Environmental Control and Life Support System

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Control and Life Support System USA006020 Rev. B Space Program Operations Contract Environmental Control and Life Support System ECLSS 21002 October 23, 2006 Final Version This document has been reviewed and updated. No subsequent updates to this document are anticipated or required due to the approaching shuttle program closure. Contract NNJ06VA01C Copyright © 2004 by United Space Alliance, LLC. These materials are sponsored by the National Aeronautics and Space Administration under Contract NAS9-20000. The U.S. Government retains a paid-up, nonexclusive, irrevocable worldwide license in such materials to reproduce, prepare derivative works, distribute copies to the public, and to perform publicly and display publicly, by or on behalf of the U.S. Government. All other rights are reserved by the copyright owner. USA006020 Rev. B Environmental Control and Life Support System ECLSS 21002 Prepared by Original approval obtained Michael Sadowski SME and Book Manager USA/Shuttle Systems Approved by Original approval obtained Jerry Orcutt Manager USA/Shuttle Systems Contract NNJ06VA01C USA006020 Rev. B REVISION LOG Rev. Change letter no. Description Date Basic USA number issued; supersedes TD415 10/07/2003 A Updated for OI, selected graphics, cargo HX, 3/29/2004 and editorial corrections B Added SPOC template, added copyright and 10/23/2006 final version statements USA006020 Rev. B LIST OF EFFECTIVE PAGES The current status of all pages in this document is as shown below: Page No. Change No. Preface Rev. B i – viii Rev. B 1-1 – 1-6 Rev. B 2-1 – 2-36 Rev. B 3-1 – 3-38 Rev. B 4-1 – 4-48 Rev. B 5-1 – 5-30 Rev. B 6-1 – 6-24 Rev. B A-1 – A-6 Rev. B B-1 – B-10 Rev. B C-1 – C-18 Rev. B USA006020 Rev. B PREFACE The contents of this document were provided by the Shuttle Systems Group, Shuttle Systems Training Branch, Space Flight Training & Facility Operations, Mission Operations Directorate (MOD), Lyndon B. Johnson Space Center (JSC), National Aeronautics and Space Administration (NASA). Technical documentation support was provided by Integrated Documentation Services (IDS). Any questions concerning this training manual or any recommendations should be directed to the Shuttle Systems Document Controller, Tina Weber, DT36, 281-244-7679, or to the training manual Book Manager, Michael Sadowski, DT36, 281-244-7335. This material is for training purposes only and should not be used as a source of operational data. All numerical data, displays, and checklist references are intended as examples. To determine any prerequisites before using this document, consult the applicable Certification Plan. For shuttle manuals, consult the Flight Operations Support Personnel Training Guide (Blue Book) or the Crew Training Catalog. For Space Station manuals, consult the appropriate Space Station Certification Training Guide or Training Administration Management System (TAMS). The applicable training package should be studied before attending any classroom session or lesson for which this is a prerequisite. A Training Materials Evaluation is included at the end of this document. Inputs on this sheet will be used to evaluate the lesson material. You do not need to sign the sheet. USA006020 Rev. B This page intentionally blank. USA006020 Rev. B CONTENTS Section Page 1.0 INTRODUCTION ....................................................................................... 1-1 1.1 PRESSURE CONTROL SYSTEM INTERFACES........................ 1-2 1.2 ATMOSPHERIC REVITALIZATION SYSTEM INTERFACES...... 1-4 1.3 ACTIVE THERMAL CONTROL SYSTEM INTERFACES ............ 1-4 1.4 SUPPLY AND WASTEWATER SYSTEM INTERFACES............. 1-5 2.0 PRESSURE CONTROL SYSTEM ............................................................ 2-1 2.1 OXYGEN SYSTEM...................................................................... 2-1 2.2 NITROGEN SYSTEM .................................................................. 2-3 2.3 OXYGEN/NITROGEN MANIFOLD .............................................. 2-5 2.3.1 Oxygen/Nitrogen Control Valve Manually Open........................... 2-8 2.3.2 Oxygen/Nitrogen Control Valve Manually Closed ........................ 2-8 2.3.3 Auto Control of the Oxygen/Nitrogen Control Valve..................... 2-9 2.4 OVER/UNDERPRESSURIZATION PROTECTION ..................... 2-10 2.5 PRESSURE CONTROL SYSTEM CONTROLS .......................... 2-13 2.6 PRESSURE CONTROL SYSTEM INSTRUMENTATION/DISPLAYS ................................................ 2-19 2.6.1 Instrumentation ............................................................................ 2-19 2.6.2 CRT Displays ............................................................................... 2-21 2.6.3 Dedicated Displays ...................................................................... 