Concept Study of a Cislunar Outpost Architecture and Associated Elements That Enable a Path to Mars

Total Page:16

File Type:pdf, Size:1020Kb

Concept Study of a Cislunar Outpost Architecture and Associated Elements That Enable a Path to Mars Concept Study of a Cislunar Outpost Architecture and Associated Elements that Enable a Path to Mars Presented by: Timothy Cichan Lockheed Martin Space [email protected] Mike Drever Lockheed Martin Space [email protected] Franco Fenoglio Thales Alenia Space Italy [email protected] Willian D. Pratt Lockheed Martin Space [email protected] Josh Hopkins Lockheed Martin Space [email protected] September 2016 © 2014 Lockheed Martin Corporation Abstract During the course of human space exploration, astronauts have travelled all the way to the Moon on short flights and have logged missions of a year or more of continuous time on board Mir and the International Space Station (ISS), close to Earth. However, if the long term goal of space exploration is to land humans on the surface of Mars, NASA needs precursor missions that combine operating for very long durations and great distances. This will allow astronauts to learn how to work in deep space for months at a time and address many of the risks associated with a Mars mission lasting over 1,000 days in deep space, such as the inability to abort home or resupply in an emergency. A facility placed in an orbit in the vicinity of the Moon, called a Deep Space Transit Habitat (DSTH), is an ideal place to gain experience operating in deep space. This next generation of in-space habitation will be evolvable, flexible, and modular. It will allow astronauts to demonstrate they can operate for months at a time beyond Low Earth Orbit (LEO). The DSTH can also be an international collaboration, with partnering nations contributing elements and major subsystems, based on their expertise. In addition to meeting human spaceflight objectives, the DSTH can help meet exploration science objectives. For example, astronauts in the DSTH could operate a robotic rover, in near real-time, to collect geological samples from lunar farside and return them to the outpost using an ascent vehicle. Returning samples from the South Pole–Aitken Basin (SPA) on the far side of the Moon has been identified as a priority in planetary science Decadal Surveys because it would help scientists understand the early dynamics and impact history of the solar system. Lockheed Martin is currently studying concepts for a DSTH architecture that evolves in capability over time. This work is being conducted both through internally funded work with partners like Thales Alenia Space Italy (TAS-I) and through the NASA-funded NextSTEP Habitat program. The architecture includes elements such as power and propulsion modules, habitation modules, cargo pods, and an Extra-Vehicular Activity (EVA) Module. The outpost’s capabilities increase with each new element, incorporating lessons learned and new technologies that are needed for Mars such as closed loop life support, laser communication, advanced EVA, In-Situ Resource Utilization (ISRU), and robotics. Acronyms/Abbreviations LPI: Lunar and Planetary Institute ARM: Asteroid Retrieval Mission NASA: National Aeronautics and Space DRO: Distant Retrograde Orbit Administration DSTH: Deep Space Transit Habitat PG: Proving Ground EM: Exploration Mission PGO: Proving Ground Objective EVA: Extra-Vehicular Activity SEP: Solar Electric Propulsion System FTO: Flight Test Objective SPA: South Pole–Aitken Basin ISRU: In-Situ Resource Utilization SLS: Space Launch System ISS: International Space Station TAS-I: Thales Alenia Space Italy LEO: Low Earth Orbit 2 Introduction mission scenario, the voyage to and from Mars In recent decades, the goal of human could last up to 12 months round-trip. This spaceflight has been to land astronauts on the transit time represents some of the most risky surface of Mars. However, that goal has always parts of the entire mission, due to the lack of seemed to be firmly on the horizon, just out of viable abort options. The challenges associated reach. Several architecture studies have been with Mars transits include: the increased crew conducted to determine the most efficient and autonomy due to long communication delays, safe method for conducting a Mars mission. the need for highly reliable and regenerative One thing they all seem to agree on is that life support systems, the mitigation of deep there are many variables involved and space radiation, spacecraft serviceability, Figure 1. Astronauts will need to learn to operate at much greater distances and durations than before in order to prepare for a mission to Mars. potential ways to get there. supplies and logistics, and the increased risks to crew health due to long stays in micro While there are many paths one could take to gravity. get to Mars, they all must deal the same core set of challenges. In general, the challenges of Astronauts have pushed the bounds of a Mars mission can be