Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation DISSERTATION FRAKTALÄHNLICHE ARCHITEKTUR – EINTEILUNG UND MESSBARKEIT EIN PROGRAMM IN VBA FÜR AUTOCAD ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von O.UNIV.PROF. DIPL.ING. DR.PHIL. GEORG FRANCK-OBERASPACH E259.1 Institut für Architekturwissenschaften Digitale Architektur und Raumplanung eingereicht an der Technischen Universität Wien Fakultät für Architektur und Raumplanung von DIPL.ING. WOLFGANG E. LORENZ Matr.Nr. 9025694 1120 Wien, Tivoligasse 7-9 Wien, Dezember 2013, ___________________________ Die vorliegende Dissertation widme ich meiner Familie, Claudia und Patrick. KURZFASSUNG DER DISSERTATION n der vorliegenden Dissertation wird untersucht, in welchem Ausmaß sich fraktale Geometrie dafür eignet, Architektur zu charakterisieren und welche Vorteile eine solche Herangehensweise gegenüber Ieiner Beschreibung durch die uns seit über zwei Jahrtausenden vertrauten euklidischen Geometrie hat. Es werden Gebäude unterschiedlicher Epochen – mit dem Schwerpunkt des zumeist als ‚glatt‘ bezeichneten Teils der klassischen Moderne (im speziellen jene des International Style) und einer fraktal-ähnlichen organischen Architektur – dahingehend untersucht, ob die charakteristischen Eigenschaften eines Fraktals auftreten, beziehungsweise unter welchen Einschränkungen eine solche Betrachtung überhaupt möglich ist. Die abschließenden Analysen von Fassaden mittels der Box-Counting- Methode, die vom Autor in einem CAD Programm implementiert wurde, geben Aufschluss über eine mögliche Kategorisierung von Architektur mit Hilfe der fraktalen Geometrie. Diese Analysen umfassen neben der Box-Counting-Dimension einen definitiven Maßstabsbereich und das Bestimmtheitsmaß. Seite: 3/171 ABSTRACT his thesis investigates to what extent the fractal geometry is suitable for characterizing architecture. It describes the benefits of such an approach as opposed to a description by means of Euclidean Tgeometry (which we have been familiar with for more than two thousand years). In this context, buildings of different epochs are examined to determine whether the characteristics of fractals occur and subject to which restrictions such a point of view is possible at all. The focus lies on the International Modern (International Style) that is in most cases called ‚smooth‘ and a fractal-like organic architecture. The final analysis of facades is carried out by means of the so-called box-counting method. This method has been implemented by the author in a CAD program. The studies indicate a possible categorization of architecture on the basis of fractal geometry. In addition to the box-counting dimension this comprises a definite range of scales and the coefficient of