2-21 2.6.4 Caution and Warning ................................................................... 2-26 2.7 PRESSURE CONTROL SYSTEM NOMINAL OPERATION........ 2-27 2.7.1 Ascent.......................................................................................... 2-27 2.7.2 Orbit ............................................................................................. 2-27 2.7.3 10.2 psia Cabin ............................................................................ 2-28 2.7.4 Entry............................................................................................. 2-28 2.8 PRESSURIZATION SYSTEM PERFORMANCE, LIMITATIONS, AND CAPABILITIES............................................ 2-35 3.0 ATMOSPHERIC REVITALIZATION SYSTEM.......................................... 3-1 3.1 ARS AIR SYSTEM....................................................................... 3-1 3.2 CABIN AIR ................................................................................... 3-1 3.2.1 Cabin Fan .................................................................................... 3-2 3.2.2 LiOH Canisters............................................................................. 3-3 3.2.3 Cabin Temperature Control Valve................................................ 3-3 3.2.4 Cabin Heat Exchanger ................................................................. 3-7 3.2.5 Humidity Separator ...................................................................... 3-7 3.2.6 Ambient Temperature Catalytic Oxidizer...................................... 3-8 3.2.7 Avionics Bay Fans........................................................................ 3-9 3.2.8 Inertial Measurement Unit Fans ................................................... 3-10 3.3 ATMOSPHERIC REVITALIZATION SYSTEM WATER ............... 3-10 3.3.1 Water Pumps ............................................................................... 3-12 i USA006020 Rev. B Section Page 3.3.2 Av Bay 1 Leg................................................................................ 3-12 3.3.3 Av Bay 2 Leg................................................................................ 3-12 3.3.4 Av Bay 3 Leg................................................................................ 3-12 3.3.5 Water/Freon Interchanger............................................................ 3-12 3.3.6 Interchanger Mismatch................................................................. 3-13 3.3.7 Liquid-Cooled Garment Heat Exchanger ..................................... 3-13 3.3.8 Water Chiller ................................................................................ 3-14 3.4 ATMOSPHERIC REVITALIZATION SYSTEM CONTROLS ........ 3-14 3.5 ATMOSPHERIC REVITALIZATION SYSTEM INSTRUMENTATION AND DISPLAYS........................................ 3-18 3.5.1 CRT Displays ............................................................................... 3-18 3.5.2 Dedicated Displays ...................................................................... 3-27 3.5.3 Caution and Warning ................................................................... 3-27 3.6 ATMOSPHERIC REVITALIZATION SYSTEM NOMINAL OPERATION................................................................................ 3-29 3.6.1 Ascent.......................................................................................... 3-29 3.6.2 Orbit ............................................................................................. 3-29 3.6.3 Special Features .......................................................................... 3-29 3.6.4 Atmospheric Revitalization System Cooling Tables ..................... 3-30 3.6.5 ARS Systems Performance, Limitations, and Capabilities ........... 3-38 4.0 ACTIVE THERMAL CONTROL SYSTEM................................................. 4-1 4.1 BASIC FUNCTIONS .................................................................... 4-1 4.1.1 Heat Sinks and Heat Sources ...................................................... 4-1 4.2 FREON PUMPS........................................................................... 4-3 4.3 AFT COLDPLATES...................................................................... 4-4 4.4 GROUND SUPPORT EQUIPMENT HEAT EXCHANGER .......... 4-6 4.5 MIDBODY COLDPLATES............................................................ 4-7 4.6 HYDRAULIC HEAT EXCHANGER .............................................. 4-8 4.7 FUEL CELL HEAT EXCHANGER................................................ 4-8 4.8 CARGO HEAT EXCHANGER...................................................... 4-9 4.9 OXYGEN RESTRICTORS ........................................................... 4-10 4.10 WATER/FREON INTERCHANGER ............................................. 4-10 4.11 PAYLOAD HEAT EXCHANGER.................................................
