Notice Concerning Copyright Restrictions

Total Page:16

File Type:pdf, Size:1020Kb

Notice Concerning Copyright Restrictions NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. GRC Transactions, Vol. 35, 2011 Surface Exploration at Pampa Lirima Geothermal Project, Central Andes of Northern Chile R. Arcos1, J. Clavero1, A. Giavelli1, S. Simmons2, I. Aguirre1, S. Martini1, C. Mayorga1, G. Pineda1, J. Parra1, J. Soffia1 1Energía Andina, Chile 2Hot Solutions, New Zealand Keywords low mixing degree. Minimum temperatures from water and gas Central Andes, Chile, geothermal project, surface exploration, geothermometers range from 200-240°C. Pampa Lirima MT/TDEM geophysical survey carried out in the area of the project (82 sites) revealing a large conductivity anomaly inter- preted as being associated to an important geothermal system at ABSTRACT depth, consistent with the geochemical data at surface. Slim holes drilling will be carried out during 2011 for proving the existence Pampa Lirima geothermal project is located in the Altiplano of an exploitable geothermal system. of northern Chile, ca. 1,700 km north from Santiago, within the Central Andes Volcanic chain. Introduction Energía Andina, a Chilean geothermal company, obtained the exploration concession through a bidding process in June 2009. Pampa Lirima geothermal project is located in the Altiplano Since then, Energía Andina has developed an extensive and rapid of northern Chile, ca. 1,700 km north from Santiago, within the surface exploration program, together with a successful com- Central Andes Volcanic chain. munication program with local communities in the area. Surface Energía Andina, a Chilean geothermal company, obtained the exploration has been focused in understanding the geology of exploration concession through a bidding process in June 2009. the area and generating geochemical and geophysical models. Since then, Energía Andina has developed an extensive and rapid The superb results found through this rapid program have led the surface exploration program, together with a successful com- company to the next step, and a series of slim-hole wells have munication program with local communities in the area. Surface been programmed for 2010. Local communities have been in- exploration has been focused in understanding the geology of volved from the beginning of the project in the acquisition of the the area and generating geochemical and geophysical models. different data, as well as in the environmental issues associated The superb results found through this rapid program have led the to the development of a possible future geothermal power plant. company to the next step, and a series of slim-hole wells have Pampa Lirima project is located on the western edge of this been programmed for 2011. Local communities have been in- high plateau, with an average elevation of 4000 m asl. Geothermal volved from the beginning of the project in the acquisition of the features known for many years consist essentially on hotsprings different data, as well as in the environmental issues associated located in the lower southwestern part of the Lirima basin (Baños to the development of a possible future geothermal power plant. Lirima) and at the lower flank of a Plio-Pleistocene volcanic chain (Baños Andrés Jiguata). The geology of the area is constituted by Geology Jurassic to Paleogene volcanoclastic sequences, partially covered by Middle Miocene ignimbrite sheets as well as eroded volcanic The geology of the area of the geothermal exploration conces- edifices of the same age. The youngest units cropping out in the sions Pampa Lirima 1, 2, 3 and 4, and its immediate surroundings area consist of volcanic complexes of Pliocene to Pleistocene in especially west of them is characterized by the following (Arcos, age, located on the northern part of the Lirima basin. These vol- 2010): 1) Mesozoic basement rocks, 2) coverage of volcanic canic complexes have been interpreted originally as the possible and sedimentary rocks of Oligocene-Miocene, and 3) middle heat source for the geothermal system in the area. Thermal waters Miocene to Pleistocene volcanic edifices. (Figure 1: Geological from Baños Lirima are characterized by high Cl and B concen- Map by cycles.) trations and δO18 enriched, and relatively low Mg concentration, The Mesozoic basement recognized to the west of concessions consistent with deep circulation from a geothermal reservoir, and Pampa Lirima 1 and 2 consists of clastic-carbonate sequences 689 Arcos, et al. Oligocene to Miocene units consist of pyroclastic rocks with interbedded sedimentary units grouped in the Altos de Pica Fm. (“Estratos de Cultane” together with the Huasco Ignimbrite aged Oligocene to Middle Miocene), reaching a thickness between 500 and 700 m, including as well the Cordon Saitoco and Loma Chislaca volcanic complexes, both from lower Mio- cene. The units that form this structural domain are found in angular unconformity overlying Mesozoic basement units, and also are partially covered by the volcanic edifices and their products ranging in age from the middle Miocene to Recent. Such unconformity covers a wide timespan from the Paleocene (65 Ma) to Early Oligocene (28 ma). The set of ignimbrites, sediments and lavas of the Oligo-Miocene coverage present a structural style characterized by a succession of anticlinal and synclinal folds with submeridional axis, some of them with greater wave amplitude than others, with their hinges either plunging to the N or double plunging. It is also observed that the folding axes are in turn folded, varying from NE direction to NS or even folded up to a NW orientation in their southern ends. In the structural model of the Pampa Lirima area (Radic, 2010; Fig. 2), the deformation style that shows this Oligo - Miocene sequence has been interpreted as the surface expression of a strike slip dextral fault that would affect in depth at least the Mesozoic basement rocks and developing a positive “flower-like” structure in the volcanic coverage. From the surface distribution of this fold and thrust belt in the southern area (S of Lagunillas Pampa), we infer that the possible trace of this strike slip fault south of 20° S, could be aligned or connected with the Collacagua river valley and the depression of the Huasco lagoons, whose NS features lengthen this path to the south until ​​Pampa Caya in Figure 1. Geological map of the Lirima area, showing (red circle) the area of the geophysi- Guatacondo valley, where this structure could be linked cal anomaly found by the MT survey. with the N-terminus of the West Fault System (Arcos et al, 2009). from the Jurassic to Early Cretaceous, forming a folded and Regarding the structural domain formed by the wide range of thrusted belt, and a Cretaceous volcanic sequence, covering the middle Miocene to Pleistocene volcanoes, they are all overlying older units in angular unconformity (Figure 2: Structural Model in angular unconformity the rocks of the Oligo-Miocene coverage Profile Radic, 2010). and distributed in 3 NW-SE strips. Miocene complexes occupy the southwestern strip, the upper Miocene corresponds to the immediate NE strip (central strip), whereas the Pliocene units occupy the north-eastern strip (Polanco and Gardeweg, 2000, Arcos, 2010, Polanco, 2011, Martini, 2011). Only Porquesa dome complex (Pleistocene), is located outside of this disposition in NW-SE strips, not only due to its geographical position but also because its morphology shows NE- SW elongation axes, indicating different Figure 2. Deformation style in Pampa Lirima area (Radic, 2010). 1) Jurassic to Lower Cretacic sedimen- tary rocks (fold and thrust belt); 2) Upper Cretacic volcanic rocks Oligocene to Lower Miocene Cover; structural control than the older ones. 3) Ignimbrites and epiclastic (=Altos de Pica Fm.), 4) Huasco Ignimbrite Middle Miocene to Pliocene The structural style of this domain is Volcanism; 5) Middle Miocene volcanism; 6) Upper Miocene volcanic edifices; 7) Pliocene volcanic characterized solely by the morphology of edifices ; 8) Eocene Intrusives. the volcanic edifices, some reaching great 690 Arcos, et al. altitudes above their bases (Pliocene), all with varying degrees Its chloride content varies between 250 and 310 mg / l, sulfate of erosion (the more ancient and, therefore, less preserved their between 260 and 330 mg / l and pH levels between 6 and 7. original morphology) and large volume of accumulated material The Baños de San Andres hot springs, are waters that outcrop (op. cit., 2000, 2010 and 2011). in the upper basin (4380 m asl) show a sulphate calcium-sodium
Recommended publications
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (Dems) from ASTER Remote Sensing Data and Contour Maps
    Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (DEMs) from ASTER Remote Sensing Data and Contour Maps Ulrich Kamp Department of Geography and Environmental Science Program, DePaul University 990 W Fullerton Ave, Chicago, IL 60614-2458, U.S.A. E-mail: [email protected] Tobias Bolch Department of Geography, Humboldt University Berlin Rudower Chausse 16, Unter den Linden 6, 10099 Berlin, Germany E-mail: [email protected] Jeffrey Olsenholler Department of Geography and Geology, University of Nebraska - Omaha 6001 Dodge Street, Omaha, NE 68182-0199, U.S.A. [email protected] Abstract Digital elevation models (DEMs) are increasingly used for visual and mathematical analysis of topography, landscapes and landforms, as well as modeling of surface processes. To accomplish this, the DEM must represent the terrain as accurately as possible, since the accuracy of the DEM determines the reliability of the geomorphometric analysis. For Cerro Sillajhuay in the Andes of Chile/Bolivia two DEMs are compared: one derived from contour maps, the other from a satellite stereo-pair from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). As both DEM procedures produce estimates of elevation, quantative analysis of each DEM was limited. The original ASTER DEM has a horizontal resolution of 30 m and was generated using tie points (TPs) and ground control points (GCPs). It was then resampled to 15 m resolution, the resolution of the VNIR bands. Five parameters were calculated for geomorphometric interpretation: elevation, slope angle, slope aspect, vertical curvature, and tangential curvature. Other calculations include flow lines and solar radiation.
