Short Article Autophagy of an Amyloid-like Translational Repressor Regulates Meiotic Exit Highlights Authors d Autophagy is required for meiotic exit Fei Wang, Rudian Zhang, Wenzhi Feng, ..., Jiajia Li, d Autophagy prevents additional rounds of chromosome Vladimir Denic, Soni Lacefield segregation after meiosis II Correspondence d Autophagy degrades the amyloid-like translational repressor Rim4 in meiosis II
[email protected] (F.W.),
[email protected] (V.D.),
[email protected] (S.L.) d Inhibition of autophagy leads to aberrant persistence of meiotic regulators In Brief Wang et al. report that autophagy promotes meiotic termination by degrading Rim4, an amyloid-like translational repressor whose timed clearance in meiosis II regulates protein production from its mRNA targets. In the absence of autophagy, cells fail to exit meiosis and undergo additional rounds of chromosome segregation after meiosis II. Wang et al., 2020, Developmental Cell 52, 141–151 January 27, 2020 ª 2019 Elsevier Inc. https://doi.org/10.1016/j.devcel.2019.12.017 Developmental Cell Short Article Autophagy of an Amyloid-like Translational Repressor Regulates Meiotic Exit Fei Wang,1,* Rudian Zhang,1 Wenzhi Feng,1 Dai Tsuchiya,2,4 Olivia Ballew,2 Jiajia Li,1 Vladimir Denic,3,* and Soni Lacefield2,5,* 1Department of Internal Medicine, Center for Autophagy Research, UT Southwestern Medical Center, Dallas, TX, USA 2Department of Biology, Indiana University, Bloomington, IN, USA 3Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA 4Present address: Stowers Institute for Medical Research, Kansas City, MO, USA 5Lead Contact *Correspondence:
[email protected] (F.W.),
[email protected] (V.D.),
[email protected] (S.L.) https://doi.org/10.1016/j.devcel.2019.12.017 SUMMARY events during different stages of sexual reproduction and early stages of development (Yin et al., 2016).