broken down into three human endurance in space. main categories, the long duration transits to Figure 1 depicts some of those achievements. and from the vicinity of Mars, the descent and A typical expedition on board the International ascent from the surface of Mars, and the actual Space Station (ISS) lasts around 180 days and stay on the surface of Mars. Depending on the in 2015-2016 Scott Kelly and Mikhail 3 Korniyenko spent 340 days at the ISS. The currently near completion, the Orion record for the longest stay in space goes to spacecraft and the Space Launch System (SLS) Valeri Polyakov, who spent 437 consecutive launch vehicle. Additional required elements days on Mir. Analysis of the long term effects and a mission architecture developed by of such extended stays in space is still Lockheed Martin and Thales Alenia Space Italy ongoing—and even Polyakov’s record is still both privately and as a part of the NASA about one half the duration of an entire Mars NextSTEP Habitation program are discussed in mission. this paper. While a stay on the ISS doesn’t come without Cislunar Proving Ground Architecture some risks, astronauts always have the ability To undertake a human mission to Mars, to abort their mission in the case of an extreme humans will need to develop the technology, emergency. Such scenarios can have a crew systems and capabilities necessary to live in back on the ground within hours of initiating deep space for extended durations. As a key the abort. On trips to Mars, that will not be the part of this preparation, NASA has established case. The orbits of Earth and Mars mean that a set of proving ground objectives (PGO) and mission opportunities only occur roughly every flight test objections (FTO) to identify what 2 years, and the propulsive requirements are needs to be accomplished in cislunar space [1]. too great to allow astronauts to return home NASA envisions three exploration phases that early in the case of an emergency. incrementally build toward Mars travel [2]. Humans have experienced this challenge to a The ISS is being used to begin the first phase, certain degree. During the Apollo missions, with ongoing research on the ISS aimed at astronauts traveled all the way to the Moon. developing techniques, protocols, and Their abort options to safely return to Earth technology needed for deep space travel. were measured in days not the minutes to Examples include maturation of highly hours of an ISS abort. For Mars there is no regenerative life support systems, tele- practical abort option. Even though the Apollo operation of rovers on Earth, and simulated program was a great achievement in human communications delays. NASA refers to this as spaceflight, those missions lasted only one to Phase 0. The next phase, Phase 1, pushes two weeks. A mission to Mars will take further out into deep space beyond the Van astronauts 1,000 times further away from Allen belts. The focus of Phase 1 is to gain Earth, and will last up to 3 years. confidence and understanding of the transportation systems used to access deep To address the challenges of a Mars mission, space, learning how to work in deep space and it’s clear that what is needed is a test program to make sure the crew stays healthy in the that allows engineers and astronauts to gain process. experience working in deep space for long durations, at long distances from Earth. Such a Pursuit of these objectives requires the program would increase both mission distance establishment of a Deep Space Transit Habitat and duration, addressing strategic objectives (DSTH). Astronauts will demonstrate crewed with increasingly complex missions. Such a flight operations in deep space and begin to program will also require a core set of deep increase crew autonomy. Once the majority of space elements. Two of these elements are the PGOs are achieved, NASA expects to use 4 the lessons learned to meet objectives for perform science missions that are directly Phase 2, which provides the final development applicable to exploring Mars with astronauts, that will enable travel to Mars. such as processing regolith into useful materials via In Situ Resource Utilization Phase 2 will include the addition of advanced (ISRU). Other objectives are met by operating elements that will serve as precursors to the at a greater distance from the Earth with time Mars transit elements. These new elements delays between the crew and Earth reaching will contain Mars-class systems such as closed- around twenty minutes. Crew health on loop life support and radiation protection. missions outside the protection of Earth’s They will also provide more habitable volume magnetic field or without an easy means to and greater power and propulsion capability. return to Earth quickly is a concern. The The validation of Mars-class elements and Proving Ground missions help broaden our vehicles will be accomplished with missions of understanding of and provide solutions for increasing duration and distance from Earth.
