2 the Structure and Ultrastructure of the Cell Gunther Neuhaus Institut Fu¨R Zellbiologie, Freiburg, Germany

Total Page:16

File Type:pdf, Size:1020Kb

2 the Structure and Ultrastructure of the Cell Gunther Neuhaus Institut Fu¨R Zellbiologie, Freiburg, Germany 2 The Structure and Ultrastructure of the Cell Gunther Neuhaus Institut fu¨r Zellbiologie, Freiburg, Germany 2.1 Cell Biology . .........................40 2.2.7.6 Isolating Secondary Walls . 107 2.1.1 Light Microscopy . 43 2.2.8 Mitochondria . 109 2.1.2 Electron Microscopy . 45 2.2.8.1 Shape Dynamics and Reproduction . 110 2.2.8.2 Membranes and Compartmentalization in 2.2 The Plant Cell . .........................46 Mitochondria . 112 2.2.1 Overview . 46 2.2.9 Plastids . 113 2.2.2 The Cytoplasm . 50 2.2.9.1 Form and Ultrastructure of 2.2.2.1 The Cytoskeleton . 51 Chloroplasts . 114 2.2.2.2 Motor Proteins and Cellular Kinetic 2.2.9.2 Other Plastid Types, Starches . 116 Processes . 55 2.2.2.3 Flagella and Centrioles . 57 2.3 Cell Structure in Prokaryotes ............. 119 2.2.3 The Cell Nucleus . 59 2.3.1 Reproduction and Genetic Apparatus . 122 2.2.3.1 Chromatin . 60 2.3.2 Bacterial Flagella . 124 2.2.3.2 Chromosomes and Karyotype . 63 2.3.3 Wall Structures . 125 2.2.3.3 Nucleoli and Preribosomes . 64 2.2.3.4 Nuclear Matrix and Nuclear Membrane . 65 2.4 The Endosymbiotic Theory and the 2.2.3.5 Mitosis and the Cell Cycle . 66 Hydrogen Hypothesis . ............. 125 2.2.3.6 Cell Division . 73 2.4.1 Endocytobiosis . 126 2.2.3.7 Meiosis . 73 2.4.2 Origin of Plastids and Mitochondria by 2.2.3.8 Crossing-Over . 79 Symbiogenesis . 127 2.2.3.9 Syngamy . 79 2.2.4 Ribosomes . 79 2.2.5 Membranes . 82 The structure and living manifestation of cells are the 2.2.5.1 Molecular Components . 82 realm of cell biology. This discipline unites ultrastructure 2.2.5.2 The Fluid Mosaic Model . 83 (microstructure, fine structure) research, biochemistry, 2.2.5.3 Membranes as Compartment Boundaries . 83 and molecular biology, as well as many aspects of physi- 2.2.6 Cellular Membranes and Compartments . 85 ology. Before 1950, before the modern methods of cell 2.2.6.1 The Cell Membrane . 85 research had been established, the study of cells was called 2.2.6.2 The Endoplasmic Reticulum . 86 cytology (Greek ky´tos, bubble, cell). It was mainly 2.2.6.3 Dictyosomes and the Golgi Apparatus . 87 restricted to the light microscopy of cells. 2.2.6.4 Membrane Traffic, Exocytosis, and Cell research is hugely significant because all forms Endocytosis . 90 of life are organized in cells. Many organisms are uni- 2.2.6.5 Coated Vesicles . 92 cellular, where a single cell represents the individual. 2.2.6.6 Peroxisomes and Glycoxysomes . 93 This is true for most prokaryotes and, according to 2.2.6.7 Vacuoles and Tonoplast . 93 definition, also for all eukaryotic protists, including 2.2.7 Cell Walls . 96 flagellates from various algal divisions and diatoms. 2.2.7.1 Development and Differentiation . 97 Eukaryotes are mostly multicellular. As the cells are 2.2.7.2 The Primary Cell Wall . 97 generally microscopically small, large multicellular 2.2.7.3 Plasmodesmata and Pit Fields . 102 organisms have achieved unbelievably high numbers of 2.2.7.4 Secondary Walls of Fiber and Wood cells. A tree can be made up of more than ten trillion Cells . 104 cells. Even a medium-sized leaf is made up of about 2.2.7.5 Pits . 107 20 million cells. A. Bresinsky et al., Strasburger’s Plant Sciences, DOI 10.1007/978-3-642-15518-5_2, # Springer-Verlag Berlin Heidelberg 2013 40 2 The Structure and Ultrastructure of the Cell recombination and syngamy (cell and nucleus fusion of genetically different gametes of the same species) (see > Sects. 