Recommended publications
  • Anastasi 2032
    Shashwat Goel & Ankita Phulia ​Anastasi 2032 Table of Contents Section Page Number 0 Introduction 2 1 Basic Requirements 4 2 Structural Design 15 3 Operations 31 4 Human Factors 54 5 Business 65 6 Bibliography 80 Fletchel Constructors 1 Shashwat Goel & Ankita Phulia ​Anastasi 2032 0 Introduction What is an underwater base doing in a space settlement design competition? Today, large-scale space habitation, and the opportunity to take advantage of the vast resources and possibilities of outer space, remains more in the realm of speculation than reality. We have experienced fifteen years of continuous space habitation and construction, with another seven years scheduled. Yet we have still not been able to take major steps towards commercial and industrial space development, which is usually the most-cited reason for establishing orbital colonies. This is mainly due to the prohibitively high cost, even today. In this situation, we cannot easily afford the luxury of testing how such systems could eventually work in space. This leaves us looking for analogous situations. While some scientists have sought this in the mountains of Hawaii, this does not tell the full story. We are unable to properly fathom or test how a large-scale industrial and tourism operation, as it is expected will eventually exist on-orbit, on Earth. This led us to the idea of building an oceanic base. The ocean is, in many ways, similar to free space. Large swathes of it remain unexplored. There are unrealised commercial opportunities. There are hostile yet exciting environments. Creating basic life support and pressure-containing structures are challenging.
    [Show full text]
  • Concept Study of a Cislunar Outpost Architecture and Associated Elements That Enable a Path to Mars
    Concept Study of a Cislunar Outpost Architecture and Associated Elements that Enable a Path to Mars Presented by: Timothy Cichan Lockheed Martin Space [email protected] Mike Drever Lockheed Martin Space [email protected] Franco Fenoglio Thales Alenia Space Italy [email protected] Willian D. Pratt Lockheed Martin Space [email protected] Josh Hopkins Lockheed Martin Space [email protected] September 2016 © 2014 Lockheed Martin Corporation Abstract During the course of human space exploration, astronauts have travelled all the way to the Moon on short flights and have logged missions of a year or more of continuous time on board Mir and the International Space Station (ISS), close to Earth. However, if the long term goal of space exploration is to land humans on the surface of Mars, NASA needs precursor missions that combine operating for very long durations and great distances. This will allow astronauts to learn how to work in deep space for months at a time and address many of the risks associated with a Mars mission lasting over 1,000 days in deep space, such as the inability to abort home or resupply in an emergency. A facility placed in an orbit in the vicinity of the Moon, called a Deep Space Transit Habitat (DSTH), is an ideal place to gain experience operating in deep space. This next generation of in-space habitation will be evolvable, flexible, and modular. It will allow astronauts to demonstrate they can operate for months at a time beyond Low Earth Orbit (LEO). The DSTH can also be an international collaboration, with partnering nations contributing elements and major subsystems, based on their expertise.