    [Show full text]
  • The Causes and Effect of Temporal Changes in Magma Generation Processes in Space and Time Along the Central Andes (13°S – 25°S)
    The causes and effect of temporal changes in magma generation processes in space and time along the Central Andes (13°S – 25°S) Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Rosanne Marjoleine Heistek aus Nederland/Niederlande Göttingen 2015 Betreuungsausschuss: Prof. Dr. Gerhard Wörner, Abteilung Geochemie, GZG Prof. Dr. Andreas Pack, Abteilung Isotopengeologie, GZG Referent: Prof. Dr. Gerhard Wörner Prof. Dr. Andreas Pack Weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Prof. Dr. Hilmar von Eynatten Prof. Dr. Jonas Kley Dr. John Hora Tag der mündlichen Prüfung: 25.06.2015 TABLE OF CONTENTS Acknowledgements .................................................................................................................................1 Abstracts .................................................................................................................................................2 Chapter 1: Introduction .........................................................................................................................7 1.1.The Andean volcanic belt .............................................................................................................................. 7 1.2. The Central volcanic zone ...........................................................................................................................
    [Show full text]
  • Texto Completo.Pdf
    GIOVANNI CHAGAS EGG GERAÇÃO DE MODELOS DIGITAIS DE SUPERFÍCIE COMPOSTOS UTILIZANDO IMAGENS DO SENSOR PRISM/ALOS Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Engenharia Civil, para a obtenção do título de Magister Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2012 A Meus pais Alfredo e Elza As minhas irmãs Ingredy e Sheila “não sabendo que era impossível, ele foi lá e fez” (Jean Cocteau) ii AGRADECIMENTOS A Deus, por tudo. A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES pelo auxílio financeiro destinado a essa pesquisa com a concessão de bolsa de estudo e ao Departamento de Engenharia Civil por fornecer os equipamentos e software ArcGIS 9.3 necessários ao desenvolvimento deste trabalho. Ao Departamento de Engenharia Florestal por disponibilizar a licença de uso do Software STATISTICA 7.0. Ao Instituto de Geociências Aplicadas – IGA pela oportunidade de utilização do Software PCI Geomatica 10.3. Ao professor Joel Gripp Júnior, pela compreensão, paciência e grande apoio fornecido para o desenvolvimento desta dissertação. Ao professor José Marinaldo Gleriani, pela amizade, apoio, sugestões empenhadas no desenvolvimento deste trabalho. A professora Nilcilene das Graças Medeiros pelo apoio, críticas e contribuições que auxiliaram significativamente a conclusão do trabalho. Aos colegas Eduardo Onilio, José Fernando, Túlio e Robert Silva, pelo grande e valioso auxilio, na etapa de levantamento de campo. A todos os meus colegas de Pós-Graduação, dentre eles Afonso, Marcos Ramos, Leonardo, Wiener, Jonas, Antônio Prata, Leila Freitas, Inês Nosoline, Wellington Donizete, Marcos Vinícius, Alice Etiene, André Borges pelos curtos e bons momentos de convívio proporcionados ao longo desta jornada.
