ABSTRACT Title of Document: IDENTIFYING LANDSLIDE

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT Title of Document: IDENTIFYING LANDSLIDE ABSTRACT Title of IDENTIFYING LANDSLIDE HAZARDS IN A TROPICAL Document: MOUNTAIN ENVIRONMENT, USING GEOMORPHOLOGIC AND PROBABILISTIC APPROACHES José Gregorio Roa-Lobo PhD, 2007 Directed By: Prof. Michael Kearney, Department of Geography The objective of this study is the performance, assessing, comparison and validation of a set of three landslide hazard maps: The geomorphological, the multicriteria evaluation (MCE) and the probabilistic (weights of evidence); in order to evaluate its accuracy, advantages and limitations, and finally state its reliability. These approaches were tested in a tropical mountain environment located in the central Venezuelan Andes, particularly in the Río Chama basin (2820.63 Km²), where the complexity and variety of the landscape provides a special geographical framework to address the landsliding process as natural hazard. The scale of this study is regional. For doing this a GIS data base was built up to collect and manipulate the landslide inventory map and the cartography of the main landslide passive factors found in this study area. The landslide inventory map was generated through the manual interpretation of 300 aerial photographs and by the processing of two sets of Landsat imagery via contrast-widening color composite, given as result the outline of 493 landslide polygons. The landslide passive factors represent the physical features of the study area associated to landslide occurrences, as those found in the topographical, geological and physiographical settings. In that sense, given the main role played for a digital elevation model (DEM) as data input, a DEM for the study area was built through remotely sensed data obtained from the shuttle radar topographical mission (SRTM) and optical stereographic imagery provided by the advanced spaceborne thermal emission and reflection radiometer (ASTER) system. Because of the comparative nature of this study, these data was preliminary processed via density analysis in order to establish a common background on the landsliding process – passive factors relationship, which was used later to set up the criteria applied in the geomorphological and multicriteria evaluation (MCE) approaches. All the three landslide hazard mapping approaches were fully benefited from the use of GIS, improving the processing and manipulation of the spatial information, even in procedures considered subjective as the geomorphological mapping, as well as in the use of non-areal statistics measures for the weights of evidence procedure where the Kappa index proved to be a useful index to assess the level of independence between factor maps. As a way of validation, the accuracy and error rate of the three landslide hazard maps were performed by its comparison to the landslide inventory map. Hence through the use of contingency tables and the success rate curve, was concluded that although the geomorphological approach achieved a better landslide predictive power for this study area at a regional scale, the remaining procedures can play a complementary role, for example the MCE plays a crucial role in an early assessment of landslide hazard which highlights the needs and improving necessary to achieve a better probabilistic approach, which can be later incorporated in a more objective geomorphological assessment. Results also showed that any methodology can be improved and even empowered by the development of better and more integrated standards for geographical data collection rather that the simplification of them, in that sense, satellite data improves the spatial and temporal consistence of data used for landslide hazard purposes, potentially allowing the integration of useful geographical data as those Holdridge life’s zones and geomorphometric generated and used in this study. Hence, further studies at regional scale must explore the remotely sensed imagery capacities for generation of data bases addressing regional susceptibility to landsliding process. IDENTIFYING LANDSLIDE HAZARDS IN A TROPICAL MOUNTAIN ENVIRONMENT, USING GEOMORPHOLOGIC AND PROBABILISTIC APPROACHES By José Gregorio Roa Lobo Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2007 Advisory Committee: Professor Michael Kearney, Chair Professor John