2.2.3.7–2.2.3.9). Cells can only arise from like cells by division or fusion: ‘‘omnis cellula e cellula’’ (R. Virchow 1858). The characteristics of living systems listed in the Introduc- tion are only manifested at the cell level, not below. Thus, a cell is the smallest unit capable of life – an elementary organism. That this is also true for multicellular organisms can be seen in the sexual pro- cesses; it is also proven by the fact that it is possible to culture cells (> Fig. 2.1). Fig. 2.1 2.1 Cell Biology One-week-old autotrophic suspension culture of Glycine max (soybean) cells (Â120). Some cells have already divided The development of cell research is a good example of the once or more times. This can be used for ‘‘cloning’’ or dependency of advancements in natural sciences on meth- artificial production of genetically uniform (identical) plant odological possibilities. Most cells are microscopically small. material The first descriptions of cells date from the seventeenth century after the invention of the microscope. The funda- Multicellular organisms are phylogenetically younger mental similarity of plant, animal, and protist cells was only than unicellular organisms. During the evolution of discovered after microscopes had undergone significant multicellular organisms, a number of significant vital improvements at the start of the nineteenth century. functions have remained fixed at the single-cell level. Once the cell nucleus had been observed in plant tissue This is especially true for the storage, replication, realiza- and then also in animal and human cells, T. Schwann tion, and recombination of genetic information. Nearly published his epochal work Microscopic Investigations on every cell in a body contains a cell nucleus with the com- the Accordance in the Structure and Growth of Plants and plete, often usually diploid, gene or chromosome comple- Animals in 1839. Thus, the first pillar of general biology ment. The cell can double this gene complement by DNA was established. Further observations based on the consis- replication and distribute identical copies to daughter cells tent application of microscopic techniques and the first (mitosis; see > Sect. 2.2.3.5). All the body cells of cell physiology investigations (e.g., osmosis) followed rap- a multicellular organism generally share the same gene idly. During the second half of the nineteenth century, complement, making them part of a cell clone. It seems three main principles of cytology began to crystallize: therefore paradoxical that during their individual devel- 1. All living organisms are made up of cells. opment (ontogeny) cells nevertheless differentiate in 2. Cells are the basic building units of life. a regular fashion, taking on different forms and functions. 3. The individual development of the multicellular organism This differentiation or determination problem has begins – at least with regard to sexual reproduction – with basically been resolved since it is understood that each a unicellular stage. stage of differentiation is a result of the activation of a characteristic part of the gene complement and the Around 1880, after E. Abbe had made improvements repression of the remaining genes. Activation and repres- to microscope optics, the theoretical seeing limit of 0.2 mm sion of genes are controlled by integration signals that, as was reached. At the same time, the preparation techniques long as they do not have an environmental origin had also undergone important advances. By 1900, all cell causing individual adaptation, come from certain cells organelles visible with a light microscope had been (in a multicellular system) and are reacted to by other described (> Fig. 2.2). After the rediscovery of Mendel’s specialized cells. inheritance laws at the start of the twentieth century, the Sexual processes can only occur in the single-cell emphasis of research for the following four decades was state. Special gametes are formed in this case. The most mainly on cell nuclei and chromosomes (karyology, biologically significant sexual processes are meiosis with cytogenetics). The Structure and Ultrastructure of the Cell 2 41 a b Cell wall Vacuole c Nuclear envelope Chromatin Nucleolus d Mitochondrion Oleosome Plastid (Chloroplast) . Fig. 2.2 The plant cell under the light microscope (LM). (a) A photosynthetic parenchyma cell of a deciduous leaf. (b) Chloroplasts in the cells of a leaf (Katharina ondulata, Â300). (c) Cells in a suspension culture (tobacco; BY2) (Â350): the large cells are almost filled with the central vacuole; the cell nuclei and nucleoli are in the parietal cytoplasm tube that thickens at the cell corners; numerous other cytoplasm tubes running through the cell can also be seen. (d) Nuclear region of an Allium cell, phase contrast (Â3,100); chromatin and a nucleolus