determination. Seite: 4/171 I NHALTSVERZEICHNIS INHALTSANGABE A. FRAKTALE, ARCHITEKTUR UND ÄSTHETIK 13 E.2.1. ADOLF LOOS UND DIE BEGINNENDE MODERNE 65 E.2.2. DEUTSCHER WERKBUND 67 A.1. VORBEMERKUNGEN 13 E.2.3. BAUHAUS 68 A.1.1. EUKLIDISCH ODER FRAKTAL 13 E.2.4. LE CORBUSIER UND EINE NEUE ARCHITEKTUR 69 A.1.2. VISUELLE WAHRNEHMUNG 13 E.2.5. INTERNATIONAL STYLE 69 A.1.3. NEUE BEGRIFFLICHKEIT 14 E.2.6. CONCLUSIO 70 A.2. CHARAKTERISIERUNG UND ANALYSE 15 E.3. FRAKTAL-NAHE ARCHITEKTUR 71 A.2.1. BESCHREIBUNG DER ARCHITEKTUR 15 E.3.1. EINLEITUNG 71 A.2.2. GRUNDLAGEN FÜR EINE CHARAKTERISIERUNG 17 E.3.2. BEISPIELE 74 A.2.3. FRAGEN 18 E.4. CONCLUSIO 87 B. MATHEMATISCHE FRAKTALE – gRUNDLAGEN 20 F. COMPUTER-PROGRAMME 90 B.1. EINFÜHRUNG 20 B.1.1. HOW LONG IS THE COASTLINE OF BRITAIN? 20 F.1. COMPUTER-PROGRAMME 90 B.1.2. MONSTERKURVEN 21 F.1.1. VISUAL BASIC FOR APPLICATIONS (VBA) 90 B.1.3. CANTOR‘SCHE PUNKTMENGE (CANTOR-MENGE) 28 F.2. INITIATOR/GENERATOR MIT VBA 91 F.2.1. DIE KOCH-KURVE ALS COMPUTER-PROGRAMM 91 C. FRAKTALE EIGENSCHAFTEN – eINE DEFINITION 31 F.2.2. WEITERE MONSTERKURVEN 94 IGENSCHAFTEN EIL C.1. E T 1 31 F.2.3. MANDELBROT-MENGE 94 C.1.1. SELBSTÄHNLICHKEIT 31 F.3. INITIATOR/GENERATOR UND ARCHITEKTUR 95 C.1.2. SKALENINVARIANZ 34 F.3.1. CASTEL DEL MONTE FRAKTAL 96 C.1.3. FRAKTALE DIMENSION 35 F.3.2. SHIKHARA FRAKTAL 97 IGENSCHAFTEN EIL C.2. E T 2 35 F.3.3. GOTISCHES FENSTER FRAKTAL 99 NTSTEHUNG DURCH TERATIONEN C.2.1. E I 35 F.3.4. VARIANTEN 101 ERKLÜFTET UND UNENDLICH KOMPLEX C.2.2. Z 38 F.3.5. AUSHÖHLUNG UND CLUSTER 102 EMEINSAMKEITEN MIT DER ATUR C.2.3. G N 38 F.3.6. GOLDENES RECHTECK 104 RAKTALE UND UKLIDISCHE EOMETRIE C.3. F E G 39 F.4. WEITERE METHODEN 105 C.3.1. EUKLIDISCHE GEOMETRIE 39 F.5. CONCLUSIO 106 C.3.2. FRAKTALE GEOMETRIE 39 G. FRAKTALE DIMENSION UND ARCHITEKTUR – EIN WEG ZUR HOMOGENITÄT D. EINTEILUNG – fRAKTALE METHODEN 42 109 D.1. DETERMINISMUS ODER ZUFALL 42 G.1. DIMENSIONSBEGRIFF 109 D.1.1. DETERMINISTISCHE FRAKTALE 42 G.1.1. TOPOLOGISCHE DIMENSION DT 110 D.1.2. FAKTOR ZUFALL 43 G.1.2. HAUSDORFF-BESICOVITCH-DIMENSION DH 110 D.2. ERZEUGUNG VON FRAKTALEN 43 G.2. FRAKTALE DIMENSION: MESS-METHODEN 110 D.2.1. IFs – iTERATION-FUNCTION-SYSTEM 44 G.2.1. SELBSTÄHNLICHKEITS- ODER D.2.2. L-SYSTEME – lINDENMAYER 50 ÄHNLICHKEITSDIMENSION D 111 D.2.3. MITTELPUNKTVERLAGERUNG 52 G.2.2. ZIRKEL-DIMENSION DZ s 111 D.2.4. CURDLING UND STAUBWOLKEN 56 G.2.3. BOX-COUNTING- ODER GITTERBOX-DIMENSION DB 114 D.2.5. DIFFUSIONSBEGRENZTES WACHSTUM 57 G.2.4. RESCALED-RANGE-ANALYSIS & RANGE-ANALYSIS 116 D.3. CONCLUSIO 59 G.2.5. FRAKTALE DIMENSION ZUSAMMENFASSUNG 118 G.3. BOX-COUNTING IN DER ARCHITEKTUR 118 E. ARCHITEKTUR ZWISCHEN EUKLID UND FRAKTAL 61 G.3.1. DIE FASSADE 118 E.1. GRUNDLAGEN 61 G.3.2. WECHSELWIRKUNG MIT DER UMGEBUNG 