Townshend Professor Samuel Goward Karen Prestegaard Luigi Boschetti © Copyright by José Gregorio Roa Lobo 2007 Acknowledgements To Prof. Michael Kearney and his invaluable help. To the University of Maryland, College Park. To the University of Los Andes, Venezuela. To the Watson International Scholars of the Environment, Brown University. To the International Institute for Geo-Information Science (ITC), The Netherlands. To Prof. J. Townshend and the GLCF staff. To Dr. Eric Vermote. To Dr. Ulrich Kamp. To my friends and informal supervisors: Matthew Smith, Julia Skory, Shannon Franks, Jan and Daniela Dempewolf, Svetlana Kotchenova, Diane Davies, Sunghee Kim, Jessica McCarty, Minnie Wong, Enrique Castellanos, Alexander Walzenbach. ii Table of Contents Acknowledgements Table of Contents………………………………………………………………….. iii List of Tables…………………….………………………………………….……… v List of Figures…………………….……………………………………….………... vi Chapter 1:INTRODUCTION…...…………………………………………..………. 1 Overview………………………………………………………………………… 1 Justification……………………………………………………………………… 2 Research Objectives……………………………………………………………... 4 Outline of the thesis structure…………………………………………………… 5 Chapter 2: THE STUDY AREA...…………………………………………………. 7 Geological aspects………………………………………………………………. 8 Lithological units………………………………………………………………... 9 Fault patterns…………………………………………………………..…….….. 9 Geomorphological aspects………………………………………………………. 10 Climatic aspects…………………………………………….…………..………. 12 Landuse aspects………………………………………………………..………. 14 Typical expressions of landsliding processes in the area…….………………… 16 Chapter 3: METHODOLOGY……………………………………………………... 19 Conceptual background definitions……………………………………………... 19 Review of existing techniques to perform a landslide hazard zonation………… 20 General methodological procedure…………………..…………………….…… 22 The hazard modeling…………………………………..………………..….….. 25 Validation and comparison……………………………………………..….…… 25 Chapter 4: GENERATION OF THE DIGITAL ELEVATION MODEL (DEM) FROM SPACE BORNE SYSTEMS……...…............................. 26 Building the study area DEM from SRTM data and ASTER imagery………….. 26 Chapter 5: LANDSLIDE DISTRIBUTION ANALYSIS. BASIC DESCRIPTIVE STATISTICS………………………………..... 30 The landslide inventory map……………………………….….……………..…. 30 The contrast-widening color composite………………………….…………..…. 31 Landslide geographical occurrence…………………………….…………..…… 33 Landsliding processes and factor/classes. Descriptive statistical .....................… 37 Landslide area - altitudinal ranges relationship…………………………………. 38 Landslide area - slope angle / slope shape / slope aspect relationship…….……. 39 Landslide area - lithology / lithology – slope relationship………….…….…..… 41 Landslide area – drainage buffer / lineaments relationship……………….…..... 43 Landslide area – internal relief relationship……………………….………..…... 45 Landslide area – Geomorphometric classes relationship…………….……..…... 46 Landslide area – Holdridge's life zone system relationship……….…………..... 47 Landslide area – Geomorphological units relationship…………………………. 49 Landslide – Factor maps analysis by area density……………………….…….... 50 iii Chapter 6: THE GEOMORPHOLOGICAL, MULTICRITERIA EVALUATION (MCE), AND THE PROBABILISTIC APPROACHES……………….... 54 The Geomorphological approach. Hierarchical structure and factors................... 54 The Terrain Mapping Complexes………………………………………….………….. 55 The Geomorphological units. Factors………………………………………...………. 56 The Terrain Mapping Units (TMU)………………………………………………….... 57 DEM and geomorphometry. An empirical procedure for Geomorphometric classification……………………………………………………..…………………..... 59 The Terrain Mapping Subunits………………………………………………………... 61 Classification of the Terrain Mapping Subunits into a landslide hazard zonation map…………………………………………………………...... 64 The MCE paradigm. Justification of the MCE for this study…………...………. 66 Integrating MCE into GIS…………………………………………………………...... 66 The Analytical Hierarchy Process (AHP)…….…………………………………...…... 67 Definition of the processes involved in the landsliding process………………...……. 68 Normalizing factor maps to criteria maps………………………………………...…... 69 Compensating weights via Pairwise procedure……………………………………….. 70 Computing the Analytical Hierarchy matrices for the criteria maps………………….. 71 Data output integration and final classification and hazard maps……………………...74 Probabilistic landslide hazard zonation through the Weights of Evidence model………………………………………………………………….