Recommended publications
  • Orion First Flight Test
    National Aeronautics and Space Administration orion First Flight Test NASAfacts Orion, NASA’s new spacecraft Exploration Flight Test-1 built to send humans farther During Orion’s flight test, the spacecraft will launch atop a Delta IV Heavy, a rocket built than ever before, is launching and operated by United Launch Alliance. While into space for the first time in this launch vehicle will allow Orion to reach an altitude high enough to meet the objectives for December 2014. this test, a much larger, human-rated rocket An uncrewed test flight called Exploration will be needed for the vast distances of future Flight Test-1 will test Orion systems critical to exploration missions. To meet that need, NASA crew safety, such as heat shield performance, is developing the Space Launch System, which separation events, avionics and software will give Orion the capability to carry astronauts performance, attitude control and guidance, farther into the solar system than ever before. parachute deployment and recovery operations. During the uncrewed flight, Orion will orbit The data gathered during the flight will influence the Earth twice, reaching an altitude of design decisions and validate existing computer approximately 3,600 miles – about 15 times models and innovative new approaches to space farther into space than the International Space systems development, as well as reduce overall Station orbits. Sending Orion to such a high mission risks and costs. altitude will allow the spacecraft to return to Earth at speeds near 20,000 mph. Returning
    [Show full text]
  • Anastasi 2032
    Shashwat Goel & Ankita Phulia ​Anastasi 2032 Table of Contents Section Page Number 0 Introduction 2 1 Basic Requirements 4 2 Structural Design 15 3 Operations 31 4 Human Factors 54 5 Business 65 6 Bibliography 80 Fletchel Constructors 1 Shashwat Goel & Ankita Phulia ​Anastasi 2032 0 Introduction What is an underwater base doing in a space settlement design competition? Today, large-scale space habitation, and the opportunity to take advantage of the vast resources and possibilities of outer space, remains more in the realm of speculation than reality. We have experienced fifteen years of continuous space habitation and construction, with another seven years scheduled. Yet we have still not been able to take major steps towards commercial and industrial space development, which is usually the most-cited reason for establishing orbital colonies. This is mainly due to the prohibitively high cost, even today. In this situation, we cannot easily afford the luxury of testing how such systems could eventually work in space. This leaves us looking for analogous situations. While some scientists have sought this in the mountains of Hawaii, this does not tell the full story. We are unable to properly fathom or test how a large-scale industrial and tourism operation, as it is expected will eventually exist on-orbit, on Earth. This led us to the idea of building an oceanic base. The ocean is, in many ways, similar to free space. Large swathes of it remain unexplored. There are unrealised commercial opportunities. There are hostile yet exciting environments. Creating basic life support and pressure-containing structures are challenging.
    [Show full text]
  • Lunar Programs
    LUNAR PROGRAMS NASA is leading a sustainable return to the Moon Aerospace is partnered with NASA to with commercial and international partners to return humans to the Moon in every expand human presence in space and gather phase and journey, including the: new knowledge and opportunities. In 2017, Space › Planning and supporting the Policy Directive-1 called for a renewed emphasis on first lifecycle review of the commercial and international partnerships, return Gateway Initiative of humans to the Moon for long-term exploration and utilization followed by human missions to Mars. › Design, systems engineering and Aerospace is partnered with NASA in this endeavor integration, and operational concepts and is involved in every phase and journey. of the EVA system Artist’s conception of a gateway habitat. Image credit: NASA Humans must return to the moon for long-term › Ground testing of the NEXTStep deep exploration and utilization of deep space, but lunar space habitat module prototypes exploration is more than a stepping stone to Mars missions. The phased plan includes › Design and test of the Orion sending missions to the moon and cislunar space for exploration and study, and the capsule avionics construction of the Deep Space Gateway, a space station intended to orbit the moon. Aerospace provides support to these missions in areas such as systems engineering and integration, program management, and various subsystem expertise. Current Lunar Programs GATEWAY INITIATIVE NASA’s Gateway is conceived to be an exploration and science outpost in orbit around the moon that will enable human crewed missions to both cislunar space and the moon’s surface, meet scientific discovery and exploration objectives, and demonstrate and prove enabling technologies through commercial and international partnerships.