    [Show full text]
  • Jenkins 2000 AIRLOCK & CONNECTIVE TUNNEL DESIGN
    Jenkins_2000 AIRLOCK & CONNECTIVE TUNNEL DESIGN AND AIR MAINTENANCE STRATEGIES FOR MARS HABITAT AND EARTH ANALOG SITES Jessica Jenkins* ABSTRACT For a manned mission to Mars, there are numerous systems that must be designed for humans to live safely with all of their basic needs met at all times. Among the most important aspects will be the retention of suitable pressure and breathable air to sustain life. Also, due to the corrosive nature of the Martian dust, highly advanced airlock systems including airshowers and HEPA filters must be in place so that the interior of the habitat and necessary equipment is protected from any significant damage. There are multiple current airlocks that are used in different situations, which could be modified for use on Mars. The same is true of connecting tunnels to link different habitat modules. In our proposed Mars Analog Challenge, many of the airlock designs and procedures could be tested under simulated conditions to obtain further information without actually putting people at risk. Other benefits of a long-term study would be to test how the procedures affect air maintenance and whether they need to be modified prior to their implementation on Mars. INTRODUCTION One of the most important factors in the Mars Habitat design involves maintaining the air pressure within the habitat. Preservation of breathable air will be an extremely vital part of the mission, as very little can be found in situ. Since Mars surface expeditions will be of such long duration, it is imperative that the airlock designs incorporate innovative air maintenance strategies. For our proposed Earth Analog Site competition, many of the components of these designs can be tested, as can the procedures required for long-duration habitation on Mars.
    [Show full text]
  • Orientation Sheet for Horizon Updated: 2017-Apr-21
    Orientation Sheet for Horizon Updated: 2017-Apr-21 General • All voyages should be documented in the ship’s log book. Report any damage or deficiencies to [email protected] and to boat manager [email protected] / 410-203-2673 Specifications Registration #: MD 5596 AC Hull#: XLY 595267 Make: Islander 36 Year: 1977 Engine: Perkins 4.108; 4-cyl Diesel 48-HP Displacement: 13,450 lbs Draft: 5’ 02” Mast Height Fuel Capacity: 30 gal. Holding tank: 18 gal. (from waterline): 52’ 06” Water Capacity: 54 gal. 2 tanks, below Salon Settees LOA: 36’ 08" Batteries: House battery 1 and 2 (Starboard lazaret) LWL: 28’ 25” Starting Battery (under companionway steps) Beam: 11’ 17” Sails: Main, Genoa on furler, staysail with boom Safety Equipment First Aid Kit: Drawer port side Rescue Sling: Stern Rail PFDs: V-berth Fire Extinguishers: (2) – Starboard side cabin, Port quater berth Day/Night Flares: Aerial & Hand-held – Drawer port side above seats in salon Sounds (Horn, Bell & Whistle): Drawer port side above seats in salon Auto-Switched Bilge Pump: Wired directly to House Battery (must be switched to Auto when leaving boat). The switch is located on the starboard side inside the cabin above the galley sink Old Bilge Pump: Wired to Electric Panel on the engine compartment wall (manual mode only). Do not use this pump unless the other one is not working. Manual Bilge Pump: Cockpit Port side (handle located in drawer port side above seats) Anchors: Danforth (35 lbs) bow; Rode: 15’ of chain & 150’ of line (marked every 30’) Thru-hulls/Sea-cocks: Engine
    [Show full text]
  • Gannet Electronics
    Gannet Electronics A Summary of the Electronic Equipment Fitted to early Model R.A.N Gannet A.S.1 Aircraft Prepared by David Mowat Ex-L.R.E.M.(A) 21st. August 2003 Page 1 Page 2 GANNET ELECTRONIC EQUIPMENT Introduction The ‘Heart’ of the Gannet as a Weapons System was its Electronic Equipment. It contained a comprehensive range of electronic equipment to enable it to perform the various roles for which it was designed. Its Primary Role was to detect, locate, and destroy enemy submarines. For this Role, the Aircraft was fitted with a Search Radar and Sonobuoy Systems. Other electronic systems were also installed for Communications, both internal and external, and Navigation. The various equipments were allocated an ‘Aircraft Radio Installation’ (ARI) number, which specified the actual equipment used in each installation. These may vary between aircraft depending on the role that the particular aircraft was to perform. A cross- reference List of ARI’s is shown at Appendix ‘A’. The various equipments can be grouped into four major categories as follows: a.! Communications b.! Navigation c.! Warfare Systems d.! Stores Communications Equipment The Communications Equipment was used to enable the crew to talk to each other (internal communications) and other aircraft, ships or bases (external communications). They are as follows: a.! Audio Amplifier Type A1961 The Type A1921 was used to amplify the Microphone outputs from the three crew members and feed it back into the earphones. It was located on the port side of the rear cockpit at about seat height just forward of the Radio Operator.