…………. 77 Data entry. Test of conditional independence………………………………...………. 78 Computing the weights of evidence. Selection of scenarios……………...…………... 85 Data integration, classification and interpretation……………………….……...…….. 91 Chapter 7: SUMMARY OF THE THREE LANDSLIDE METHODOLOGIES AND CONCLUSIONS……………………………………………...………… 96 Evaluation of the accuracy and error rate……………………………………….. 99 Accuracy and error rate within landslide hazard maps……..…………..……….. 100 Accuracy and error rate within factor maps………………….……...…………... 102 Validation………………………………………………………………………... 104 Success rate curve…………………………………………….………………….. 105 Correlation………………………………………………………………………. 106 Conclusions……………………………………………….………..…………… 109 Summary….……………………………………………….………..…………… 112 Appendices…………………………………………………………………………
Recommended publications
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (Dems) from ASTER Remote Sensing Data and Contour Maps
    Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (DEMs) from ASTER Remote Sensing Data and Contour Maps Ulrich Kamp Department of Geography and Environmental Science Program, DePaul University 990 W Fullerton Ave, Chicago, IL 60614-2458, U.S.A. E-mail: [email protected] Tobias Bolch Department of Geography, Humboldt University Berlin Rudower Chausse 16, Unter den Linden 6, 10099 Berlin, Germany E-mail: [email protected] Jeffrey Olsenholler Department of Geography and Geology, University of Nebraska - Omaha 6001 Dodge Street, Omaha, NE 68182-0199, U.S.A. [email protected] Abstract Digital elevation models (DEMs) are increasingly used for visual and mathematical analysis of topography, landscapes and landforms, as well as modeling of surface processes. To accomplish this, the DEM must represent the terrain as accurately as possible, since the accuracy of the DEM determines the reliability of the geomorphometric analysis. For Cerro Sillajhuay in the Andes of Chile/Bolivia two DEMs are compared: one derived from contour maps, the other from a satellite stereo-pair from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). As both DEM procedures produce estimates of elevation, quantative analysis of each DEM was limited. The original ASTER DEM has a horizontal resolution of 30 m and was generated using tie points (TPs) and ground control points (GCPs). It was then resampled to 15 m resolution, the resolution of the VNIR bands. Five parameters were calculated for geomorphometric interpretation: elevation, slope angle, slope aspect, vertical curvature, and tangential curvature. Other calculations include flow lines and solar radiation.
    [Show full text]
  • Texto Completo.Pdf
    GIOVANNI CHAGAS EGG GERAÇÃO DE MODELOS DIGITAIS DE SUPERFÍCIE COMPOSTOS UTILIZANDO IMAGENS DO SENSOR PRISM/ALOS Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Engenharia Civil, para a obtenção do título de Magister Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2012 A Meus pais Alfredo e Elza As minhas irmãs Ingredy e Sheila “não sabendo que era impossível, ele foi lá e fez” (Jean Cocteau) ii AGRADECIMENTOS A Deus, por tudo. A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES pelo auxílio financeiro destinado a essa pesquisa com a concessão de bolsa de estudo e ao Departamento de Engenharia Civil por fornecer os equipamentos e software ArcGIS 9.3 necessários ao desenvolvimento deste trabalho. Ao Departamento de Engenharia Florestal por disponibilizar a licença de uso do Software STATISTICA 7.0. Ao Instituto de Geociências Aplicadas – IGA pela oportunidade de utilização do Software PCI Geomatica 10.3. Ao professor Joel Gripp Júnior, pela compreensão, paciência e grande apoio fornecido para o desenvolvimento desta dissertação. Ao professor José Marinaldo Gleriani, pela amizade, apoio, sugestões empenhadas no desenvolvimento deste trabalho. A professora Nilcilene das Graças Medeiros pelo apoio, críticas e contribuições que auxiliaram significativamente a conclusão do trabalho. Aos colegas Eduardo Onilio, José Fernando, Túlio e Robert Silva, pelo grande e valioso auxilio, na etapa de levantamento de campo. A todos os meus colegas de Pós-Graduação, dentre eles Afonso, Marcos Ramos, Leonardo, Wiener, Jonas, Antônio Prata, Leila Freitas, Inês Nosoline, Wellington Donizete, Marcos Vinícius, Alice Etiene, André Borges pelos curtos e bons momentos de convívio proporcionados ao longo desta jornada.
