C N 7.) CZt ••=.• N . O o co C CS U) 0 CU CS ›•-• 2 E C O E co U) C E CL 0 O C., Cl) C) 0 N CU a) CL C

Table A.3Py roxene m icroprobe a na lyses of the Ma lvern meteorite o_co o L.) 2 U- 66 X O. cy c ui 0) 00 cn 4t cn at CD 0) at CD it cn E 01 CO O 0) CO n- '- * C4 n- it CD CI) c cn CV 4t Cr) VI CD c- 01 C3 * CD 01 M cre co OD a17 OD CD , c- - CO

CV g , N C/ = N CV C3 tO CV 6 cep C '- CV N 0 r E E 0. U E E E O. U U (-) r ■

• • • ••• - , •

( O c- 03CD ODCD 0 ci6fl N 01 CVCD CV c-NCDC)(0U N 6 pi0000eici OD h-0301U)M 0 C5Ch O cn ci 01 ODc-c-0 N.— U)CDC) M U)‘fCVNC) C5 NCD c- ODIIICrh-C)CDC3 N C5 .—N CV crCD 6 pica M co O O NN000 CD N.— O NN c-050 v- CD MM r- +-r)Trpi O 5 CD N h 6 cocaciui 01 Col03UlQDc- 6 05cauiMOO CD OD C5 ci CV C>ODh- N , Ul c- cr ■ , 9"o20n Zi U) r- N- C5 CrO.—CD co a)r-u)c)6 Tr O'7 opr-c)co cu 04 CD pi C) QDh 0) COD h.. OD01N.CDUlc-C> Ul CDOD41Cr UD ODCVCDUlC) b N Ch e'l 01 c- 01 03 CVa-c-CD 04 N Cs1 Ch c- CD C5O5c- ODUl(DC301 ri 6Nci U) CO N N N dadaesi Tr N pi cica6°a N N pi 6ca N cr ODCD N — EiE r ci O CO pi Tr c- 0CD CO 6 pica h- UlCDOC) 01 el U)c> +- ca N CD c ■ CD ODCVC> OD UDOMc- 6 •-•pi CD 01 UD 0.c- c- V, 0/C 01 CDC) hCV • Co c- 0 6 Nel 6 elcqOc) 0 CD cr h CD 03c- • E N r- p-c) N.— U) N N N N ct N0 CO CD CD (0 ei CD +- Ul CD . ■ ) ONC) • 3 2 - U) MO el r- 01 .— CD cr pi 6 000 r- h U) r- N N cr ■ • 0 6 CD CD M CD N C) CD 6 ca +- NJ 0 ca 6

0) 0 1 • O

N O c- 0 C) CD •-• CD CD N CD 0 • I- ai a) 04 7.„ O 01 01 VI CO O O O O O 01 O M 0) CO U) O O co O O 0) Cr) 05 U) a) co O O O co r- O c-4 o ( r- a) M -cr 0) OD O O (0

C.) . co w r- 0 C 0. Zr) 0 C C >) a>6

CDCD c- CD UD UD CV cn h- CV 03 CV c- CD cnc) ui +- cn r- c- C5 CA CD c- U) c- C3 CDCD r- cv r- el v- CD 0)0 UD h 0) 0 CV 00 N 0 0 cnc> (N +- 6 cn c) pi r- N 6 0 0 Tr ui N- c- C5 Ch CD N. CV c- 0) c- CD C)CD CD CV 03 0) C./ (1) cn c- CD U) cr c- CD c OD 0 O 01 ■ — . 01 Ci < O CD e 01 Ci N 6 0 0 O OD CD N- l

N O O O N- OD N O O O 01 (`-• CC) Cr) h-• OO N O O O csi O O O N O O N O O O O O C3 CD CV 0CD N O O N O O N O O O N O O O N O O O O O O N O O O + < ciadadd CD C) 01 C)NVI h ca 6 CD c- CD C>03 0 UDc-U)N CD 0 C) CD010OD CD U)C)UD CD CD c- CD n- CD CD C) CVC3c.CD Ci CDCo 0 01 C)0N U) crCDc-C) C) C3CD C) 0CDc-h 01 U)C3ChCD CD Ci 0 C)CDa> V) CD0'1' LO COCo1-CD C) CDCVh- 1- n-NIC) V' CVCrUDC3 CD C)C3 c- C)N c- N C) CD0 CO CV 6 ci CD CI ui+- CD C) CD U)CV..a•0 ci 0 C) 0CD N Tr c)O.—pi 6 ca CD C>C) O ci 0a CO crCD010 CD Ci0 000 CVCD - C)C>c-01 n- 000GOO U) UDC)01CO ■ .- Ul O cael ci dada 0000)0 ci 0 C)CD Ul CD CD Ulc- r- +-COco 0 r 0 CD - es " u- ci 0a N CD 01 r- CD U)'1' CD ODc- 6 ci N C> U) C.) z Ul crC) ci CD cr OD crc- CD ci c- COh- CD CV Tr ci 03 6 ca co c> h cn ca cr CD UD CD r- 6 U) ci CD n- 0 CD ■ ■ CD 0 C) CD C) 6 0 CD c- F O CD O O O O O O O 0) O ci O 0) O c- CD0 CD CD C) CD C) o CD CD O CD0 CD CD CD 01UDOC> CD CD CD CD CD OD0C) CD CD O CD C> C> CD cp ON O CD O03O.—C) CD O CD C> CD 0 co rouscuca O - - - ) •0 ci0a 2u-EuzY CV CDC) N QDCVCDC3 r- c>0 6 ca 0 0> CD O0) U)COQc- ocicio ci CD N01 ci 0 C) 0)CD O CV01U)C)CD O Tr CV UDCDc- CD 031- 0 QD VI n- CD ci a NI- r- c- h CD 01U) C) 0C/CDa 01 CDc-CrCl CV Ul0h 0 aci c- h C> c- h 0 cia CD ODVI00n- CV Tr c- h-C)CD c- UD ci 0a 00)0000 CD el O C')01NC>CD ci 0a ci O Tr +- OD QDC>c- .— 0) 0 CDCV03C ■ % ci 0a C) N 01U)CDC> c- CV r CO N. CDvl ci 0 UI OD111c-CD CV oa ei ci dcziaa Ul ci h- n-crh r- h ■ ■ ■ ■ CJCVCD CV V) (00 03 co01CD OD C) CD n-00 c- CD01 ci 0a CD c- CV CD vo- as CV C) CD CV CD v- ci 0 CD 0C> UD Tr U) 0000 OD CID CD0 ■ CD CD 6 CD CD C) CD CA c- CD cq ,- CD CD Iv ■

0 ci CD 1- CD CD

c- ) N cn To CD CD cn CD CD N CD C) 5 c- c- 0 M Or0 O CV V CD0n- c- CD O 6 Tipi (3) 01 0VMcr 0) c; CD CD C) 0) CD 0) 0N 6 TiNoaa) CD C) CD CD CD CD O ca Naha) 0) CV c- 05CV c) 0 0)VCO CD c- CD n- CD CD CD crO C1 CD 0) CD CD C) CD CD OD CD CD ODh (5 V c-CD CD ri NVcsi ri uSoa Ch h CD 01cr Ch ci CVN.: CD CV03 C) MN CD N.COC1 01 c-Ci ci 05CVn- CD 03h cn c) 0)r C> M111 0 c-CDn- CD QDc- 0 C) CD 01V)h- CD CVCO CD U)01 C) vi V CD c-U CD CV mr>car- CD c-OD cn O vcr CD N- o U 05 CVN. CD 41 Ch cr CD CO01 CD c-h CD UlQDOD ci ci NCON.: C) 1.0Trc- CD CVOD ri •- CO CD cn cs, o 01 cn cocu 01 OD UD M 01 r- h M CDCD OD ai uau) r- es us co cs ■ ■ W CO UD Cr oa cn 01 CD 00 c- 01 CO OD c- 01 U) cr Ul CD V) In co OM N. N 00 CO cr Cr CO Ul C3 01 CD UD M in ui U CV CO ct Ul h- U) ui 6 c- CV h- U) 01 V Tr O cr Ul ■ ■ ) 01

U. VI Ch Ci 6 el es c- Tr 01 CO U) UD CO U) r- 6 OD CD 01 of) Ul Ul ■ )

*Total Fe as Feo

The code in the analysis row, refers to the sample no. ( m1,m2) clast no. (c1,c2) probe line ( 11, 12) single point (p)

r- C.) 0) 0 0) r- C) CY) Cs1 CO N- •O' •at LOa) c0 CO a) U) a) a) '7 V 0 . CV . CO. Q). . . 111. c0 if) cD LC) C) N- o CO C O C) ci a a co a a a a C) C 0 U) a a ci ai O a O ci U) C) O LL*. U) U1 CO U U N- co N N- N co U) .cr 4 U) N CO U) LC) 00 CO at N (7) U) (ID (./D CO U) CI) I- CO CO VI r- 4- a O NI C.) . CO n-. . . I,-. NI. CO. el. 0. 0. . N- C 0 0 0 0 0 ci ai 4 ci ci C co 0 0 C) 4 N- 0 0 0 0 0 U) C) O r- Cal U) U) CO U (7) •-• 0) CV lf) N 00 CV co l 03 C) U) N N CI LO CV 0) c0 0) el C■1 LC) r- O C•1 CV 0 a) OD V) N NI If) CI a) V r-- 0 NI O ci ci d. 0 N.: C.'") 0 0 0 0 C 4 a cc; ri ci ci ci tri ci 0 ci ci cri line U) N

l- Cal t U) CO las U c 0) in N- •Cr O R '- CD 03 'cr a) C) LO 00 l- (D a 4 O N r U) Cr) el 4 Lo - NI 03 U) 4 0 0 Cr) 0 N 0 0 71)C • CO• if)• if)• ‘ • N• • • • O• N-• O M 0 0 0 (O C.) 0 0 0 0 C 0 0 4 0 0 0 el CO 0 C) O 0

line LC) II) r r *-- O

l- Cal t

U) ) CO las

c U t (p

0) Cr) 0) N U) el N CO N V) U) N l CD s- 0 4 c•-) r- 0 •4 171.1 0 CV C) N 0 CO 0 n CO NI 0 Co LC) N- I,- LO 4 N U) O C) in