    [Show full text]
  • Jenkins 2000 AIRLOCK & CONNECTIVE TUNNEL DESIGN
    Jenkins_2000 AIRLOCK & CONNECTIVE TUNNEL DESIGN AND AIR MAINTENANCE STRATEGIES FOR MARS HABITAT AND EARTH ANALOG SITES Jessica Jenkins* ABSTRACT For a manned mission to Mars, there are numerous systems that must be designed for humans to live safely with all of their basic needs met at all times. Among the most important aspects will be the retention of suitable pressure and breathable air to sustain life. Also, due to the corrosive nature of the Martian dust, highly advanced airlock systems including airshowers and HEPA filters must be in place so that the interior of the habitat and necessary equipment is protected from any significant damage. There are multiple current airlocks that are used in different situations, which could be modified for use on Mars. The same is true of connecting tunnels to link different habitat modules. In our proposed Mars Analog Challenge, many of the airlock designs and procedures could be tested under simulated conditions to obtain further information without actually putting people at risk. Other benefits of a long-term study would be to test how the procedures affect air maintenance and whether they need to be modified prior to their implementation on Mars. INTRODUCTION One of the most important factors in the Mars Habitat design involves maintaining the air pressure within the habitat. Preservation of breathable air will be an extremely vital part of the mission, as very little can be found in situ. Since Mars surface expeditions will be of such long duration, it is imperative that the airlock designs incorporate innovative air maintenance strategies. For our proposed Earth Analog Site competition, many of the components of these designs can be tested, as can the procedures required for long-duration habitation on Mars.
    [Show full text]
  • Orion Capsule Launch Abort System Analysis
    Orion Capsule Launch Abort System Analysis Assignment 2 AE 4802 Spring 2016 – Digital Design and Manufacturing Georgia Institute of Technology Authors: Tyler Scogin Michel Lacerda Jordan Marshall Table of Contents 1. Introduction ......................................................................................................................................... 4 1.1 Mission Profile ............................................................................................................................. 7 1.2 Literature Review ........................................................................................................................ 8 2. Conceptual Design ............................................................................................................................. 13 2.1 Design Process ........................................................................................................................... 13 2.2 Vehicle Performance Characteristics ......................................................................................... 15 2.3 Vehicle/Sub-Component Sizing ................................................................................................. 15 3. Vehicle 3D Model in CATIA ................................................................................................................ 22 3.1 3D Modeling Roles and Responsibilities: .................................................................................. 22 3.2 Design Parameters and Relations:............................................................................................