are in the nucleus, leucoplasts (two with pale starch-like inclusions), sausage- shaped mitochondria, and spherical oleosomes are in the cytoplasm (a After D. von Denffer; b, c interference microscope images from P. Sitte; d phase contrast microscope image from P. Sitte) 42 2 The Structure and Ultrastructure of the Cell The explosive development of cell research after biomacromolecules. Recently, novel and quite diverse 1945 – the ultrastructural, biochemical, and molecular observation and preparation techniques have greatly phase – was again paralleled by technological advance- expanded the potential for studying living cells. This is ments: electron microscopy, cell fractionation using an especially important in the transition from genomics to ultracentrifuge (> Box 2.1), X-ray structure analysis of proteonomics. Box 2.1: Cell Fractionation The ultracentrifuge enables the harvesting of uniform frac- tions of subcellular particles for biochemical or analytical study (> Fig. B2.1). The cell structure is lost in the process. Large quantities of uniform cells are carefully broken down into a suitable isolation medium, e.g., by mixing, crumbling, or using ultrasound. The resulting homogenized matrix ide- ally has no more entire cells but still has unbroken cell nuclei, plastids, and so on. The individual cell components can then be separated from the homogenized matrix. Differential centrifugation is when the homogenized matrix is submitted to a series of centrifuge episodes of increasing acceleration (100–50,000 rpm; at high speeds, the centrifugal force can exceed that of Earth’s acceleration due to gravity g by over 100,000 times).
Recommended publications
  • Root Hydrotropism, Or Any Other Plant Differential C
    American Journal of Botany 100(1): 14–24. 2013. R OOT HYDROTROPISM: AN UPDATE 1 G LADYS I. CASSAB 2 , D ELFEENA E APEN, AND M ARÍA EUGENIA C AMPOS Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Col. Chamilpa, Cuernavaca, Mor. 62250 México While water shortage remains the single-most important factor infl uencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, tem- perature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fi xed in direction and intensity. However, other environmental factors, such as water potential gradients, which fl uctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1 , and MIZ2 , which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational fi eld, light or touch stimuli.
    [Show full text]
  • History Department Botany
    THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT I - ._-------------------- THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT TABLE OF CONTENTS Preface 1-11 Chapter One: 1889-1916 1-18 Chapter Two: 1917-1935 19-38 Chapter Three: 1936-1954 39-58 Chapter Four: 1955-1973 59-75 Epilogue 76-82 Appendix 83-92 Bibliography 93-94 -------------------------------------- Preface (formerly the College of Science, Literature and the Arts), the College of Agriculture, or The history that follows is the result some other area. Eventually these questions of months ofresearch into the lives and work were resolved in 1965 when the Department of the Botany Department's faculty members joined the newly established College of and administrators. The one-hundred year Biological Sciences (CBS). In 1988, The overview focuses on the Department as a Department of Botany was renamed the whole, and the decisions that Department Department of Plant Biology, and Irwin leaders made to move the field of botany at Rubenstein from the Department of Genetics the University of Minnesota forward in a and Cell Biology became Plant Biology's dynamic and purposeful manner. However, new head. The Department now has this is not an effort to prove that the administrative ties to both the College of Department's history was linear, moving Biological Sciences and the College of forward in a pre-determined, organized Agriculture. fashion at every moment. Rather I have I have tried to recognize the attempted to demonstrate the complexities of accomplishments and individuality of the the personalities and situations that shaped Botany Department's faculty while striving to the growth ofthe Department and made it the describe the Department as one entity.