    [Show full text]
  • Volcano Pilot Long-Term Objectives
    Volcano Pilot Long-term Objectives Stepping-stone towards the long-term goals of the Santorini Report (2012): 1) global background observations at all Holocene volcanoes; 2) weekly observations at restless volcanoes; 3) daily observations at erupting volcanoes; 4) development of novel measurements; 5) 20-year sustainability; and 6) capacity-building Volcano Pilot Short-term Objectives 1) Demonstrate the feasibility of integrated, systematic and sustained monitoring of Holocene volcanoes using space-based EO; 2) Demonstrate applicability and superior timeliness of space-based EO products to the operational community for better understanding volcanic activity and reducing impact and risk from eruptions; 3) Build the capacity for use of EO data in volcanic observatories in Latin America as a showcase for global capacity development opportunities. Deformation of several volcanoes was detected in an arc-wide InSAR survey of South America by Pritchard and Simons, 2002. Volcano Pilot main components Three main components: A. Demonstration of systematic monitoring in Latin America; B. Development of new products using monitoring from Geohazard Supersites and Natural Laboratories initiative C. Showcase monitoring benefits for major eruption during 2014–2016 Deformation of several volcanoes was detected in an arc-wide InSAR survey of South America by Pritchard and Simons, 2002. Key outcomes 1) identification of volcanoes that are in a state of unrest in Latin America; 2) comprehensive tracking of unrest and eruptive activity using satellite data in support of hazards mitigation activities; 3) validation of EO-based methodology for improved monitoring of surface deformation; 4) improved EO-based monitoring of key parameters for volcanoes that are about to erupt, are erupting, or have just erupted, especially in the developing world (where in-situ resources may be scarce) Deformation of several volcanoes was detected in an arc-wide InSAR survey of South America by Pritchard and Simons, 2002.
    [Show full text]
  • REH5447 3.Pdf
    1 Imagen de portada: Fertilidad para el pueblo de Andrea Tirado (INTI), artista visual de la comuna de Camiña. La rana, símbolo de fertilidad y abundancia del agua en la cultura aymara, lleva a su vez una chakana o cruz andina en representación del pueblo. 2 Todos los derechos reservados. Queda prohibida, salvo excepción prevista en la Ley, cualquier forma de reproducción, distribución, comunicación pública y transformación de alguna parte esta obra, incluyendo el diseño de la cubierta, sin contar con la autorización de los autores. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual (Ley Nº 17.336). © UNAP - Universidad Arturo Prat, 2013. ISBN: 978 956 302 081 - 6 CIDERH, Centro de Investigación y Desarrollo en Recursos Hídricos Calle Vivar 493, 3er Piso Edificio Don Alfredo Iquique, CHILE Fono: (56)(57) 2 530800 email: [email protected] www.ciderh.cl Impreso en Chile. RECURSOS HÍDRICOS REGIÓN DE TARAPACÁ Diagnóstico y Sistematización de la Información Autores CAPÍTULO I 3 Elisabeth Lictevout Hidrogeóloga – Gestión Integrada de Recursos Hídricos Dirección Científica Constanza Maass Geógrafa Damián Córdoba Ing. Geólogo – Hidrogeólogo Venecia Herrera Dra. en Ciencias, mención Química Reynaldo Payano Ing. Civil – Dr. (c) en Hidrología y Gestión de Recursos Hídricos Asistentes Jazna Rodríguez Ing. Civil Ambiental, Analista SIG José Aguilera Ing. Civil Ambiental egresado Priscila Beltrán Analista Química 4 Luz Ebensperger Orrego, Intendenta Región de Tarapacá. Prólogo La Región de Tarapacá está ubicada en pleno Desierto de Atacama, una de las zonas más áridas del planeta, por lo que el agua, además de ser un recurso no renovable, es un recurso de extremo valor para nuestra región.
    [Show full text]
  • RESEARCH Geochemistry and 40Ar/39Ar
    RESEARCH Geochemistry and 40Ar/39Ar geochronology of lavas from Tunupa volcano, Bolivia: Implications for plateau volcanism in the central Andean Plateau Morgan J. Salisbury1,2, Adam J.R. Kent1, Néstor Jiménez3, and Brian R. Jicha4 1COLLEGE OF EARTH, OCEAN, AND ATMOSPHERIC SCIENCES, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331, USA 2DEPARTMENT OF EARTH SCIENCES, DURHAM UNIVERSITY, DURHAM DH1 3LE, UK 3UNIVERSIDAD MAYOR DE SAN ANDRÉS, INSTITUTO DE INVESTIGACIONES GEOLÓGICAS Y DEL MEDIO AMBIENTE, CASILLA 3-35140, LA PAZ, BOLIVIA 4DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN–MADISON, MADISON, WISCONSIN 53706, USA ABSTRACT Tunupa volcano is a composite cone in the central Andean arc of South America located ~115 km behind the arc front. We present new geochemical data and 40Ar/39Ar age determinations from Tunupa volcano and the nearby Huayrana lavas, and we discuss their petrogenesis within the context of the lithospheric dynamics and orogenic volcanism of the southern Altiplano region (~18.5°S–21°S). The Tunupa edifice was constructed between 1.55 ± 0.01 and 1.40 ± 0.04 Ma, and the lavas exhibit typical subduction signatures with positive large ion lithophile element (LILE) and negative high field strength element (HFSE) anomalies. Relative to composite centers of the frontal arc, the Tunupa lavas are enriched in HFSEs, particularly Nb, Ta, and Ti. Nb-Ta-Ti enrichments are also observed in Pliocene and younger monogenetic lavas in the Altiplano Basin to the east of Tunupa, as well as in rear arc lavas elsewhere on the central Andean Plateau. Nb concentrations show very little variation with silica content or other indices of differentiation at Tunupa and most other central Andean composite centers.