C 0 4 a O O CD V ci 0 ci O ci cd N: O ci ci CA CO ci ci ci c; o N line U) O p 2- t 1% le las U ing O CO N- C,1 U) V) CO O CD CO .•-• CO l c Cr) 0 CD N- CD v.) 4 0 O C') CO 1- 11) CO 0 0 CO VI 0 0 CV 4 ("I N- LO U) U) O U) U) C) O LO s C O ci ci ci ci O U) a a ci O 0 cci O ci ci ci V cc) O ci ci ci ai line U) CV O 12), 2- t 11, ( U las

U) line .1- 0 CV <3- O U) C') U) 0) 0 0) 0) l c 4 co co (NI CO 0) LO CO LO '4" 0 0 4 CO 0 NI N co U) N- 00 0 C) 00 r) O C) C cri O N V ci O a; O ai ci O ci 0 ci O ci ci ci ci U) 0 0 C) 0 11.1' line U) O be 2- t ro CO p las

U c 2), 0) c0 N CD 0 0 U) U) 03 0 CO 0 0 LO •-• 0 V- CI 0 01 03 LO 0) 0) O (0 CD 4 4 0 0 s- O C,) CD 0 N CCU) V) CD C, c C ai ci N ci ci ci cci ci ci ci cri C ci 0 ci ci ci ci ci N 1,

U) O c

4.1 ( U1 IO CO

U U no. ite t O UD 0 N N- N el C) U) CI CO (0 N O co co I,- C) CO •r- 03 4 a) U) NI- CI) CY) 0 M C) (N Nr CV 0 CO CV 0) U14cONNUIC) CO C) O N . . . las 5 C O 0 O ci ci ci O teor C.) O Lc) cri ci ci ci N O ci M (ci O ci O E U) O c

CO 2), me 1%). CO CO n U U m 1, N U) (,) CT N- O CO C) C.") C) CO U) el 0) 2 Cr) CD CD 01 CD m lver TI CD C'3 in 0 LO CO CD U) 4 Co (0 N -7 0 U) Co C) C) U) C")

ai O ci O cci a a O ci ri V ci O ci cd ci O ci ( E 4- line 0) Ma l- t no. he le las

f t U c O C) l- N 4 0) CO N CO U) N- o 17) LO CV a) CD CV V) V) NI 0 0 0) N- a) 4 r) 0 LO CV c,) el if) ‘-• LO 4 0 (0 O r-- N ci 4 ci O ci n csi ci a tri 00CTOOO cr; line

v- O samp ses l- t ly U) he t U las c to ana

01 CO 4 CO N Cr) N- N a) 0 N l- 0) C,1 a) N.. N- V r- N Co

0) 0O N M 4 0 N- N C) 0) 0 CO r- N CO CD I,- rs be O CA ci 4 4: ci C7 ci co Ci ine ci 4 ci ci 0 N: o fe O l U) co r l- t re CO las

icrop U c row

51) 01 03 C.) 00 N C) 00 a) 01 Ch N l- a) el N U) CO 0.1 0) co

m N- N 0 a) (,) 0 U) CO O N U) O V). 0. M. . CO. O. OD. r). 0. Co. 0 CO. . N

Ci C1 a- O s is ix 0 4 0 0 0 CO r- a a a ine O O. N 'ci 0 0 c CV l ly

tr C> l-

t 0 LL as /Ma

0 ana

0 he U) LL t Glass in

U)

4 N 15 6.97bcgo o g)(27,10 6- 6 A4 9"4 b9: 0 0 0 09A06....."

0 de

A. ••••• C i=.7zi202 -2Eozei_4 < u_c_)Ez2c..)zo.u) co ble. The Ta Table. A.4 Glass/Matrix microprobe ana lyses of the Malvern meteorite

clast4-line9 clast4-line9 6 (.0 CO CO vt -cr 6 CD 0N N- C)CD0)CO•cr LO N Tt Oof 'Cr 6 cooi co a U) 'Tr 6 hN-cci 1` n ONiN CV CDI ▪ c4 0) CD •-•I M 6 CO N- N N N-U) LO N COCAVN•ctCD0CVC)•cr N co 00U)

.• C3•CrCO aco A6 N NI' ci 6cci40 0 N00COCD 0 CV01CDN1 C') MN- ci O 0 CO 0)N 6 (pi co 0)crL-01CDLO 0 in 40)NO cci 6 N CAcOCD . 4. a) ■ < ai 111 N 6 COU) I 0 a) c CO CO CD 0D0U)C.LIOci , , , • Lt - - CO - CO b 6 6 O LO C) N 0

.) i

malvern-6-1 1 ma lvern-6-11 ma lvern-6-11 ma lvern-6-1 malvern-6-11 ma lvern-6-11 malvern-6-I1 malvern- E 10 12 ma lvern-6-12 ma lvern-6-12 ma lvern-6-16 6 ci04 (D N(0COLOCD0)0NI' U) cri (0 0) Oai (D inCO N `cr cri ci6 CO V NI' CON U) U) C) a; O0)CO CO ct 0) O a) CO ci0)6 I C) " ai O0) 0 CDLOCO0)N CA NCD(D 00 CON-OhN•ctC)CD CD 0 CD ai O0) I- Nt V ,- V ,- ) COCDU)CC) a LO NU) ci 0)6 N M O criccici •cl C> CO CO •-• •ctCDCO0)ONU)00a)4 O CO U) co NOooa)-7 . •-• N U) CLIN ct '0 - - NN1COCDC)I I e; (1) 0LO N CV a) LO LC)C.00CO01 c (D 6 - ••• co 46ci CD CO ,- CD 0 4' e ) •ctNCO b woEz2oz acr) N N a) CO h N CO IllLC)001I CI If) ci CO 6 \ ei co ci O Lc) a) C) N0CDU)r- 0) U) 6 0) 6 6 ci U) LO LC)0 LO •ctCD0N 0 a) in aco a) CA CO C)NCVcO CD 0CO 0 U) NCOLC) 0 (D co 6 CD CD O 0 (.0

0 Ca N N N el N (D COU)CD0 c‘i N LC) r N N C NN- NJ N O , - CO 09,06.4 CIS Csc4 6 Oci a) CV0V1 •c) 6 ciO h ci h 6 - 6 CV LO CD0)0 co 6 V ,- N - NCOL 6 ‘- COC) 6 r 6 ci a) 6 6 cl CACO,-- - el ON CV CDN C \I CV 0Csl N M CDCV CO 0 a r-) - CDN C) C> CV n N o - U) %..1 op N CA N - ■ O O O O O C) 0 CO U) O O C) O CO C) O O Cr; O O 01 N: 0) O O N O CO O O O O O O C) N- 0 ••

The code in the analysis row refers to the sample no. (m1,m2), clast no. (c1,c2), probe line (11,12), sing le point (p)

Ta ble. A.4 Glass/Matrix microprobe analyses of the Malvern meteorite To CO 7 CV E > C E co C . E co G) C E co ? -12 malvern- 12 ma lvern-6-14 malvern-6-14 ma lver -6-14 ma lvern-6-15 m 2-c last2-1 ma lvern-6-15 ma lvern-6-15 ma lvern-6 0 0 6 C) (D cri LO O O CV - 6 CV O 4 N- cO 0 cri 0 N- 4 c0 a) LO 6 cO CV N- 0 ul CV I- zr i=aA.622E() a 6N: O a>4NIa) .7 r--Oina)0c0 a aico6rNi CV V CO0) a cri .7 NT-4 0 NJ CVVN.0el ci a Vcrici4cO6 CV C>00UDOul C3 000ON-r) cc) NICVCD0 6 cOLriaO.-hc)0c> O O criciarsiN.:6 O criciN V a N-O6N:oaciaci U) r)CVVIN-0COCD a O cri6cic‘icci a) 0NICO 00 .7 I.-0)N.000 O ai6cNiN.:a V MI--CDCO07C7) O cs . 1 . c.) CV cci .7 a)InCD0CV.--- 0 O LC) CO 00CV.7C> N- 0 CO.7 0 coLO a) CV ozi N-a6 . 1 elU)010N..7CO b N- c0 cri a . CV DO c) u)coaCV 11) 0 00a>a)CT).- Lri a> c0 0 - 0 . U)LO0N.- CV 0CaN.- ci csi6 el a) U) T-- a ai6 0 a) CV 0 ci a) CO C) co 0 el 0 ci CD CV .- el N- s . M Ul O CD0.7CV 1- 11 cc) - l 0 .