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • The New Vision for Space Exploration
    Constellation The New Vision for Space Exploration Dale Thomas NASA Constellation Program October 2008 The Constellation Program was born from the Constellation’sNASA Authorization Beginnings Act of 2005 which stated…. The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations. CONSTELLATION PROJECTS Initial Capability Lunar Capability Orion Altair Ares I Ares V Mission Operations EVA Ground Operations Lunar Surface EVA EXPLORATION ROADMAP 0506 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LunarLunar OutpostOutpost BuildupBuildup ExplorationExploration andand ScienceScience LunarLunar RoboticsRobotics MissionsMissions CommercialCommercial OrbitalOrbital Transportation ServicesServices forfor ISSISS AresAres II andand OrionOrion DevelopmentDevelopment AltairAltair Lunar LanderLander Development AresAres VV and EarthEarth DepartureDeparture Stage SurfaceSurface SystemsSystems DevelopmentDevelopment ORION: NEXT GENERATION PILOTED SPACECRAFT Human access to Low Earth Orbit … … to the Moon and Mars ORION PROJECT: CREW EXPLORATION VEHICLE Orion will support both space station and moon missions Launch Abort System Orion will support both space stationDesigned and moonto operate missions for up to 210 days in Earth or lunar Designedorbit to operate for up to 210 days in Earth or lunar orbit Designed for lunar
    [Show full text]
  • Multi Duty (MD) Airlock
    Multi Duty (MD) Airlock ■ Versatile airlock can be connected to many different types of storage and conveying devices ■ Square flanged inlet and outlet ■ Highly reliable, rugged design delivers low maintenance service ■ Sealed bearings require no lubrication and provide years of service ■ Available in a wide range of sizes ■ Special options extend service life in challenging applications Application Outboard press fit bearings provide better protection, resulting With tens of thousands of installations throughout the world, the in longer service life. Special wear resistant MD designs are Schenck Process MD airlock is a highly universal airlock used designed to be placed in abrasive environments. Field tests of to meter dry bulk materials under feeding devices, such as bins, these designs show a lifespan up to eight times longer than a hoppers, mixers, screw conveyors and sifters. standard MD airlock. Providing rugged service, the MD is suitable for use in dilute Operating Principle phase vacuum, pressure or combination vacuum/pressure The airlock reliably meters products into conveying lines or pneumatic conveying systems. Low mounting height is ideal storage areas. With open end rotors, the product comes in for space restricted applications. With a low profile and a wide contact with the endplates of the housing. With closed end flange width, the MD airlock is able to match drill hole patterns rotors, the product is confined within the pockets of the rotor. of many competitor’s valves for easy replacement. Features Equipment Rated up to 15 psi pressure differential The MD has a cast housing and endplates with a square flange. Standard temperature rating is 200 ºF (93 °C) The rotor and housing are precision machined to obtain a high Optional high-temperature rated to 450 ºF (232 °C) degree of accuracy and close tolerances.
    [Show full text]
  • The Apollo Moon Landings Were a Water- Shed Moment for Humanity
    Retracing the FOOTPRINTS Downloaded from http://asmedigitalcollection.asme.org/memagazineselect/article-pdf/143/3/49/6690390/me-2021-may4.pdf by guest on 24 September 2021 The Apollo Moon landings were a water- shed moment for humanity. NASA’s new program to return astronauts to the lunar surface could well be a steppingstone to the cosmos. By Michael Abrams he plaque left on the Sea of Tranquility by Neil Armstrong and Buzz Aldrin bore a simple mes- sage: “We came in peace for all Mankind.” But the Moon Race was part of a contest between nations and ideological systems and commanded military-scale budgets from both the United TStates and the Soviet Union. Today, more than 50 years after the Apollo 11 Moon landing (and nearly 30 since the end of the USSR), NASA is engaged in a new program to send astronauts back to the lunar surface. It ought to be a cinch, as our computers, design tools, and materials are radically more advanced than they were for the first trips to the Moon. But the demands of space travel haven’t changed at all—it is still a difficult and dangerous busi- ness—and dictate the shape of space exploration more than our high-tech gadgetry. Some elements of the new program, called Artemis, will seem like carbon copies of the 1960s roadmap to the Moon. The first step—which could happen as early as this November—will be to launch an unmanned crew capsule to lunar orbit, dipping to within 62 miles of the surface before returning to Earth and splashing down in the Pacific.