    [Show full text]
  • Volcano Pilot Long-Term Objectives
    Volcano Pilot Long-term Objectives Stepping-stone towards the long-term goals of the Santorini Report (2012): 1) global background observations at all Holocene volcanoes; 2) weekly observations at restless volcanoes; 3) daily observations at erupting volcanoes; 4) development of novel measurements; 5) 20-year sustainability; and 6) capacity-building Volcano Pilot Short-term Objectives 1) Demonstrate the feasibility of integrated, systematic and sustained monitoring of Holocene volcanoes using space-based EO; 2) Demonstrate applicability and superior timeliness of space-based EO products to the operational community for better understanding volcanic activity and reducing impact and risk from eruptions; 3) Build the capacity for use of EO data in volcanic observatories in Latin America as a showcase for global capacity development opportunities. Deformation of several volcanoes was detected in an arc-wide InSAR survey of South America by Pritchard and Simons, 2002. Volcano Pilot main components Three main components: A. Demonstration of systematic monitoring in Latin America; B. Development of new products using monitoring from Geohazard Supersites and Natural Laboratories initiative C. Showcase monitoring benefits for major eruption during 2014–2016 Deformation of several volcanoes was detected in an arc-wide InSAR survey of South America by Pritchard and Simons, 2002. Key outcomes 1) identification of volcanoes that are in a state of unrest in Latin America; 2) comprehensive tracking of unrest and eruptive activity using satellite data in support of hazards mitigation activities; 3) validation of EO-based methodology for improved monitoring of surface deformation; 4) improved EO-based monitoring of key parameters for volcanoes that are about to erupt, are erupting, or have just erupted, especially in the developing world (where in-situ resources may be scarce) Deformation of several volcanoes was detected in an arc-wide InSAR survey of South America by Pritchard and Simons, 2002.
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone Yves Moussallam, Giancarlo Tamburello, Nial Peters, Fredy Apaza, C. Ian Schipper, Aaron Curtis, Alessandro Aiuppa, Pablo Masias, Marie Boichu, Sophie Bauduin, Talfan Barnie, Philipson Bani, Gaetano Giudice, Manuel Moussallam PII: S0377-0273(17)30194-4 DOI: doi: 10.1016/j.jvolgeores.2017.06.027 Reference: VOLGEO 6148 To appear in: Journal of Volcanology and Geothermal Research Received date: 29 March 2017 Revised date: 23 June 2017 Accepted date: 30 June 2017 Please cite this article as: Yves Moussallam, Giancarlo Tamburello, Nial Peters, Fredy Apaza, C. Ian Schipper, Aaron Curtis, Alessandro Aiuppa, Pablo Masias, Marie Boichu, Sophie Bauduin, Talfan Barnie, Philipson Bani, Gaetano Giudice, Manuel Moussallam , Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone, Journal of Volcanology and Geothermal Research (2017), doi: 10.1016/j.jvolgeores.2017.06.027 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Moussallam et al. Carbon dioxide from Peruvian volcanoes P a g e | 1 Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; Implications for the volatile budget of the central volcanic zone.
    [Show full text]
  • REH5447 3.Pdf
    1 Imagen de portada: Fertilidad para el pueblo de Andrea Tirado (INTI), artista visual de la comuna de Camiña. La rana, símbolo de fertilidad y abundancia del agua en la cultura aymara, lleva a su vez una chakana o cruz andina en representación del pueblo. 2 Todos los derechos reservados. Queda prohibida, salvo excepción prevista en la Ley, cualquier forma de reproducción, distribución, comunicación pública y transformación de alguna parte esta obra, incluyendo el diseño de la cubierta, sin contar con la autorización de los autores. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual (Ley Nº 17.336). © UNAP - Universidad Arturo Prat, 2013. ISBN: 978 956 302 081 - 6 CIDERH, Centro de Investigación y Desarrollo en Recursos Hídricos Calle Vivar 493, 3er Piso Edificio Don Alfredo Iquique, CHILE Fono: (56)(57) 2 530800 email: [email protected] www.ciderh.cl Impreso en Chile. RECURSOS HÍDRICOS REGIÓN DE TARAPACÁ Diagnóstico y Sistematización de la Información Autores CAPÍTULO I 3 Elisabeth Lictevout Hidrogeóloga – Gestión Integrada de Recursos Hídricos Dirección Científica Constanza Maass Geógrafa Damián Córdoba Ing. Geólogo – Hidrogeólogo Venecia Herrera Dra. en Ciencias, mención Química Reynaldo Payano Ing. Civil – Dr. (c) en Hidrología y Gestión de Recursos Hídricos Asistentes Jazna Rodríguez Ing. Civil Ambiental, Analista SIG José Aguilera Ing. Civil Ambiental egresado Priscila Beltrán Analista Química 4 Luz Ebensperger Orrego, Intendenta Región de Tarapacá. Prólogo La Región de Tarapacá está ubicada en pleno Desierto de Atacama, una de las zonas más áridas del planeta, por lo que el agua, además de ser un recurso no renovable, es un recurso de extremo valor para nuestra región.