cci 6 cO ce) c.6 N.: a .7 el CT>C>CDa 00 9, . CV .-- ci 01 0CDco NJ <- CV0 . 1 0CVN.- . 1 CDa) . 0 CV 0 CV I 01 CV ci cp O C.I ci CV V• 6 a on . LC CV CD C. CV 0 CV (,) CD CV ci r) C> , .7 0 NI CD 0 - - CV • CO

Si?) CN '1' O . Ls) - . "c5 O O r C) C) U) O O 0 O O O O 0) cd DO 0) O -- Cr) 0) 0.1 O O O CV O CV O Csi C") O O 0) O CZ) -• C.0 LC) O M u- LL eu ti To O To O To „- CD O Cn C CO (I) O Lc, E C., 7. To E ■ O U) E CD „- E co O To E a- 1. co E „- O Ia O E E CS O E co 9 E - E Ia 9 E ozs C E co 9 ■ ) 7'

0 ci O4 N. cri cia NI I--0 0) .tr Lo 0 NLricicri C) 03a>0.7ul C) N-Vh0 00 aar64cci c0 CV Cf) 6 aicNia(D CD Tr CD Lo 6 cociaVr) cr CO c0 O 0Vc.6a6ri4 CD CVcoa)a N- CV0 cri ci a> cr,4elN-O0 O 0 O O O N. ai a46 C) oo srcoc) ‘r CO 000a;Ci . 00:b000 o cO Or)CV N- N•cl N.- r) cc) LO I I- O 0 NcvuDV , ci V4N CV 0 CV - . CV N. r- CVN-LC)C> a) c.) a) cr)Loa r-- CV CV DO ch 1.0 c0 0 CV 0) . it cn 0 V CV CY) CV CC> CO 0VI([)cc)(+) cr) ac> 0 LO00COa) .7 N.- . . CV . C) C.) 2 0 CiCDsT o CV N4 c> I.- 0CV03r) ci a4 CD N. V..- el . . a) 111O .7 0COel cc) Lo aN.O 0 aa)4CV 03 03 .7 Cs1 . . a coV CD CV CD CD 0 0 r) a>4 0 CV0003 CD 0 . . 2 CD N. 0 ID .1 LC) 0 a (0 cv OCDCO0.7 N- l) . . a)cc)0CD.- Nr 03 NJ .7 .7 VI CO 0 11" CD N V .-a6 00 0C.1 . . - ? Z CD r) C) CV 0 UD (DOty) If) ci 0 i , . q LC) Cc) 0 Cn 0 c0 .1 a ci a a 6 ci a) CD0 O 6a 0O Ci 0 . - ,5 0- w N. CV C) CV 0 ci M a cc) . CO 6 NI CO C CV CO , , . ) )

1,3 ` 2 O CV C) C) O CO O O 0) CD O CO (ID O O O O o O c:ri N. O O O C) O CD O C) 01 O (c) CV O O O N- U) O LC) 03 CI) O r-- LL LL 0 0 0) ea

The code in the analys is row refers to the sample no. (m1,m2), clast no. (c1,c2), probe line (11,12), sing le point (p) -

co co 0) C3 0) CD N R W 00 C') Cn CO 03 sr- 0) CD cD CD 0 N Cs NI- 0) CO 00 LO CO LO N/- Cs r-- M Ni CV C> CD N CV Cs 0) 0) NY Cs NI- 0 CV CV N- CD 66-6666 6666 0) 03 N 6466 0 cci N 0 0 a CD U) a) Tr CD IC U

1 m (1) c0 c0 N Cs N .s•-• c) el 0 CO CO C) cO CD CD N Cs U) O NM 0) Nr CO a up or M tr) N- 0) LC) NI- N LO C) N O N- 0) 12 00 CD 00 LO TV . a). . . . . 15- 6666 t 60 h.:66606,-6666 O 0ocNi6466600 ,- cci O 19- rn las c ll-c l-

1 m U) LC) CO N N- M cr) co co co U) CO 5 ma CO 0 LC) N- C) O V 01 CD CS4 ■Cr T CO 0) CO 0 0) M C) 0 CD 0 Nr T if) 0 CC> I,- 0) T 01 CD CD 15- 0666oi666646666 05N T 466606c.i6666 I9-p CD last l-c E m 1 CD N T-a0 00 LO IC) cD N N U) C> Nt cD N CD LO CD CD cD Nt CONI CD Cs CD CD CD CD CD Cs N- CD r) N Nt O LO 00 NI- N LO 15- t 03 0 CD T T 0 CD CD NI- CD 0 0 0 th 06c.i.-co66606c.i6666 las c ) E t (p I m -• 1.0 CO a) N. T 1.0 •-• 00 N 0 N- CO CD Cs N. CD N. C3 111 M r•-• CO cr) scr v CO CD 0) CD 0 CO c0 T Cs Cs W 0 0 •cr N— Tr a N r-- •-• N CD O in l5- o t 066h-:6666466666 co -scr 0) p

las U c le 10 E ing I m ..11 V TO h- Cs N 03 N. NI- 03 Nt CD Cs 0) CV Cs 01 ON a) LC) LO (7) M T LO O T CV 0 0 Cs 0 C. O c0 c0 CV ,r) a .-- r-- 0") LO O s l5-

t 06666., 66666666 06‘, 6r...666666666 Tt N rn Tt 12), las 11, c - ( E I m CD it) vs- 0 co co N U) N- 0 NI- 0) (C) LO N NI- N 0) V- CD CD 0) NI- a) '' 00 LO 01 LO r-- O ,c) U) 0 LC) N. CV CV C) cs1 NJ- 0) 03 N C) N U) CD N V Nr 0 CV 0) CD line l4-

t 0666h.:666666666 ai h-66606.-6666 C) rn -4- CD be las ro c -

E p 2), I m 0) CD N- cs) h 0) 0 O V- N- CD Nt U) N CD T CD 0 W 0 VI CO •— M 00 LO 0 CV R LO 0 01 T CV CV 0 NI- O cD 00 CD 0 I,- 0 T O C) ss- N l4- 1,c t 66,-h.:666666666 O 0) 6606c.i666c666666 cci CD Tr cs, O las (c c

E t no. ite I m r

co co cv cv Cs N c0 CD U") N- 1 (D LC) NI- LO Cs 0) N. 0) LO Csl CO CD C11 CD NI- O CO 00ill Lr) Nt CV u") T N C) CD CO N- M 01 CV LO O (Ls las l3-

t OD T 6666h.:c.i666,- teo 66446666c.i6666 19-p

Nt- CD c c las c 2), ll- me

m rn 1, 1 ma I m CD N- u") N LO 0) U) a) cD c0 u") cD N- CD 01 N CD CD O LO m lve N- N- N CV NI- 0 a) CD NI- 0) 0 NI- CV T 00 e— CO 0 0 0 1— T C) 0 C3 15- l3- ( t t 664066660c.i6666 0 0664cNi666c6c.i6666 N O M O Ma las las c c no. he

le f t 1 m 1 m CO CD cD U) N- CD 01 0) CD CO N (D o 03 Nt 0) 00 CO LO CO CD CD C) 00 N- c0 Nr LC) (V LC) CD (,) N. CO CO 0 LC) N T c0 c0 CD 0 CV 15- 13- t t 66c64666h.oi6666 O 6 O O O M N ci N

O O samp ses las las ly c he c l- t

1 m to I m ana 07 a) CD N. r) co co V) CO CD N '' a) Cr) a) NJ- a V h- NI- CO CD Cs (D O) Cs CD Tr Tr co ,) O cD N O 00 03 ‘-N N- O 0) cs.1 CV 0 ss- LC) 15- be 13- 01 Ci M oci O c6 O I. N ci ci ci 6 O t N 6 6 6 O ci O T csi 0 ci 6 6 O Tr O fers ro NJ' las last c re c op l-

icr I m 1 m C:r) W CO 0 CD CD Nt Cs) 03 N- CO CD •-• CO Co) LC) LO CD Nt a) CD Cs row

C') C) C) is m N W 0 N CO sct O T C> Nt N CD U) cs) 0") CO C•1 U) T 01 l5- 13- s t ix 6644666 6666 0666., 66606h.6666 ly tr last las c c - /Ma ana he

In t in 4 Glass N N 6.6 6 0^009.0c- c4c., 6600 00 45 0 O m °g00 nn de A. p sta a) ea ea r4 CV 0 1.-

CO N. CO CO 0) OD CD .4' 00 CO (V CO N 1 CO CO CO CV CO CD N U) CV CO a) U) (0 NI CD v - CO CD 0 CD U) CD CD N N N- a •Tr N. V- a 4- .4 CV a- CV CO 2-

t r-: O cci ci a ci tri ci ci CO Csi a- CO 6 a a co N a a 6 6

las U c

2- co

CD a- U) Ul 0 CO CV CV .4' a) U) 1 m N O CV 0 CO Ul CV CO CV (7) 01 CV CV CI' LC) C:) CO CV 0 CO 00 N- M LO a CV 0 CO N CD 4 O 2-

t ci ci CY; 6 ci N r--: ci ci cO ci ci ci ci cri CO Cai CD 0 CD N 0) las

c C.) 2- E

1 m CD CV OD CO N. 01 CO CO I,- 0) CD a- U) LC) r--- 4 6 CV V O CO CV C) C:) CO LO CV CO CO h. LO V M c■ a a 2- uo t Ci U) N- 6 6 6 r•-: N a a a O cd O h 6 6 6 6 co ri O CV las

c 7'?