    [Show full text]
  • Camara De Diputados
    REP UBLICA DE CHILE CAMARA DE DIPUTADOS LEGISLATURA ORDINARIA Sesión 4~, en martes 16 de junio de 1970 (Ordinaria: de 16 a 22.29 horas) Presidencia de los señores Ibáñez y Olave. Secretario, el señor Mena. Prosecretario, el señor Lea-Plaza. INDICE GENERAL DE LA SESION l.-SUMARIO DEL DEBATE I1.-SUMARID DE DOCUMENTOS I1I.-DOCUMENTOS DE LA CUENTA rV.-TEXTO DEL DEBATE 188 CAMARA DE DIPUTADOS l.-SUMARIO DEL DEBATE Pág. l.-Se califica la urgencia hecha presente para el despacho de un proyecto de ley ... ... .., ... ... ... ... .:. ... .., .. , 213 2.-Se aprueban los acuerdos de los Comités Parlamentarios .. .. 213 3.-Se conceden preferencias para que varios señores Diputados ha- gan uso de la palabra ... ...... ... ... .., ... ... .., .. , 214 4.-Los señores Jal'pa y Scarella informan del viaje al Perú, a la zona de los sismos, por los Diputados médicos ... ... .., ... 214 5.-Se constituye la Sala en sesión secreta ... .., ... ... ..' ... 216 6.-La señora Allende se refiere al atentado contra dirigentes de la "Unidad Popular", en Chanco (Maule) ... ... ... ... ..... 216 ORDEN DEL OlA: 7.-La Cámara continúa ocupándose del proyecto de ley que crea el Instituto Nacional del Alcoholismo, y se envía a Comisión pa- ra segundo informe ... ... ..... '" ... ....... , ... ~17 8.-Se despacha el proyecto de ley que modifica la división político- administrativa de los departamentos de Pisagua y Arica .. .. 238 INCIDENTES: 9.-El señor Barrionuevo se refiere al incendio del hospital de Co piapó (Atacama) .. ' .. , ... .., ... ... .,. ... ... .,. .. 252 10.-El señor Lavandero se ocupa de la labor que efectúan los radio- aficionados ... o.. •.. ... o.. ... .•. .., •.. ... '.' •.. 255 11.-El mismo señor Diputado se refiere a deficiencias en los progra- mas de autoconstrucción en la provincia de Cautín ..
    [Show full text]
  • PLUTONS: Investigating the Relationship Between Pluton Growth and Volcanism in the Central Andes
    Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. Christensen7, N.J. Finnegan8, 9 2 10 11 7 12 2 13 2 6 doi:10.1130/GES01578.1 E. Minaya , R.S.J. Sparks , M. Sunagua , M.J. Unsworth , C. Alvizuri , M.J. Comeau , R. del Potro , D. Díaz , M. Diez , A. Farrell , S.T. Henderson1,14, J.A. Jay15, T. Lopez7, D. Legrand16, J.A. Naranjo17, H. McFarlin6, D. Muir18, J.P. Perkins19, Z. Spica20, A. Wilder21, and K.M. Ward22 1 10 figures; 3 tables Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA 2School of Earth Sciences, University of Bristol, BS8 1RJ, United Kingdom 3College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA CORRESPONDENCE: pritchard@ cornell .edu 4Department of Geography, Geology and Planning, Missouri State University, 901 S. National Ave, Springfield, Missouri 65897, USA 5Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0001, USA CITATION: Pritchard, M.E., de Silva, S.L., Michel‑ 6School of Geosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA felder, G., Zandt, G., McNutt, S.R., Gottsmann, 7Geophysical Institute, University
    [Show full text]
  • Optical Remote Sensing of Glacier Characteristics: a Review with Focus on the Himalaya
    Sensors 2008, 8, 3355-3383; DOI: 10.3390/s8053355 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.org/sensors Review Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya Adina E. Racoviteanu 1,2,3,* , Mark W. Williams 1,2 and Roger G. Barry 1,3 1 Department of Geography, University of Colorado, UCB 260, Boulder CO, 80309, USA 2 Institute of Arctic and Alpine Research, University of Colorado, UCB 450, Boulder CO, 80309, USA 3 National Snow and Ice Data Center, CIRES, University of Colorado, UCB 449, Boulder CO, 80309, USA * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 5 February 2008 / Accepted: 19 May 2008 / Published: 23 May 2008 Abstract: The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs), glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances.