    [Show full text]
  • Physical and Chemical Basis of Cytoplasmic Streaming
    Annual Reviews www.annualreviews.org/aronline .4n~t Rev. Plant Physiol 1981. 32:205-36 Copyright© 1981by AnnualReviews In~ All rights reserved PHYSICAL AND CHEMICAL BASIS OF CYTOPLASMIC ~7710 STREAMING Nobur6 Kamiya Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444 Japan CONTENTS INTRODUCTION........................................................................................................ 206 SHUTI’LE STREAMINGIN THE MYXOMYCETEPLASMODIUM ................ 207 General...................................................................................................................... 207 ContractileProperties of the PlasmodialStrand ...................................................... 208 Activationcaused by stretching .................................................................................. 208 Activationcaused by loading .................................................................................... 209 Synchronizationof local ,hythms .............................................................................. 209 ContractileProteins .................................................................................................. 210 Plasmodiumactomyosin .......................................................................................... 210 Plusmodiummyosin ................................................................................................ 210 Plusmodiumactin.................................................................................................... 211
    [Show full text]
  • Overview of the Cytoskeleton from an Evolutionary Perspective
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Overview of the Cytoskeleton from an Evolutionary Perspective Thomas D. Pollard1 and Robert D. Goldman2 1Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology ,Yale University, New Haven, Connecticut 06520-8103 2Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 Correspondence: [email protected] SUMMARY Organisms in the three domains of life depend on protein polymers to form a cytoskeleton that helps to establish their shapes, maintain their mechanical integrity, divide, and, in many cases, move. Eukaryotes have the most complex cytoskeletons, comprising three cytoskeletal poly- mers—actin filaments, intermediate filaments, and microtubules—acted on by three families of motor proteins (myosin, kinesin, and dynein). Prokaryotes have polymers of proteins ho- mologous to actin and tubulin but no motors, and a few bacteria have a protein related to intermediate filament proteins. Outline 1 Introduction—Overview of cellular 4 Overview of the evolution of the cytoskeleton functions 5 Conclusion 2 Structures of the cytoskeletal polymers References 3 Assembly of cytoskeletal polymers Editors: Thomas D. Pollard and Robert D. Goldman Additional Perspectives on The Cytoskeleton available at www.cshperspectives.org Copyright # 2018 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a030288 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a030288 1 Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press T.D. Pollard and R.D. Goldman 1 INTRODUCTION—OVERVIEW OF CELLULAR contrast, intermediate filaments do not serve as tracks for FUNCTIONS molecular motors (reviewed by Herrmann and Aebi 2016) but, rather, are transported by these motors.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • IB DIPLOMA PROGRAMME Debora M
    OXFORD IB PREPARED BIOLOGY IB DIPLOMA PROGRAMME Debora M. Primrose Contents Introduction iv 9 Plant biology (AHL) 1 Cell biology 9.1 Transport in the xylem of plants 103 9.2 Transport in the phloem of plants 107 1.1 Introduction to cells 2 9.3 Growth in plants 110 1.2 Ultrastructure of cells 4 9.4 Reproduction in plants 113 1.3 Membrane structure 6 1.4 Membrane transport 7 10 Genetics and evolution (AHL) 1.5 The origin of cells 9 10.1 Meiosis 117 1.6 Cell division 11 10.2 Inheritance 121 2 Molecular biology 10.3 Gene pools and speciation 125 2.1 Molecules to metabolism 14 11 Animal physiology (AHL) 2.2 Water 15 11.1 Antibody production and vaccination 128 2.3 Carbohydrates and lipids 16 11.2 Movement 133 2.4 Proteins 20 11.3 The kidney