2- N E CV N. N .4' CD N- U) CO CO 01 CV N- U) CV Va- CV .7 CD CD .4' U) N a) N C,) CS) CO CD CI CO LO N 0 CD W 15 m CV . 0 . CO CO CO CD h- (D CV CD CD CO Co a- CO 0 0 0 CV Co 0 CD CD 0 O N 6 6 r-: aacia U) U) a 0 6 6

19- O CD

U ) co C•4

E E (p t U) V CO 0 a- CO v- CO 1- CV co CO CO 0) CO C) CD CO Cr) 0 a- CO CO CO cr) co ci if) 0 0 0 LO C \ cv N- .7 CV CV CD V 0 0 r-- co CD el in

(6 h 0 6 6 cc; a a a CO N O 6 6 6 co 6 6 a a 0) o CD p le CO N E E ing CD CV N.- CO NI' a) CD .4' LO CO CY) C., I ,- CO 01 CD CV CO N 14 CO N. CO 4 4 co CV O LO O LI) (7) I,- 0 in N s 15 CD N. CD CV 4 CD CD a- CO 0 CV N- a- C / LC) a O ci O. ci a ci ci cri N a 0 01.6 6 a 0(N 6 6 a a a 19- U) •1 .. 0) 12), c I 11, ll- 2-c ( I1 m h- 0 U) a) co CV CD LO CO CD CD .4. .4. co N. (0 03 a CD CD 0 U) .4. CD line

LO M h CO CO CO 0 (V N CO .4* O C \ I 0) 14 ma U1 .7 .7 CN ... W CO. . CV. a- W 0 0 0 h CD CD CD a- CI) t5- 4 a h cOciaci4Ociacia be 19- CY) c las ro c ll- 2- p 2),

11 m co co 4 a 01 CD CD CD CO N. CV OD U) V- CV h- CO CO N- Ul V CT) CD OD CD c CO "4* LO CD LO CD CO W LO 0 CO C•1 14 ma C \ CO LO CY) CV 111 a r-- C3 N LO CV 5- 1, 6 r cci r--: 6 6 a OD oi a a a 6 t 6 a 6 CO 6 a a cri h 0 6 a a cri 19- las (c l-c l

2-c ma ite t no.

CO U) 0 N. CD CV CD CD CD CO CO CD 11 m 03 CV 01 a- 0 CD CD U) LO Ul OD 0) N. 0 .7 CO 1- 0 0 CD CO h. N. CD Cr CO N CO 'I' CO O M" CO

01 CO CD N las

t a ci ci r--: M ci ci ci ci CO teor Of 0) 6 4 ri ci ci ci c‘i co ci ci O ci CO 6 N

U) 0) c C.) N las c me 2- CO m2), rn 1,

CD CO CD 1.0 LO CV CO 11 m CI) N- CV CV V) V CV CD a- h (O U) U) m lve a- LC) 0 N- 0)) CD 0 C \ a- 0 a CO CO 0 CO LC) CO O LO CNC V O O M - U) ( 6 a 4 oi 0 6 6 4 6 6 a a a t5- 6 0 N V a 6 a h N a 6 a 6 ai Of U) a) Ma 7( ) las c no. he CO 2- le f t

GO I1 m CD CV V D1 cr) M O cm co V N U) CD U) o a- 0 N CO N. CV 01 CO CO CD O LO V O U) CD CV .4* 0 0 CO CO (7) Ll) CO 0 a r-- LO O V O

5- • • • • • 0 4 4 a 6 0 of ao o a a t cri o 4 a a a r•-: a ci ci ci

rn samp ses las ly he 2-c CO t to ana

CV N N- CO CO CD CD .4' .7 CO CD CD V* CO 11 m CO CD a) CD 01 1- CV CO 0) V N. CD CO a- CD CO CV CV CV 0 0 0 CD CO 0 a- O N. CC) CO CO Lf) V 0 CV CO V V O M' CO 5- be

cri ci ci a Lc; 6 O ci t co 0 ci 0 0 a 6 cci 66 a a a 0) 01 fers ro C.) las re

CO 2-c ow

icrop E m 0) CO CD CD NI. CO 0) "I' CO V. CO M• N. CO N (7) 17 N a- CD r m N N CO a- a 4 (D N CV p- 4 CD CV (0 CD U) CD CD CO CD 0 is 5-p t s

ix ea cei ci a ci co N ci ci ci ci d cci ci ci ci a ci ci cr, N ly tr las c CO na /Ma a ss he

U) t Gla U) in 4 04 A4 P7b0 0 0 0 CO 09,06A4 610: 69:902.9.4 9.06n Al de A. .‘e C CU CO C•I CV *6.0 ‹u_oEz2ozam PR it6S2g3 2 2 pc:. c7; co ble. The Ta • 2 t

l-p N r C) CD CD N Co N. N a- CD CD CO 0 CD CO 0 CD CD CD a- C> C/ 0 O O O OCi O 6 ci ci 6 rmc CD 2-wo m

ip N- C3 CO N CO CD V' CD CD LC) CV N. CD CD a- CD CV CO 00 CD CV CO

tro a- 0 O CV 0 CD 0 0 ci ci ci a 6 O CO M O 19- l

CD 2-c In m

t CD CO a- N. N 7 7 C> a) 7 N N CO O CD C) C) 0 Co CD 0 0 0 0 0 a) CO in ci a O ci ci ci ci ci ci ci ci co Cn 9 nn lp co

ite E inn CD N LO 1- cO a- 0 N. LO CI CO O g I1 0 CD a- r 0 CD CD 0 0 T CD CD CO

teor ci O r a 6 O ci O a 6 6 CO 19-

C3) 121_ ll-c me n le2 111 . p

0) N N N M C> 0 N. C> LO CV 17 CD 9 V' CD CO CD C> CO a- N CO I- N C3 0 N lin lver

11 ma CD C) CO 0 N- Cf3 CD CD 0 CD CV C3 0 CV Cn . 1-. CO 0 a- 0 C3 •Cr CO 0 O 0 N- CO "ct 0 0 C> 0 0 0 0 0 a 0 0 ai 6 a 6 6 6 a 6 Iine 19- Lr) a) tr) CT hp 4- Ma t ll-c he las ma f t c 2I nrn Q) CD el CO el N N 0 T Ill CO 0 CO N 9 O co a) el NI' a- CV LO LO N CO LO o -r. C) 0 C3 ct 0 O C) CD 0 CD O c) 0) CO 1*-- CO CV a) 0 V' V' 0 Co C) U) O W N 0 CD CD 0 0 0 CD CD 0 't n 6 6 6 666.666666 Iine 0) s is co co O -cr 9 ln t4-

ly O CO N :1- las E t nn_ ana N CO LO N 7 (C) CO V' CO M N- 9 c co co •cr a) CO r) O CCD N CO .- O 7, 0 0 V' CO 0 0 C) 0 cf) 0 0 00 C) a- a) 0 •O' C) 0 0 CD N. be C O a- CD •ct O C) O C> 0 0 0 C> 0 N. las

acr) 6 6 a a 6 6 6 a 6 Iine O LO O c ro

4 4- t s 21. la

7.) m icrop . c l cr a- N. 1- CD 0 CD C3 CO CD CD cr 9 CO N- 7 CO CO CD N CO O N 1- N CO O a) T 0 CV CO n CD 0 CV CD CD CD V' CD CD CV CD azt03 ct C) CD 0 CD l m C ai CD at C3 CD CD CD CD 0 Co CD CD

6 a a N 6 6 6 a 6 6 6 a CO Iine CD CO O) Im ra

4 4- CO t no. ine

.114 las

7.) le m 9 c 1 CO st 1- 0 CD CD C) N O C> CD O C> CD O N O Co CD N CD C> O C> CO O• CO CV 0) 0 Nr C> 0 0 CD ite C3 0 CD CO CD 0 CD 0 0 CD 0 6 ci CO

6 6 CO 6 6 a 6 6 6 a a (xi Iine n line co O CC) •zr 4- samp 4- t N t CO he Ilme las las t c d c ct CD N. 7 0 0 CO CD CO 17 CD CV CV CA l ct a) r- oD 7 c0 O el CO O c,) CV 0 LO CD 0 0 N 0 CD 0 Co CV el 0 CO CO CO 0 N 0 CD 0 0 CO to 7, dc C 6 N a 66666666 cci N O O M ci ci ci ci O ci O ci ci O O roun 2- Si02 an refers

:2 l m

1 a- CD 0 a) ite, CV CO Cs1 1- (1) CD LO CO CD 00 CO 03 O O U) CD 01 Co C13 C) 01 CD tO a- CD 0 0 CD CO

CO C3 Co C> N C) 0 row N CD 01 dc . 0 C) CD 0 0 C> N- C) 0 CO 0 CD 0 0 0 CD Co 0 C) CD 0 01- is line W CD if) O oun 4- t r

a lys N 2- Kamac las

m '; c TiO3 S ana Fe

ilite, he Fe Ch C C .7, .0 0 ite: t

n 0 Tro in ilite: Cs1 Csl 6 6 0 0 0 Tu C °1.4 0csi ".• " 6 6 0C 0 0co °" - 5 Co 0 0 (4 0 0 0