    [Show full text]
  • RESEARCH Geochemistry and 40Ar/39Ar
    RESEARCH Geochemistry and 40Ar/39Ar geochronology of lavas from Tunupa volcano, Bolivia: Implications for plateau volcanism in the central Andean Plateau Morgan J. Salisbury1,2, Adam J.R. Kent1, Néstor Jiménez3, and Brian R. Jicha4 1COLLEGE OF EARTH, OCEAN, AND ATMOSPHERIC SCIENCES, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331, USA 2DEPARTMENT OF EARTH SCIENCES, DURHAM UNIVERSITY, DURHAM DH1 3LE, UK 3UNIVERSIDAD MAYOR DE SAN ANDRÉS, INSTITUTO DE INVESTIGACIONES GEOLÓGICAS Y DEL MEDIO AMBIENTE, CASILLA 3-35140, LA PAZ, BOLIVIA 4DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN–MADISON, MADISON, WISCONSIN 53706, USA ABSTRACT Tunupa volcano is a composite cone in the central Andean arc of South America located ~115 km behind the arc front. We present new geochemical data and 40Ar/39Ar age determinations from Tunupa volcano and the nearby Huayrana lavas, and we discuss their petrogenesis within the context of the lithospheric dynamics and orogenic volcanism of the southern Altiplano region (~18.5°S–21°S). The Tunupa edifice was constructed between 1.55 ± 0.01 and 1.40 ± 0.04 Ma, and the lavas exhibit typical subduction signatures with positive large ion lithophile element (LILE) and negative high field strength element (HFSE) anomalies. Relative to composite centers of the frontal arc, the Tunupa lavas are enriched in HFSEs, particularly Nb, Ta, and Ti. Nb-Ta-Ti enrichments are also observed in Pliocene and younger monogenetic lavas in the Altiplano Basin to the east of Tunupa, as well as in rear arc lavas elsewhere on the central Andean Plateau. Nb concentrations show very little variation with silica content or other indices of differentiation at Tunupa and most other central Andean composite centers.
    [Show full text]
  • Camara De Diputados
    REP UBLICA DE CHILE CAMARA DE DIPUTADOS LEGISLATURA ORDINARIA Sesión 4~, en martes 16 de junio de 1970 (Ordinaria: de 16 a 22.29 horas) Presidencia de los señores Ibáñez y Olave. Secretario, el señor Mena. Prosecretario, el señor Lea-Plaza. INDICE GENERAL DE LA SESION l.-SUMARIO DEL DEBATE I1.-SUMARID DE DOCUMENTOS I1I.-DOCUMENTOS DE LA CUENTA rV.-TEXTO DEL DEBATE 188 CAMARA DE DIPUTADOS l.-SUMARIO DEL DEBATE Pág. l.-Se califica la urgencia hecha presente para el despacho de un proyecto de ley ... ... .., ... ... ... ... .:. ... .., .. , 213 2.-Se aprueban los acuerdos de los Comités Parlamentarios .. .. 213 3.-Se conceden preferencias para que varios señores Diputados ha- gan uso de la palabra ... ...... ... ... .., ... ... .., .. , 214 4.-Los señores Jal'pa y Scarella informan del viaje al Perú, a la zona de los sismos, por los Diputados médicos ... ... .., ... 214 5.-Se constituye la Sala en sesión secreta ... .., ... ... ..' ... 216 6.-La señora Allende se refiere al atentado contra dirigentes de la "Unidad Popular", en Chanco (Maule) ... ... ... ... ..... 216 ORDEN DEL OlA: 7.-La Cámara continúa ocupándose del proyecto de ley que crea el Instituto Nacional del Alcoholismo, y se envía a Comisión pa- ra segundo informe ... ... ..... '" ... ....... , ... ~17 8.-Se despacha el proyecto de ley que modifica la división político- administrativa de los departamentos de Pisagua y Arica .. .. 238 INCIDENTES: 9.-El señor Barrionuevo se refiere al incendio del hospital de Co piapó (Atacama) .. ' .. , ... .., ... ... .,. ... ... .,. .. 252 10.-El señor Lavandero se ocupa de la labor que efectúan los radio- aficionados ... o.. •.. ... o.. ... .•. .., •.. ... '.' •.. 255 11.-El mismo señor Diputado se refiere a deficiencias en los progra- mas de autoconstrucción en la provincia de Cautín ..