    [Show full text]
  • 19750827-0 DC-3 5Y-AAF.Pdf
    1 CAV/ACC/24/75 ACCIDENT IUVESTIGATION BRANCH CIVIL AIRCRAFT ACCIDEiiT Report on the Accident to Douglas DC-3 Aircraft Registration number 5Y-AAF which occurred on the 27th August,1975 At 0922 hours, at Mtwara Airport, Tanzania. E A S T A F R I CAN C 0 M M U NIT Y AOCIDEwr REPORT AOCIDE:~T INVESTIGATIOn BRAl'WH 'CIVIL ACCIDENT REPORT CAV/ACC/24/75 AIRCRAFT TYPE 8; HEGISTRATION: Douglas DC-::- 5Y-l~ ENGINE: Pratt & \filii tney R1830-90D REGISTERED OWlIJ]~R & OPERATOR: East African Airways Corporation, P.O. Box 19002, NAIROBI, Kenya. CREVf: CAPTAIN Gabriel Sebastian Turuka ) ) Uninjured FIJ:1ST OFFICER Steven Robert Wegoye ) PASSENGER: Sixteen - Uninjured. PLACE OF ACCIDEHT: ~,1twara Airport, Tanzania. DATE AND T1MB: 27th August, 1975, 0922 hours. ALL rrU'lES IN THIS REPORT ARE G.1VI. T. SUMMARY The aircraft was operating East African Airways Service flight number EC037 from Dar es Salaam to Nachingmea with an unscheduled refuelling stop at I1twara with 3 crew and 16 passengers on board. The flight from Dar es Salaam was uneventful and an approach and landing was made onto runway 19. After touch down the aircraft swung to the left and then to the right, after which it left the runway where both main landing gear assys collapsed causing substantial daLage to the centre section and nacelle structure. The report concludes that the most probable cause of the accident was the failure of the pilot to initiate corrective action to prevent the aircraft from turning off the runway. 1.1 HISTORY OF THE FLIGHT: The aircraft departed Dar es Salaam with three crew and 16 passengers.
    [Show full text]
  • Drivetrain 17 36 30 30 31 32 32 33 35 37 38 39 39 40 40 41 41 41 41 41 40 36-40
    B Drivetrain ............................... 18 to 41 Drivetrain Struts Main .............................................................................18-19 Self-aligning gland type (with space) ................................. 30 Intermediate ...................................................................... 18 Heavy duty ..................................................................... 30 Sailboat ............................................................................. 19 Studs .................................................................................. 31 Port and starboard ............................................................ 20 Tournament (with space) ................................................ 32 Vee .................................................................................... 21 Self-aligning gland type (without space) ............................ 32 Universal ........................................................................... 21 Spud type Adjustable ....................................................................22-23 Tournament water cooled ............................................... 33 Cut off type ..................................................................... 22 Right hand thread ........................................................... 35 Swivel type ..................................................................... 23 Shaft logs..........................................................................36-40 Strut bolts .............................................................................