Ilme ci: Tro _1 C ;R Li 6 E c.) z 8'2 v, 1= u: c.) EEEoz de A. co ble. The Ta Table. A.5Tro ilite, Kamac ite, SiO2 and Ilmen ite m ineral microprobe analysis of the Ma lvern meteorite

Kamacite: Fe with 4-6% Ni < —1 To N

0 a O C m l-clast13- 65 I=Zr 000(000 ci O64to OCDOCVCDON-000000 U1 0001 CO 0CDCo-7 CD CoO'0.:1* CD Ci.4dociO60 4,4* M4•-•10CDONCoCOC>0 6 OciN 666466(.1666666 co OCDOL000 N-666o6o 0 CV C> ci 0 ODCD ci 46LC0 0 CDCO(0CiOd ci OcriLri0 0.6 60 0 CD ci 6tri N LOCoVCDCVCO1 N coCo4-CD(V C> (JDcDO(0CVCD4- LI: O C) C) Cr) , -00(0000000 ci 0Lri6 2 C E , •Cr0 0C) ' • 1•000000 00 2 Co OC> 6 Cy) 4- 0 co c 0 z C i l "0 o , - I- O O N O O O N CV CD O CD Co O N Cr) C) O N C) ai CD O CS -•

Kamacite: Fe with 4-6% Ni CO CV * N 0) CO 4 O 17) O C m l-clast13- U m l-clast-13 ma ll-c110-14 mall-c 110-14 mall-c110-14 m2-c17-13 0 ci O46 6 cpc)64,-6co64-6c)cpc) M CDLa01.crCr)U)4--C> ci O6c.cic•-i 000000L0000000 4:1* CD(0cD1 CD 0COCV CV 0••:1-(0Cr)CO 6 ciCO40 C\10001004-0.1•0000 6 (4-i4 010004-0010NOOCDCD C. CO 17. C.1 COCD04-CoCV•-• O N C> O 6 0 CO.ctCoCD0) do 0CVdVCidoCidd0 O doN6 col N14-COCV4-- N R0C> u: co CY> O C) it) CO.4--0)0elN CO co I-- 1.11N

60 00 0 ci 4 ‘•-•N h-NV 2 E ci 46 CO N- , - 001 CS) NCOcol •.:1- COCD0CT) Tt NC>CD „ ci O6 CO 04- 0 z ci N 0 0 0 9„ ci: 6 Co CO CD 4.0 C> O ai co O C) N CD O ci co C) N CO ai N O CV

*strictly not pure Kamacite any more but far from Taenite: Fe with 25-65% Ni

The code in the ana lys is row refers to the samn le no. (m l_ m 21_ o last n n le1 r_71 nm halina Ill 191 c inn la nn int In ► Table. A.5 Troilite, Kamacite, Si02 and Ilmen ite minera l microprobe analysis of the Ma lvern meteorite O < O CV O C CO CO CV CD C OD CV malvern-5-I malvern-5-I malvern-5-I ma lvern-5-I ma lvern-5-1 ma lvern-6-I malvern-6-I m l-clast13- m2-c18-12 E m2-wormcl- O a) cd 6Oci 6 M N111CV0 CD cO ciO a) cd O6ci COCVNI-cO00.60N10000 a) CV0NI'toU)C>cr) TS NI'CVO'-0 CD) cci ciO6 CV NC.6CD0cVC> CO U)00Ulr)CV rn CO 6 N. CVNY0 0) CO 0)In ai O6ci co ciO LC) CVcL) N. 0NI-0)CVC>CO N- 6C)460 1— a) OD 0OCi6 to Nte)CV0c‘l a) h: 06ci CV in Nr NI a) LO CVU)0CI a) UD NI-in0OC>CD co elUlCVCIc0 01 co 6Ocia cr CCi 6Ci0 CO C.)00)CIC)C>Nt LC) i 7 0 c CV U)C')0C>OC. Nt CVN-O0NI' CV cr)MC>0•-•0, " CO Lo cyCOCVCD0 6 Oci ci O6 CV r-- ‘1) h0)NINI*C>• 6 o NY CD 0) r-- VC.CD0elC> : cr) , - UlOC)0C') LL 6 a 111 OC>0CO m N- N(')MT-NrCOh.0.- tr) 0 EZ2 Yci: C> O001 a 0CV C') C .•-• 0 VI 0 0 NI-CO CV C-- 0 111Nt ■ -•n Cr) cu( 0 ° NI* VINtCD CID Ttill 0 NI- CVVC> CD NI- Tr'- 7 3 1 0 CD S 0 0 N- CO0 .-. CV 0NI- CD 9,, VI 0 0 CV .

To 0) N- UD a) 00 0) a) CO 1.11 01 0) CD CD O O O O O O O ("1 rn 6 U'I CO O O O a) CO N- O a) O O O

The code in the analys is row refers to the sample no. (m1,m2), clast no. (c1,c2), probeline (11, 12), single point (p) APPENDIX B: ELECTRON MICROPROBE DATA OF MINERALS IN MERWEVILLE 4.0 C) 01 ID CO CO 0 0 Cr) CD Cn T1- 0 0 CO O N N 0 0 T4' CD Tzr ts- CD "Cr CO CD CD CD CD CD 01 CD 0 0) T-0 ID 0 C) CD C) TJ- cri czi ci M O O ci O ci N 0) CI 0 T71-1.0 CD 0 0 CD C) 01 CV N- C) 0 C) 0 000 0 0 0 0 T-O C)

CD CO C> O CD N CO 0 CD C) O C) C) CD 0 C) LO 0) [0 0 0 0 N to CO T:r CO ID CI CD CO TT CO 0 O C) O CT) 0 0 0 CO 0 0 C) CD CD C) to CO TT 1..0 0 CD O Tcr O to CS) O O O 0 to CY) N co ci ci cosi ci cd ci ci ci ci ci C) CO N co 0 0 0 cNi C) 0 •

CO C..) C. V. to CO CO CO .Cr CD 17 N- co c) N Ci 1- 0 CO CO It) LO N O CD CO CO TY CD CD 0 C> C) 0 CD CO CD 0 CD CD 0 0 0 CD CO T4' I.C) 0CD CD 'I' 0 If) 0 ID 0 CD CD 0) CVr-- cri ci O N ci cri ci ci ci ci N C, 0 0 0 0_- 0 0 0 0 0 O ci

ns e

O

4 oxyg O er E ro p co a) •c C O "NO 00 00 ions c,) 0 N 0 t ›T. 0 0 N 0 O IV LL U. CO TX Li) 3 2 2 6- ccs.)1 Ca Cr; i= )2! rL Ocu U LL

CO (T) N CO N 0 0 (D co co M c) CO 0 CI C) O N T:1- 0 0 0 O C) O (.0 no. Tzt CD to O C) CI CD 0) CV Ns CO ci O N ci ci c) 0 is 0 N- O C) CO O CD CD O C) o ci ci ci s ly CO N

N CV N. CO CO C) LC) (.0 0 CO 0 0 0 Tzr CD CD CD CD O C) Tcr N O 0 0 0 CD 0 CD C) 0) CI CD CD C) to LO LO d ana 0) ID 0 LO C) Tzr CD 0 CD 0CD 0) CV CC) C) ci M ci co ci ci O ci ai . . (T) N CO 0) C) ci O ci ci ci O ri T- CD 0 an

N 12) 11, to CO C) toTzr CD CD 1- to C) co co N r-- Cs1 V VT- ( CO 0 O N- to to O C) O 0 G) 0 CD CS) 0') 0 0 CD 0 CO to LO CD 0 0 V" 0 Tr (:) 0 C) 0) CV N- CO CD C) N ci co ci ci ci ci O CO O C) (DOOC) C) C) C) ci I- O ci

N line no. line t CI N N 0 O C) CO CD 0 CD 0 CO N. CD 0 If) C) 0) V O C) CD 0 O CD CD 0 N-•L- C) 0 CD 0) CO NI' CO in

LO CD CD CD 0 O N o cd ci ci ci to ci ci ci ci C) 0CD 0 V' N v.) CD 1- CI CD O C) O O C) C) p , c)

CV CV CO CO C> C) b, N C) 141 0 CD 0 0 cr) cz) c> r-- (NI CO CD CD CD C) 0) Tzt 0) C) O '7 CD LO 0 0 CS) N CO CD CD ci cri ci ci ci ci to . . . CO N CO tT Ci ci ci ci co co c) (a, no. le

CV NCCV 0 0 CO CO CD CD CO 0 CO 1- 0 CV 0) C) CD C) C) CO N CD to C) C) h O C) CD 0 CO V to 0 C) ct 0 LC) C:) C) O C> 0) CV N- CO CD 0 I- CD CY) 0 CI 0 0 C) CD C) C) O O C) ci O ci I- ci co samp

Co he

IA t co c) co co co co c) to Ns CD CD CT) CD CD I- •- co co c) cr) (z) ,- EN (D 0 0 a) NI- to to 170000V-000000 N CO 0 0 0 ai ci 0 ci O 0) CD CD T(1' LO 0 0 CD 0 td CO O 0 0 0 0 0_- 0 0 0 0