    [Show full text]
  • PLUTONS: Investigating the Relationship Between Pluton Growth and Volcanism in the Central Andes
    Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. Christensen7, N.J. Finnegan8, 9 2 10 11 7 12 2 13 2 6 doi:10.1130/GES01578.1 E. Minaya , R.S.J. Sparks , M. Sunagua , M.J. Unsworth , C. Alvizuri , M.J. Comeau , R. del Potro , D. Díaz , M. Diez , A. Farrell , S.T. Henderson1,14, J.A. Jay15, T. Lopez7, D. Legrand16, J.A. Naranjo17, H. McFarlin6, D. Muir18, J.P. Perkins19, Z. Spica20, A. Wilder21, and K.M. Ward22 1 10 figures; 3 tables Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA 2School of Earth Sciences, University of Bristol, BS8 1RJ, United Kingdom 3College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA CORRESPONDENCE: pritchard@ cornell .edu 4Department of Geography, Geology and Planning, Missouri State University, 901 S. National Ave, Springfield, Missouri 65897, USA 5Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0001, USA CITATION: Pritchard, M.E., de Silva, S.L., Michel‑ 6School of Geosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA felder, G., Zandt, G., McNutt, S.R., Gottsmann, 7Geophysical Institute, University
    [Show full text]
  • Optical Remote Sensing of Glacier Characteristics: a Review with Focus on the Himalaya
    Sensors 2008, 8, 3355-3383; DOI: 10.3390/s8053355 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.org/sensors Review Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya Adina E. Racoviteanu 1,2,3,* , Mark W. Williams 1,2 and Roger G. Barry 1,3 1 Department of Geography, University of Colorado, UCB 260, Boulder CO, 80309, USA 2 Institute of Arctic and Alpine Research, University of Colorado, UCB 450, Boulder CO, 80309, USA 3 National Snow and Ice Data Center, CIRES, University of Colorado, UCB 449, Boulder CO, 80309, USA * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 5 February 2008 / Accepted: 19 May 2008 / Published: 23 May 2008 Abstract: The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs), glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances.
    [Show full text]
  • Commercial Opportunities in the Peruvian Energy Sector
    Technical Report: Commercial Opportunities in the Peruvian Energy Sector Client: Embassy of the Netherlands Prepared by: EnerTek S.A.C. Date: January 19, 2018 Authors Alan Clarke: General Manager, EnerTek Global [email protected] Ravi Sahai: Manager, Renewable Energy Projects, EnerTek Global [email protected] Tom Duggan: Mechanical Engineer, EnerTek Global 1 of 147 Technical Report: Commercial Opportunities in the Peruvian Energy Sector 19.01.2018 Version 1.0 Table of Contents Executive Summary ..................................................................................................................................... 7 1.0 Introduction ......................................................................................................................................... 10 2.0 Current Status of Peru’s Energy Sector ............................................................................................ 11 Energy Sector ......................................................................................................................................... 11 Energy Supply ..................................................................................................................................... 11 Energy Consumption ......................................................................................................................... 12 Electricity Sector .................................................................................................................................... 13 Electricity
    [Show full text]