    [Show full text]
  • Bureau of Air Safety Investigation Report Basi
    BUREAU OF AIR SAFETY INVESTIGATION REPORT BASI Report B/916/1017 Bell 214ST Helicopter VH-HOQ Timor Sea Latitude 12° 30' south Longitude 124° 25' east 22 November 1991 Bureau of Air Safety Investigation /i.:V Transport and Healonaf Development Department of Transport and Communications Bureau of Air Safety Investigation ACCIDENT INVESTIGATION REPORT B/916/1017 Bell 214ST Helicopter VH-HOQ Timor Sea Latitude 12° 30' south Longitude 124° 25' east 22 November 1991 Released by the Director of the Bureau of Air Safety Investigation under the provisions of Air Navigation Regulation 283 Bureau of Air Safety Investigation When the Bureau makes recommendations as a result of its investigations or research, safety, (in accordance with our charter), is our primary consideration. However, the Bureau fully recognises that the implementation of recommendations arising from its investigations will in some cases incur a cost to the industry. Consequently, the Bureau always attempts to ensure that common sense applies whenever recommendations are formulated. BASI does not have the resources to carry out a full cost- benefit analysis of every recommendation. The cost of any recommendation must always be balanced against its benefits to safety, and aviation safety involves the whole community. Such analysis is a matter for the CAA and the industry. ISBN 0642 193959 June 1993 This report was produced by the Bureau of Air Safety Investigation (BASI), PO Box 967, Civic Square ACT 2608. The Director of the Bureau authorised the investigation and the publication of this report pursuant to his delegated powers conferred by Air Navigation Regulations 278 and 283 respectively.
    [Show full text]
  • WO 2015/012935 A2 29 January 2015 (29.01.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/012935 A2 29 January 2015 (29.01.2015) P O P C T (51) International Patent Classification: Bart Dean [US/US]; 2691 Daunet Ave., Simi Valley, Cali B64C 27/26 (2006.01) B64C 27/54 (2006.01) fornia 93065 (US). PARKS, William Martin [US/US]; B64C 5/02 (2006.01) B64C 39/02 (2006.01) 2805 North Woodrow Ave., Simi Valley, California 93065 B64C 9/00 (2006.01) G05D 1/08 (2006.01) (US). GANZER, David Wayne [US/US]; 4607 Kleberg B64C 25/00 (2006.01) B64C 29/00 (2006.01) St., Simi Valley, California 93063 (US). FISHER, Chris¬ topher Eugene [US/US]; 4 1 Los Vientos Dr., Thousand (21) International Application Number: Oaks, California 91320 (US). MUKHERJEE, Jason Sid- PCT/US20 14/036863 harthadev [US/US]; 605 Muirfield Ave., Simi Valley, (22) International Filing Date: California 93065 (US). KING, Joseph Frederick 5 May 2014 (05.05.2014) [US/US]; 10540 Gaviota Ave., Granada Hills, California 91344 (US). (25) Filing Language: English (74) Agent: DAWSON, James K.; 1445 E. Los Angeles Ave., English (26) Publication Language: Suite 108, Simi Valley, California 93065-2827 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 3 May 2013 (03.05.2013) 61/819,487 US kind of national protection available): AE, AG, AL, AM, (71) Applicant: AEROVIRONMENT, INC. [US/US]; 181 W . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, Huntington Drive, Suite 202, Monrovia, California 91016 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (US).