C fers cc% r- re

U 2 ens row is

2 s R) a) LL C) ly o 4 oxyg 6 Ts er E

(to p ana

ns C C O io 8 To he is > co 000, 000 0 20 0 t = 0 t

c".3 2 2 Ca ci) •ot F ti E U Zcci Y E < 0 < 6 in

cti de

.72 co The • •• -

O

. (7) >, cC C co

C cc

CI O Co U) CD 0 CO CD Co LO c0 CD Co 01 CO 01 0 Co 4-1 c•-) co c, U) CO CD CD c,)O r) CD Co 0 CO CDO 0) CD Co Co CO 0 NY CD Co 0 O C.,) CO 4ri 6 6 cd O U) 6 6 6 .0) O CV O 0 0 ci ci ci ci ci ci cNi 6 6 C a)

.01 0) el N— O CV Co .1. 0 0 dE. CO O0 0 0) el 0 0 CD 0 CO 0 Co CV Co V CD 0 Co CD Co 0) cp 0 CD 0 cr Co Co Co CD CD el CO O ite ID do 0 ci cri ci ci 0.1 O 0 CD do 0 do ••— 0 0 0 ci Q. teor

me cD Co N— Col el 0 0 oo M Co V CO CD CD CO •ct CD CT) •■— CD CD CV N— 0 CD Co Co CD CD CD 0 CV• Co Co Co CFI co;) C,) co O 0) CV N- cc; 6 6 ai O ci ci O . . . . . . • • ille CV O CD 0 CD 0 6 6 6 Co Co O ev C

0. ID Co 0 CO C) .ct CD 0 Co CN1 N- a 0 — 0) 0) -tr CD CO 0 0 CD CO CD Merw CV Co 0 0) V CV Co 0 Co 01 CD CD CD CD CD Co Co V' c0 CD CD 0 0) a) CV N- E 6 6 6 r 0 6 6 0 0 Csi . . . .

he ‘r CV •cr O T— do CD 0 a—aaa ci

f t .0

o 4=1

is ■ 0 c ••-- M N- s CO CD Co C) LO qr CT) 0 0 0 0 LO. . V. . o. a. o. 0) CD 0 0 00 - 00C)o W C,) ly 0) CV N- oicio ,- ocnoao 0 CD 0 0 Nr O cf). CD. CD. . Co. 1112 CV CD 6 6 6 o 6 6 a) ana

be ens

ro 2 U) %) oxyg "F) C, LL le >4, icrop of 4 is er -o 2 mo

m C to ( ns

ine C io CV CV p ions

CV0 0 0 t 4a 54 ea 0 0 C11 C.1 t 4.4 liv c = c 000 n, — 0 O Ca 0 < N MMUE fn Ca i7) i= .7( gU E —C

1 O a) B.

0

ble. .0 Ta

TN Tr CD NJ N CI) N. 6 N- (.0 (0 0 If) CO 11- 10 c) r-- N. CO 00 C) NI LO (0 CO CO CD 0 0) C) Co 0) ./- U) CN CI 0) N- a- CO 0 CO 0 0 CO CD 1.1) CD C) 0) 0) CZ) r-- CV N- 6 6 ri 6 0) 6 6 CN U) (NJ CI .3- CD C) CD 6 ,-.. ci 6 ri ,- ci ci ci

Tt CC) U) (0 N- C3 0 CO .1- to co c..-) C) CD CO Nt if) C11 CO NI Co C3 CO 0 CO 0 0) 0 CD CO I,- CO 0 0) CO (Cl 0 6 ri 6 6 6 6 CO CI) 0 0 CO LO CD CI 0) a) cnr- .-c3) 141 ci 6 6 6 ci ci ci ci 0) X 0 CD O 0.Zr) co 0 u, E _1 a a < o o 0 4 "oo .r, ` o_ Imm o :.= + o ooc4 0 0 co 03 CO C u) Ln iT) i= Q u 2 c.) 2 I- 3 iil P. LID. g 0 2 0 0 ILI LI- ber

LA m nu le cc mp

LO CV Co 0) CO C3 CD 0 CD CD Tr CO CD CO .37 CD C) Co CD (0 111 NCO C) sa O 0) Co 0 a- a-- (NCDOC) N- •■-• N- CN CI CO Tt CO (0 C) he O 6 6 .cr LO C) 0) 0 N LC) CD 6 ri O co ci O 6 6 6 C t .c U) C3 C) C) C) CD CI CD CO C)

F. to fers e r

0 (1) 0 ID 0 a- Tr 0 a- C) CD LC) TI• Co U1 U) CD 0 CD Co C) CO CV n CD .3-- 0 N- U1 •- 1.11 C) C3 0 O a o CN CN C) CD CO a-- N- O LO CD C) CD CD C) 0) CD N- CN io ci ci V 6 cr.) ci ci ci ci ci a c) t (C) CN C3 N- Co CD C3 0 a- CD CD Co 0 Tt Co CD CZ) E co loca he

(N C 11-. TCO Co N- CO O U) TN CO CD (0 Tt CN CO Co Co 1- CN (0 Tt CN d t O N O T 0 D CD C3 C) C) N- CN Co 0 0 CD CO N- CO C3 0) C) Co U) 0 CD. Co Co 0 0) CD I,- CN

CO 6 6 ri O ai O ci ci ci c:5 t an U) (N O 0 CD Co C1 C) Co Co 0 TN /- C3 CD C3 in

2 o

.c tap

0 (Co 11.- CO C) CO 1.0 C) CD 1.0 LO CD CO da C11 CO CO If) a- N. 0 CD CD CD CO CD Co LO .3- Co (1) CD C3 C) II) T- CN (0

.46 CY) CD 0 (f) CZ) in CD C) 0 0 Co CD 0 N. CN he CV ci c:5 ci ci ci ci . . LC) CN a-- CD 0 0 CD CD CD 0 C) TN CN 6 6 6 n 6N of t cc ber - a7 m w (0 C) el co a a CN co o c.,) Lc) CO Tt Cal 00 LcO o O CV CN O C) (+) 1.0 gC1- NN C) CO V U-) 0 0 a- 0 co (n nu CO a) CD CD LO c) c) c■ a a CI C3 O N Cal TN CD 0 cci 6 cci 00000 .0 -0 I= C) he (V a a) 6 6 6 6 6 6 6 6 6 6 C) t

tu to ,s 0 2

CD fers e 0 0. tT r E , rn E is, x 6. s a x + 0 < 0 o ° ly "C4 0 cs,o2gocCioq 1- 75 0 0 0 co a) c fa MI co co o c

CL 0- < C.) u.E20zYc3 Li Ana 2 05 Q Li 3 2 2 U a •• - ▪ •

tN C) C) LO C) CO 0:1 01 a) 1.0 IN NI I-- CO CO NT C. O CV CV "- LO CO CO IN 0 C> (f) 0 0 0 0 (.0 CV a) co (NI CV 01 01 (0 (•I "- O 0 0) 0 0 CI C> 0 111 V- 0 0 0 CD CD CO (.0 0 O ci O 4 6 6 6 co 6 6 6 ci 0 to CV O 0 CD 0 CD CD ci O 0 0 6 6 6 01 .- (.0 Nj O to N- N O co r•-•

LO (ID LO 01 co IN (0 01 CD CD V' a) c0 LO LO C.1 CO CO CD Nt C) (.0 111 0 01 03 0 0 IN CD 0000010 O (0 0 s- 01 CD 0 (•I 0) CO NT CV LID 0 0 CD CD 01 CD LO NI 0 0 C) CD 01 to LC) 0) O to ci ci M O ci ci ai ci ci ci 0 0) CD to N C) "- CD 0 ci O ci ci ci O ci O 6 a 6 6 Ce/ "- IN 6 Ci to h- CV O co 2 -- 4t 2 I CO LO CV a) Nr o 141 (1) O 111 0 IN 0 01 O M co (13 CD 0 V' 01 I,- C) kr) I,- O to 0 CO CO 0 0 IN CIL C) 0 10) 0"-010 0 "- CD NI to .-- C) 0 C. 01 C) O 111V 0 CD 0 CI CD CD LC) 01 "-- O RAU to ci ci M ci 0 ci cri ci ci ci ci 0) CD 0) 0 CI O CT ci O 6 ci ci 6 0 t ci 6 6 6 6 a LO IN CV O d a

a) (.0 "- a) co co co U3 IN (13 111 CD CD C) Ca C.0 C) CO CS) Tr0) CD V- IN 0 0 O C) a) C) 0 CD CD CD CI a) C.13 0 "- CV CD 0 Ca NI (0 CD C) Ca CD 0) CD ID 0 0 01 0 0) 1.0 NT 0 0 CD CI CD O LO 01 O to 6 6 ei 0 6 a 0 ci 6 6 O secon O ci 6 6 6 6 6 6 O ci a 6 6 6 6 "- N.: 6 CI to IN CV O he d t n N (0 CD 03 03 111 CD 0 CO C) CO 00 '‘/' Co "- to N C) CV Ca 0) "- O (0 N- C) (0 a-- (=> CO 0 C. C) C) 00 C) a) C.0 Co 01 C3 CO O 0 CD CD 0 CM CD 0) cc) .4 a a a o C.) CO CNI CD 6 6 6 co T-• 6 6 010 O LO "- O CD 0 0 0 CD 0 O ci ci ci ci ci ci CSi to Ci 1"-- N O JSC a t a