and osmoregulation 137 2.5 Enzymes 21 11.4 Sexual reproduction 141 2.6 Structure of DNA and RNA 23 2.7 DNA replication, transcription and translation 24 12 Data-based and practical questions 147 2.8 Cell respiration 26 2.9 Photosynthesis 28 A Neurobiology and behaviour 3 Genetics A.1 Neural development 157 A.2 The human brain 159 3.1 Genes 30 A.3 Perception of stimuli 161 3.2 Chromosomes 32 A.4 Innate and learned behaviour (AHL) 165 3.3 Meiosis 33 A.5 Neuropharmacology (AHL) 167 3.4 Inheritance 35 A.6 Ethology (AHL) 169 3.5 Genetic modification and biotechnology 37 B Biotechnology and bioinformatics 4 Ecology B.1 Microbiology: organisms in industry 172 4.1 Species, communities and ecosystems 40 B.2 Biotechnology in agriculture 174 4.2 Energy flow 43 B.3 Environmental protection 178 4.3 Carbon cycling 45
    [Show full text]
  • Phagocytosis Dynamics Depends on Target Shape
    Biophysical Journal Volume 105 September 2013 1143–1150 1143 Phagocytosis Dynamics Depends on Target Shape Debjani Paul,†‡6* Sarra Achouri,†6 Young-Zoon Yoon,† Jurgen Herre,§ Clare E. Bryant,{ and Pietro Cicuta† † ‡ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom; Department of Biosciences and Bioengineering, § { Indian Institute of Technology Bombay, Powai, Mumbai, India; Department of Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom ABSTRACT A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets. INTRODUCTION Macrophages can engulf a wide variety of targets, such as the degradation of phagosomal contents and the induction invading pathogens, dead cells, foreign airborne particles of the appropriate immune responses.
    [Show full text]
  • Actin Nucleator Spire 1 Is a Regulator of Ectoplasmic Specialization in the Testis Qing Wen1,Nanli1,Xiangxiao 1,2,Wing-Yeelui3, Darren S
    Wen et al. Cell Death and Disease (2018) 9:208 DOI 10.1038/s41419-017-0201-6 Cell Death & Disease ARTICLE Open Access Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis Qing Wen1,NanLi1,XiangXiao 1,2,Wing-yeeLui3, Darren S. Chu1, Chris K. C. Wong4, Qingquan Lian5,RenshanGe5, Will M. Lee3, Bruno Silvestrini6 and C. Yan Cheng 1 Abstract Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell–cell and Sertoli cell–spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood–testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell–cell interface, and the apical ES at the Sertoli–spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro.
    [Show full text]
  • The Mechanics of Motility in Dissociated Cytoplasm
    THE MECHANICS OF MOTILITY IN DISSOCIATED CYTOPLASM MICAH DEMBO Theoretical Biophysics, Theoretical Division, Los Alamos National Laboratory, Group T-10, Mail Stop K710, Los Alamos, New Mexico 87545 ABSTRACT We stimulate the dynamical behavior of dissociated cytoplasm using the Reactive Flow Model (Dembo, M., and F. Harlow, 1986, Biophys. J., 50:109-121). We find that for the most part the predicted dynamical behavior of the cytoplasm is governed by three nondimensional numbers. Several other nondimensional parameters, the initial conditions, and boundary conditions are found to have lesser effects. Of the three major nondimensional parameters, one (D#) controls the percentage of ectoplasm, the second (CO) controls the sharpness of the endoplasm-ectoplasm boundary, and the third (R#) controls the topological complexity of the endoplasm-ectoplasm distribution. If R# is very small, then the cytoplasm contracts into a single uniform mass, and there is no bulk streaming. If R# is very large, then the cytoplasmic mass breaks up into a number of clumps scattered throughout the available volume. Between these clumps the solution undergoes turbulent or chaotic patterns of streaming. Intermediate values of R# can be found such that the mass of cytoplasm remains connected and yet undergoes coherent modes of motility similar to flares (Taylor, D.L., J.S. Condeelis, P.L. Moore, and R.D. Allen, 1973, J. Cell Biol., 59:378-394) and rosettes (Kuroda, K., 1979, Cell Motility: Molecules and Organization, 347-362). INTRODUCTION (Dembo et al., 1986). Here we will consider two experi- in which chemical reaction is an essential The reactive flow model is a putative description of motile mental systems fluid part of the dynamics.