    [Show full text]
  • Dems of the Cerro Sillajhuay, Chile/Bolivia Generated from Contour Maps and ASTER Remote Sensing Data Tobias BOLCH1 and Ulrich KAMP2
    DEMs of the Cerro Sillajhuay, Chile/Bolivia generated from contour maps and ASTER remote sensing data Tobias BOLCH1 and Ulrich KAMP2 1Department of Geography, University of Erlangen-Nuremberg, Germany [email protected] 2 University of Department of Geography and Geology, University of Nebraska at Omaha, Omaha, NE 68182, USA Erlangen-Nuremberg [email protected] Introduction Digital elevation models (DEMs) have been increasingly used by geomorphologists for visual and mathematical analysis of landscapes and modeling of surface processes. A DEM offers the most common method for extracting vital topographic information and even enables the routing of flow across topography, a controlling factor in distributed models of landform processes. To accomplish this, the DEM must represent the terrain as accurately as possible. DEMs can be generated from contour maps, aerial photographs or remote sensing data, e.g. SPOT or ASTER. The new ASTER sensor offers simultaneous along-track stereo-pairs, which eliminate radiometric variations caused by multi-date stereo data acquisition. Few results have been published in peer-reviewed literature about the generation of ASTER DEMs or their quality. This paper compares the quality of two DEMs of the Cerro Sillajhuay derived from contour maps and ASTER remote sensing data. Study Area Cerro Sillajhuay (5,982m asl., 19°45S / 68°42W) is located in the Andes of Chile/Bolivia, and represents the highest peak of the Andes between 19 and 21 degrees south. The volcano rises ~2000m above the surrounding plain. Precipitation occurs in summer, and Location of Cerro Sillajhuay in Chile/Bolivia Cerro Sillajhuay (5,982 m) rises ~ 2000 m above (Topografic map overlayed on Gtopo-30 DEM) the study area is part of the driest part of the Andes.
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • Geowissenschaften I (Geographie) Neuerwerbungsliste 3
    Geowissenschaften I (Geographie) Neuerwerbungsliste 3. Quartal 2001 Geographie (Q - QFZZ 999).......................................................................................................1 Regionale Geographie (QG - QGZZ 999)................................................................................18 Reisen und Entdeckungen (QH - QLZZ 999) ..........................................................................43 Hydrologie (U - UCZZ 999).....................................................................................................46 Regionale Hydrologie (UD - UFZZ 999) .................................................................................48 Ozeanologie (UG - UMZZ 999)...............................................................................................50 Geodäsie (UN - USZZ 999)......................................................................................................53 Kartographie (UT - UZZZ 999)................................................................................................54 Geographie (Q - QFZZ 999) <QA 320> Prince, Hugh <QA 000> Geographers engaged in historical geography in Wroclaw : Wydawn. Uniw. Wroclawskiego, 2000. - British higher education 1931-1991 / Hugh Prince. - 172 S. Edinburgh : Univ., 2000. - IV, 66 S. (Studia geograficzne ; 74) (Historical geography research series ; 36) (Acta Universitatis Wratislaviensis ; 2269) ISBN 1-87007-418-1 Beitr. teilw, engl., teilw. franz., teilw. poln Standort: K 2001 A 1000 Standort: FMAG' 2001 A 21589 <QA 520> Andersen,
    [Show full text]