CI a) CV CO NJ 01 CD 10 CD ‘1- CD CO (D N- C> LO01 01 Ca CO 0 01 CI (01 "- Co C) O N 01 "- NT to 0 0 0 0 a) O O 0NT CD 0 CD IN "- CD LO CO 0 0 C) 1) •Zr C) c0 0000010 C) to O C> O CD 0 CO CO O CD ci cO 0 ci 0 N: 6 6 co a done O C/ CD CD CD C/ O 0 CD CD CD 0 "- CI IN O M N- (N O N. -I

were 2 0 •Cl' (D CN Ca CO 0 U1 Nt 01 NI 01 "- NI- Ca VI a) CO a- C) 01 0 a-- 01 V' 11) CD ses 01 TN "- NI 0 N.- 0 0 0 CT> 0) 0 CO C> C) C) CO C3 0 CY) 0 c)c)c)c,a)c) O LONIOCDOCI CD 0) 0) l'■ VI O 6 6 6 6 6 ix; 6 6 ly oi LO O 6 6 6 a 6 6 0 CD CI 0 0 0 at- (`') .- (0 ..- CI N.- CV O na co a t

IN CO 1.11 01 CD V- ma V' 0 U) NI N.- O in a 4 a o act 01 CO 0 CO 0 CD 111 NI "- O CD 0 O a) CD a)'oc)c)a)ac) O (0 a- NT 0 C> CIL CD 01 CO NT CD firs CO "- "- Nt 0 0 CD )c)a)c> to CO 0 0 O CD O CD CD 01 CD O 1.0 CI 0 CO CT 0 0 Ca 0 0 C) 0) C) a) cpc)c 1.11 O O ci ci ci ci ci ci O 0 0 CD 0 0 ci CI N- CV O

The -J ite.

CD 01 NI NT V- a) 0 CO 0 10 CD V' CO CO O LO (.0 01 CO 01 CD • .7 V- N C) cv N (D 17) 0 0 00 Ca aaaa co c) "-• VI 0 0 CD 01 U3 NI- C) CD LO V 0 0 CD 0 CO LO LO O teor 0) C) O O a a) 0 10 6 O ri 0 6 6 ai O 6 6 0 4 -• • O O 0 0 0 CT 0 0 Ci CD 0 0 0 co O N- N1 O me ille

v to M (0 a) NT IN 0) 01 C> oo NI 0 V' CD NJ ("1 e- O CO NT LO NI CV Co (0 O e-O 0 NT 0 CO 10 CD CD C) a) C) CD CD CD a) c) O 0:3 NI 0 0 "-- 0 .- 01 to a) 0) 0 O O c) co c) O to NI 0 CI C) C> CD "- LC>01 to 6 O ri 6 6 0 6 6 6 CD LO (N O - O ci ci O ci ci ci LL- Ci 0 CD 0 0 N- N-r-- CV,- N -J Merwe

the CO 0 LO 01 a) (.0 LO h- CV 0 01 .L7 CO CV CO CO 11") CD E; f CO CV "- (.0 CI V- 0 01 CD a a co a CO 00000)CD CO 0 "- CV O C) Ca LO "-- 01 O. 0000CDC) 0) 1.0 V 0 C) CD 0 0 01."-. . CO 0 O o U) 6 6 e) 6 a 6 ai 0 6 6 0 al CV O O 6 a 6 6 6 a O O O 6 6 6 6 .-- 01 "- IN "- Ci IN N CZ) s is

ly -i 2

Cf) 01 01 N. NI CI 01 V- 10 Ul 0 NJ 01 0 O T-- V CO M•L- 0 0 NI NT CV O

ana 03 CD 111 (D O 0 CO o CO CD 0 Co 0 CD 0 LO CV CD 0 0 "- LI) O cn D1 o 0) CD 0 0 0 CD CD CD toV 0 0 0 0 "- NT NI O to O ci cci 6 6 a 0) O 6 6 c • 6 " • be C/ 0 0 ci 6 ci 0 0 0 O O C) NT "- 0 ci a) IN NI O C) ro O (N O co icrop a. m U) (0) C C ne O 0 n ra 0 0 NT ‘-° -E 0 0 (2 0 01 C 03 xe 0 63 ..... Z (/) to O Li 6 2 E in 3 2 2 i- C.) ch* . < u_ 2 z FO- C) 5 11.1 u_ ro 2 Py B.

le: b Ta

GO CV C3 0 C) O 0 CO (- O 1.0 LC) C) 0•- 0 M M c..) O to co ct GI O tD to CD -;r O (D CD CV 0 0 0 CO C3 p coop a 0) V-. 0 . CD. 0 . 0 CI. LC). O. C). . 0 0 . CI. . (D 0 C> CD 0 CD 0 CD C) 0 C) CD 0 0 O cri ci 0 ci 0 0 ci ci ci ci ci ci ci O CD CV C3

C C) IL13 CV CO %- CD CD CD CD 0 CD CV N- C1.1 CD CO C) O N. N. CD C) C) V C) LC) CD - 0,0 cpc)..-c) a(Maco a LO. CD. CD. . CO. C3. C) C>. C>. O CO CD C) O 0 0 tD (OA •4 CO co v- CD CD 0 CD CD CD CD ci 0 ci 0 ci -• co O Oadd ci O ci a O O ci O to

CO CO CI 0 0 C) 0 0 CO C) 11) CD CV 0 CD CD N CO CO C) CO 3 CI N- N- C) .4' e- CO O C) CI CN.I 0 CO LI). C). C3. CD. 0. CD. Cs1. CD. CI VCD. . CD. C) . C3 .CD . CD CO CO C3 COCO.- CDCDOCDC)000C)000 ai O ci 0 0 0 0 0 0 ci ci ci O O O CD

N- C3 CO CD C) O O C) C) CD 111 0) CV CD N. CD to to t CV CD 0 0 CD CD LO C3 C3 a LO CO 0 CD 0 CD CD 0 0 N C) O 0 0 0 -•M O 0 0 0 C) CD 0 0 V CD C) CD csi dacidad ci O ci O O ci ci C) CO O ci 0 0 ci ci 0 0 0 ci 0 0 O O CO 1- C3

N- CD CD O C) (0 0 C) 0 C3 N- CD CD CV 0 LO CO ID CV CV N- CO 0 121 N- c2- CD 0 C3 0 CD CO %- C)N-0000C100. . . . . . . . . 14-. 00000. . . . . CV N- N- CO N- 10 CO N- CI 0 CD O C) C) C) O CD 0 CD 0 CD CO a ci ci ci ci ci ci 0 ci ci ci ci O O O O O

CD C) N- C) V C) O CI CO O C) CD CNI V' CD 1- CD CD CO 0 'Cr 0 CD a) C> C) LO CT) 0 0 0 •- 0 0 C) V a CD 0 CD a a) NI- N. C) CD 0 CO 0 0 CO CD 0 CD O to a O O O O ci O O O ci ci a O ci O CD ci ci ci ci ci ci ci ci ci ci ci C3 O O to O ite teor CO O CD O C11 CO 0 to C) CD CO 0 C) O Ni C) V 'Cr CD CO to •)- CV C3 0 0 0 LO CO CO 0 0 0 •■- CV 0 N- NI- CD 0 0 CD 01 O N- to 0 CD CO C. C) M 0 C) CD 6% me cNi t0 O O ci ci O ci O ci dadod O C a 0 ci ci ci 0 ci ci ci ci ci ci O O CO 1- O 4- ille h it w

CO CO 0 C) 0 CD CD C) C) O V* CD el O CO Fe C. C. a a) C. C. a a ..;1. a a C. a a CO Vi %- 0 0 ci ci ci ci ci 0 0 ci ci ci ite: Merwev O O

he 75 0 3 C a) O f t

Kamac U_ Z L.) C.) N U) CO 2 CO < O< o CD C) C) 0 CD CD to CV CD CO 01 C)

ta CV N. O C) CD 0 O C) C) O N N- CD CD CD CD C1.1 CD C3 aaaaaaaaaaci ci ci O to O da be ro

CV to CO 0 CD CO CD NY CV V V M N- C3 CD CO 1.11 1.0 to CD CD 0 0 0 C) N1' CO CD CO CD CV 1.0 (0 CO C) CD CD 0 CO 0 0 .4' 0 CD 0 0 O CV CO CV C) O C) CD O C) O CO 0 CD 0 C) 0 N. CV CO O O ci ci O ci O ci a O ci ci a a ci co ci ci ci O ci ci ci ci ci ci O ci O ci ci ci icrop to O (D M CD m ite

V" CO CV 0 a) CV 1- 01 CD CS) to 0 O C) CD C) h. N. CO c0 CD CV CV CD 0 V 0 V V CV C) N- CD C) O v- CD C) 0 0 CO 0 CD 0 CD CD O N C) CD CD CV 0 CO 0 C) 0 CV

r•-• % Ni c.i(D O ci ci ci ci ci ci ci ci ci ci ci ci ci ci c:i ci ci ci ci N taen ID 65 N.- CV O d )). g cr) an 75' h 25- it C o lite w

i 0 LL Fe

tro o >. 14 ite: n 7a

ite, (71 E C CO co 0 " C .0 4) U) 0) .0 0 0 3 c a) .0 a) E u) o) .0 O

< I Z N 1— V) V) CO < (.) < V) 0- Q. I- Tae u_ Z 0 L.) N U U) CO < < U) CL CL )) Kamac 3 6.