    [Show full text]
  • The Orion Spacecraft As a Key Element in a Deep Space Gateway
    The Orion Spacecraft as a Key Element in a Deep Space Gateway A Technical Paper Presented by: Timothy Cichan Lockheed Martin Space [email protected] Kerry Timmons Lockheed Martin Space [email protected] Kathleen Coderre Lockheed Martin Space [email protected] Willian D. Pratt Lockheed Martin Space [email protected] July 2017 © 2014 Lockheed Martin Corporation Abstract With the Orion exploration vehicle and Space Launch System (SLS) approaching operational status, NASA and the international community are developing the next generation of habitats to serve as a deep space platform that will be the first of its kind, a cislunar Deep Space Gateway (DSG). The DSG is evolvable, flexible, and modular. It would be positioned in the vicinity of the Moon and allow astronauts to demonstrate they can operate for months at a time well beyond Low Earth Orbit. Orion is the next generation human exploration spacecraft being developed by NASA. It is designed to perform deep space exploration missions, and is capable of carrying a crew of 4 astronauts on independent free-flight missions up to 21 days, limited only by consumables. Because Orion meets the strict requirements for deep space flight environments (reentry conditions, deep-space communications, safety, radiation, and life support for example) it is a key element in a DSG and is more than just a transportation system. Orion has the capability to act as the command deck of any deep space piloted vehicle. To increase affordability and reduce the complexity and number of subsystem functions the early DSG must be responsible for, the DSG can leverage these unique deep space qualifications of Orion.
    [Show full text]
  • Next Term's Project ENAE 483/788D
    Discussion of Next Term • Final design project information • Discussion of final exam • Discussion of grading for group projects • Other useful information © 2013 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Next Term’s Project ENAE 483/788D - Principles of Space Systems Design MARYLAND 1 Notes • Due date for project 5 postponed to time of final exam Monday 12/16 • Slides for Tuesday’s class (Sensors and Actuators) posted to Piazza site • Reminders: – Final exam limited single 8.5”x11” sheet of notes – Bring a calculator – Given honest attempt, final will only be counted if it improves overall grade U N I V E R S I T Y O F Next Term’s Project ENAE 483/788D - Principles of Space Systems Design MARYLAND 2 ENAE 483/788D Final Exam Questions • Orbital mechanics • Rocket performance • Reliability • Life support • Power systems • Structural design • Thermal analysis • Cost analysis • Propulsion systems • Systems engineering U N I V E R S I T Y O F Next Term’s Project ENAE 483/788D - Principles of Space Systems Design MARYLAND 3 Grading Rubrik for Group Projects • 10 - essentially perfect • 9 - excellent • 8 - very good • 7 - good • 6 - okay • 5 - minor deficiencies • 4 - significant deficiencies • 3 or below - major deficiencies U N I V E R S I T Y O F Next Term’s Project ENAE 483/788D - Principles of Space Systems Design MARYLAND 4 Fall Term Project Organization Systems Crew Systems Power, Propulsion, and Loads, Structures, and Avionics and Engineering Thermal Mechanisms Software A1 B1 C1 D1 E1 A2
    [Show full text]
  • Orion MPCV Spacecraft Systems
    National Aeronautics and Space Administration orion Quick Facts Orion is America’s next generation spacecraft that will take astronauts to exciting destinations never explored by humans. It will serve as the exploration vehicle that will carry the crew to distant planetary bodies, provide emergency abort capability, sustain the crew during space travel, and provide safe re-entry from deep space. facts Orion Summary Number of crew ............................................................................. 4 Crewed mission duration ............................................. 21-210 days Total change in velocity ..................................................... 4920 ft/s Gross liftoff weight .......................................................... 69,181 lbs Effective mass to orbit ..................................................... 50,231 lbs Launch Abort System – Emergency Crew Escape System During Launch Mass Properties NASA Dry mass/propellant ........................................................ 10,369 lbs Gross liftoff weight .......................................................... 16,125 lbs Crew Module – Crew and Cargo Transport Pressurized volume (total) .................................................. 690.6 ft3 Habitable volume (net) ........................................................... 316 ft3 Reaction control system (RCS) engine thrust ........... 160 lbf/engine Return payload ..................................................................... 220 lbs Mass Properties Dry mass/propellant .......................................................
    [Show full text]