    [Show full text]
  • Sailing Terms Into the Wind, but We Can Start Sailing from About 30 Degrees Away from the Wind
    Port and starboard are nautical terms for left and right, Can you remember what these respectively. parts of a boat are called? Port is the left-hand side of a vessel, facing forward. Starboard is the right-hand side, facing forward. Since port and starboard never change, they are unambiguous references that are not relative to the observer. Bow The bow of a boat is at the front The stern of a boat is at the back Port and starboard are also terms used to describe navigational aids like buoys, that show you how to get into A …...................... E …...................... or out of a harbour. On your way in the port buoys will be on your left coloured (or at night, lit) red and the starboard buoys on your right coloured or lit green. B …...................... F …...................... The term starboard derives from the Old English 'steorbord', meaning C …...................... G …...................... the side on which the ship is steered. Before ships had rudders on their centrelines, they were steered with a steering oar at the stern of D …...................... H …...................... the ship and, because more people are right-handed, on the right- hand side of it. When we're sailing a boat we always want to know An introduction to where the wind is coming from. We can't sail straight sailing terms into the wind, but we can start sailing from about 30 degrees away from the wind. Each 'point of sail' has a When you first come out sailing you'll discover a whole name according to the angle away from the wind.
    [Show full text]
  • Propulsion Shafting Alignment
    Guidance Notes on Propulsion Shafting Alignment GUIDANCE NOTES ON PROPULSION SHAFTING ALIGNMENT SEPTEMBER 2019 American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862 2019 American Bureau of Shipping. All rights reserved. 1701 City Plaza Drive Spring, TX 77389 USA Foreword Foreword ABS identified the need to provide a more detailed explanation of alignment design and practices, which resulted in the development of the Guidance Notes on Propulsion Shafting Alignment. Their primary purpose is to provide clarification for ABS Surveyors and plan review engineers to verify consistency of the survey and plan approval processes. Regarding the shaft alignment design and implementation efforts by the shipbuilding industry, these Guidance Notes are valuable to further advance its approach towards shaft alignment analyses and procedures. Additionally, ABS has developed state-of-the-art analytical tools primarily for the purpose of engineering analysis and design. The ABS shaft alignment program, combined with alignment optimization software, is capable of analyzing complex propulsion installations and, when used as a design tool, may provide an optimized solution to the alignment problem. This 2019 edition is arranged to include additional topics on shaft alignment condition monitoring and a section dedicated to alignment problems and their solutions. Shaft alignment survey requirements are summarized in the introduction and are addressed further under a separate section on shaft alignment procedures and practices. Discussion on alignment calculation and measurement is expanded to include the stern tube bearing clearance measurement. Additional clarification is provided on the application of the hull deflections, alignment optimization, propulsion systems with no forward stern tube bearing, and reverse engineering calculation.
    [Show full text]
  • Multi Duty (MD) Airlock
    Multi Duty (MD) Airlock ■ Versatile airlock can be connected to many different types of storage and conveying devices ■ Square flanged inlet and outlet ■ Highly reliable, rugged design delivers low maintenance service ■ Sealed bearings require no lubrication and provide years of service ■ Available in a wide range of sizes ■ Special options extend service life in challenging applications Application Outboard press fit bearings provide better protection, resulting With tens of thousands of installations throughout the world, the in longer service life. Special wear resistant MD designs are Schenck Process MD airlock is a highly universal airlock used designed to be placed in abrasive environments. Field tests of to meter dry bulk materials under feeding devices, such as bins, these designs show a lifespan up to eight times longer than a hoppers, mixers, screw conveyors and sifters. standard MD airlock. Providing rugged service, the MD is suitable for use in dilute Operating Principle phase vacuum, pressure or combination vacuum/pressure The airlock reliably meters products into conveying lines or pneumatic conveying systems. Low mounting height is ideal storage areas. With open end rotors, the product comes in for space restricted applications. With a low profile and a wide contact with the endplates of the housing. With closed end flange width, the MD airlock is able to match drill hole patterns rotors, the product is confined within the pockets of the rotor. of many competitor’s valves for easy replacement. Features Equipment Rated up to 15 psi pressure differential The MD has a cast housing and endplates with a square flange. Standard temperature rating is 200 ºF (93 °C) The rotor and housing are precision machined to obtain a high Optional high-temperature rated to 450 ºF (232 °C) degree of accuracy and close tolerances.
    [Show full text]