le. b Ta • • •

NI- CV C) O 01 0 O C> N. C) NI- 0 N. CV Li) CD 0) h- LO CD cO CD C> CO 0 0) 0) 0 CD CO 0 ‘- 0 0 CD 0 O tN CD CO C. CD C) co 04 l0 0 s- 0 CD CO CD CD LO ci ci ci ci ci ci ci to ci ci 0) cO 0 CD 0 CD O ci ci O ci ci 6 6 tri co co co

al tO 0 0 CI CO tO O C> O .0 CO to CO C> 00 0 N. 0) 0 al a) C> CD CD 0) 0) NI- CI 0 CD O C) 0 0 6 co c) O V CV 0 CD 0 C> CD CO CD CD CD NI- O ci ci ci ci ci ci ci O ci 6 ci ci ai 6 6 cO CD CD C> 0 Ci 0 ci ci ci ci ci C> to M 0) co C)

0) LO to M 0 0 0 O C> 00 CD CD c0 a) 0) O a) CD 0 CO NI- N. CD 0 C) Nt CD 00 CV CO VI C) O C> C) CD CV 0 CD 03 ty) N. •- iN C> CD NI' CD CD Nt 0 C> 01 C> 0 CD CD 0 0 Cj 0 Ci C> 0 CD 0 CO CD 0 r-: CO CD 0 0 C> Ci O ci ci ci ci ci 6 ui tO M O t0 M O

CO CO CV CD 01 C) C> to CD CV CO NI- CV O S CD N• O CD CD N- 0 0 CV CD 0 CD

0 0 0 0 O C> 0 0 0 CD 0 Ci Ca 0 0 O Fe tO M CD ilte: o c -0 0 5 cn 13)

Tro u_ zoUN U) < (-) C/) to CV 0 01 N. N- M 0 CD CO CD CO CD 0 NJ- O 1- CV CD 0 C, Cei 0 0 ci ci 0 0 0 ci ci ci ci ci O

LO N- CV C) 0 N- N- M c) o co 6 co co 6 0) N. CV 0 CO C> O CO N C) CO 0 CO CV CD CV 0 c) 6 6 co co NI- 0 O C> O C) CD C> CD CV 0 CD a) CV CD ci ci ci ci ci ci ci 6 ci ci ci ci tri ci 0 0 0 ci 0 ci ci ci ci ci ci ci ci n ci ci co ite r teo LO Nr CD CD 1.0 0 0 C) C) tD CO CO CO CD CD CO CD CD 0) CD CD N.. CO CD Nt CD 0 NI- NI- 0 CDCOOC>CVCDOC>OCDCDOOLO uo to CI CV 0 CV 0 CD Nt CD. 0 0 CI . C) 00 C> ci Lei 6 6 0) me C') 6 6 6 6 6 6 6 6 6 6 6 6 to 6 6 0) oi ci ci 6 ci ci O ci ci O co 0) ille ev

00 0 it) O C> V O CV CD V V C N- 0 CV I- N- C) CD CD LO C> el CD N<- C) to C) o)ccc666-c6 -6cooc c0 CD CV O C> CD 0 C) 0 0 CD 0

Merw ci ci ci ci ci ci 6 6 6 ci ci ci to ci O c‘i 6 0 6 6 6 ci ci ci ci ci ci 6

O CD he t f

o ■ to N- C> N.- CO el C> 0 CD N. Nt CD 0 C> O C) Nr Cs N- C> CD tD

ta CO C> NI* O CD CD CV CD CD CV CD CD 00 0 0 C) 0 CV 0 CI O C> CD CD CD 0 CD NI- ei 0 ci ci 0 ci ci ci 0 ci ci ci ci ci ci CO 6 6 6 6 6 6 6 6 6 6 6 6 tri 6 6 t0 M CD da be ro

CO O N- 0 M C> C) CD CD 0 CO CD c) a) c) to a LO CO CD C) LO CD 0 CO CD •-• CD CO 0 CD C) C> 0 CD C> CD 0 C) a) co CV 0.1 0 0 CV CD 0 0 0 0 C>

rop CD 0 0 C> ri 6 O ci ci O 6 6 6 6 6 6 ci to ci ci O ri 6 6 6 6 6 6 6 6 6 6 6 6 ui O ci ic t0 M O O m ite

a) CD ,-- CO 0) CD .- C> CN 0 0> CD CD NI- C) CD N.- CD CD CV 0) CV CI 0 CD CI CO C) N to C) NI- 0 CO 0 0 CD 0 CO 0 0 CD 0 0 CO CD C) •-- 0) V C> 0 CD CD CD 0 CD . CD 0 0 •)- 1 6 6 6 6 6 6 6 6 6 6 6 6 ri 6 6 r--: 01 C> ci ci ci ci ci O ci ci ci ci cth ci ci

taen 0 N(D co a) 0) d q

an it; a) C

ilite co 0 '0 a) to LLI-L u_ tro co iii Tit = 75 ite, To 7, c 4, .... m ,-- 0 .o .0 E CA SI 0) .0 15 2 0 0 3 C -0 a) C 13 0) .0 0 i- u_ Z C.) (..) N I- U) 0 Z b3 < o a 0 o_ o. I- LL 2" c.) N 1— cn co 2 CO < C.) < ta. 0. Kamac 3 B.

ble. Ta • -

cr) r- o CD CD CO CO 0 el N CO CV CO CO 0 If) LO cD cr 33 25 CO 0 •cr CO CD C> C> O. r-. . a). O. c>. CD CD 01 VI 0 'I' 0 CI 0 0 CO ci O ri ci ci ci O O CD 0 CD CD tri ci ci ci M ci O N ci ci LC>

line CO 1.0 O

line r--

(V CO ill •cr 0 N 0> In 1.0 CD M oD r- CO 33 merw- 25 merw- ct C> CD c0 CD CD C> C> CD 01 CO CD CD CD O 01 CA CD CD c0 0 0 C> CD ci ri ci ci ci ci ci ci ci ci ci OD ci N Cn O ciaNda V ci CO ine

line CD

l CV CD rw- me merw- .4-

O line Lf) O line

N

Cr) CO .‘Lt N VI CD h- 10 CD CI C> CD •• •■•.. a, O N >- CD 0 33 merw- 16 merw- N 0 CD CO 0 0 CD CD CD CO CD C> 0 CI) CD 0 CD CD 01 C> C> 0 0 I.0 ci M ci ci O O ci ci O O ci CO N Cn ai ci 0 N 0 0 CD 0 ci CD O

line CD line N- N CD .(7) merw- merw- h D 0 D CD C 16 L0 C N D D D OCD Off) CS CD CO C> o o 0 O ci 0 ci ci CD CD line N- N cm V) D 0 o08, O O) 0 E 3 2 Csi Ki w E 0- w Cn CD 0) O C> O I,- N CD cr O

16 merw- .c CD 0 CO 0 CD CD CD r- In C:1 o N ci ci ci ci ci a a cci

ine O

l N- CV

12

ille w.

0 N CI CD NI- Cn N- CD CO 0 CD CV CDCO CD L. 16 merw- rwv CV CD ct 0 0 0 0 CD N- CD CD 0 0 COO CD 0 in CO O cu CD CD CO OO o Oa N- O ci ci ci ci ci ci

line N- N f Me rw- o me ite N GO 8 OD 0 0 0 CD CD CD CD 0 C3 CD m

om oi O ri ci c:i 0 CT Iine CD CV

hr N

rw- N 0 Q. c 0 N CD 0 0

d a) CO "rt 2 2 0Z n ea CV La h.- CD C> •-• CD LO N .4- c) CD CI. CD N CO D l a 8 me C CO CUD r 0 00 c> . . . . 0. 0. u-). . CD. 0. 0. CD a) ■ CT C> N o O O O O ci ra oca oa,--c (Do o N .c Iine N- N Ch

ine 0

m P) n CO V> CO V C> V h- CD ‘Lr 'I' N CIan CNJ CD CO a/ CV tr- 8 merw- CO 0 0 0 CD 0 CD in CD 0 0 CO CD CCC CD 0 CD ai ci ci ci ciNa 0 ci 0 ci N- 0 CV line CD N

- c know 0 n u

0 merw

he cr CCDcr CO N. CO CO 0 Tr O co cn O n O 8 CO CD O CV 0 0 CD tO 0) 0 CD Z3. co CT 0 CV ill CD C., 0 CD f t co ci M ci ci ci ci ci ci ci ci CO O ci ci ci ci ci N ci ci

Iine N- CD N o a) N a) C C O

0 rw- - Q.

ses o U) U) me

ly ea >. N- CD L.11 CD N CD CD CO CD CO "I' N 0 >. 03 CV CO CD •L,1 CV CO CI C> co 8 CD 0 0 CO 0 CD CD 0 0 0 CD LC>. CO. Cr>. . C>. . CD co CD I,- CD CI. CD .4* V*

ana C O CO ‘- 0 0 cioN-0000 O C dada ci CA line N- N N .c be

co rw- 0 ro CB a)C 2 me C C Fe E C as as

el CI Fe Microp u) 0 0 U] C400000 0 0 l L. 6,, N N c/) O 4 0 or C CO ta Ul . CC (7) 47( u_ 6- 2z2o z I- 8:41b2g000 c6, 0

B. C C C

< it 2 M Z Y 3 C.)- *To co ble Ta