    [Show full text]
  • Kif9 Is an Active Kinesin Motor Required for Ciliary Beating and Proximodistal Patterning of Motile Axonemes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457815; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Kif9 is an active kinesin motor required for ciliary beating and proximodistal patterning of motile axonemes Mia J. Konjikusic1,2,3, Chanjae Lee1, Yang Yue4, Bikram D. Shrestha5, Ange M. Nguimtsop1, Amjad Horani6, Steven Brody7,8, Vivek N. Prakash5,9, Ryan S. Gray2,3, Kristen J. Verhey4, John B. Wallingford1* 1 Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA. 2 Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, TX, USA. 3 Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX 78712, USA. 4 Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. 5 Department of Physics, University of Miami, Coral Gables, FL, USA. 6 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA. 7 Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. 8 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110 USA 9 Department of Biology and Department of Marine Biology and Ecology, University of Miami, Coral Gables, FL, USA. *Corresponding Author [email protected] Patterson Labs 2401 Speedway Austin, Tx 78712 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457815; this version posted August 27, 2021.
    [Show full text]
  • Understanding Cellular Signaling and Systems Biology with Precision: a Perspective from Ultrastructure and Organelle Studies In
    Available online at www.sciencedirect.com Current Opinion in ScienceDirect Systems Biology Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut Chiwei Xu1, Maria Ericsson2 and Norbert Perrimon1,3 Abstract [1,2]. Interactions between these cell types are critical One of the aims of systems biology is to model and discover to maintaining tissue integrity and gut function. For properties of cells, tissues and organisms functioning as a example, ISCs proliferation and differentiation are system. In recent years, studies in the adult Drosophila gut have controlled by a complex network integrating autocrine provided a wealth of information on the cell types and their and paracrine signals [3,4]; hormones derived from EEs functions, and the signaling pathways involved in the complex regulate EC physiology; and EC-derived factors signal to interactions between proliferating and differentiated cells in the ISCs following gut damage. context of homeostasis and pathology. Here, we document and discuss how high-resolution ultrastructure studies of organelle Despite the body of knowledge about signaling in the gut, morphology have much to contribute to our understanding of how we are still far from understanding how different signals the gut functions as an integrated system. are processed and integrated inside the cell to orchestrate a particular cellular function. As much of the cell is Addresses organized in membrane-bound or membrane-free organ- 1
    [Show full text]
  • Ultrastructure of Secretory and Senescence Phase in Colleters of Bathysa Gymnocarpa and B
    Revista Brasil. Bot., V.33, n.3, p.425-436, jul.-set. 2010 Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)1 EMILIO DE CASTRO MIGUEL2, DENISE ESPELLET KLEIN2,3, MARCO ANTONIO DE OLIVEIRA4 and MAURA DA CUNHA2,5 (received: December 11, 2008; accepted: June 10, 2010) ABSTRACT – (Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)). Colleters are secretory structures formed by a parenchymatic axis with vascular bundles, bound by a layer of secretory palisade-like epidermis. Some studies regarding the structure of colleters have focused on secretory cells structure, but not distinguished the secretory and senescent phases. Generally, in mucilage-secreting cells such as colleters, the endoplasmic reticulum and Golgi apparatus are involved in secretion production and transport. In these study, colleters structure of Bathysa gymnocarpa K. Schum. and B. stipulata (Vell.) C. Presl. (Rubiaceae) were determined in two phases: a secretory phase and a senescence one. Samples were collected and processed by usual light and electron microscopy techniques. Studied colleters are constituted by an epidermal palisade layer and a central axis formed by parenchymatic cells with rare vascular traces. During the secretory phase, epidermal cells presented a dense cytoplasm, small vacuoles, enhanced rough and smooth endoplasmic reticulum, and a Golgi apparatus close to large vesicles. During the senescence phase epidermal cells presented a disorganized membrane system. No intact organelles or vesicles were observed. The outer cell wall exhibited similar layers to that observed during the secretory phase. The senescent phase is easily defined by the morphology of the colleters, but not well defined at subcellular level.
    [Show full text]