119 E.1.1. DIE BETRACHTUNG EINER FASSADE 62 G.4. ENTFERNUNG UND SEHFELD 120 E.1.2. NÄHE ZUR EUKLIDISCHEN/FRAKTALEN GEOMETRIE 63 G.4.1. BOXGRÖSSEN UND DAS MENSCHLICHE AUGE 120 E.1.3. ARCHITEKTUR UND MONSTERKURVEN 65 G.5. EINFLÜSSE AUF DIE MESSERGEBNISSE 122 E.2. EUKLIDISCH-NAHE ARCHITEKTUR 65 Seite: 5/171 G.6. VBA BOX-COUNTING 124 G.6.1. DATENAUSWERTUNG 127 G.6.2. MESSERGEBNISSE 131 G.6.3. ZUSAMMENHANG BOXGRÖSSE UND SEHFELD 139 G.7. VARIANTE DES VBA PROGRAMMES 141 G.7.1. STANDORTE 142 G.8. CONCLUSIO 143 G.8.1. DIE ANALYSE VON FASSADEN 143 G.8.2. DIE AUSWERTUNG DER DATEN 143 ANHANG 145 H. CONCLUSIO / OUTLOOK 154 H.1. CONCLUSIO 154 H.1.1. BESITZT ARCHITEKTUR FRAKTALE EIGENSCHAFTEN? 154 H.1.2. KANN FRAKTAL-ÄHNLICHE ARCHITEKTUR GEMESSEN WERDEN? 154 H.1.3. WELCHE SCHLUSSFOLGERUNG KANN AUS DEN ERGEBNISSEN GEZOGEN WERDEN? 154 H.2. WEITERE COMPUTER-PROGRAMME 155 LITERATUR 161 BEGRIFFE 165 NOMENKLATUR 167 Seite: 6/171 © Wolfgang E. Lorenz Alle Bilder, sofern nicht anders beschrieben, unterliegen dem Copyright des Autors. Es dürfen keine Kopien ohne Berechtigung durch den Autor erstellt werden. Auch auszugsweise Zitate dürfen nicht ohne Genehmigung erstellt werden. DANKSAGUNG ie fraktale Geometrie unter dem Aspekt der Architektur und des Städtebaus begleitet mich schon mehr als ein Jahrzehnt. Begonnen hat es mit einer noch naiven Herangehensweise Dals Entwurfsidee. Erst durch die Förderung durch Prof. G. Franck wurde diese oberflächliche Herangehensweise in eine weniger entwurfsbetonte sondern vielmehr theoretische und analytische Richtung geleitet, der ich seitdem treu geblieben bin. Für die langjährige Motivation, an diesem Thema weiterzuarbeiten, und die Unterstützung durch Gespräche gilt mein besonderer Dank meinem Doktorvater Prof. G. Franck. Auch die Diskussionen mit meinen Kollegen, im Speziellen mit Dr. G. Wurzer waren stets Inspirationsquelle. Meiner Familie möchte ich für die Geduld und den nötigen Rückhalt danken, im Besonderen meiner Gattin, die mich durch den Prozess des Schreibens mit wertvollen Anmerkungen aus der Sicht eines Nicht-Architekten versorgt hat. Für das Verständnis dieses interdisziplinären Forschungsthemas war auch ihr mathematisches Wissen eine wertvolle Bereicherung. Außerdem möchte ich Frau Renate Sohr, die meine Arbeit über die fraktale Geometrie im Zusammenhang mit der Architektur seit langer Zeit begleitet, für die Diskussionen über Formulierungen danken, die mir oftmals Anregung für weitere Forschungen waren. Wolfgang E. Lorenz Wien, Dezember 2013 Seite: 8/171 A BSTRACT FRAKTALÄHNLICHE ARCHITEKTUR – EINTEILUNG UND MESSBARKEIT EIN PROGRAMM IN VBA FÜR AUTOCAD ZENTRALES THEMA fraktale Geometrie auch oft als die Geometrie der Natur bezeichnet wird. Bereits bevor der polnische Mathematiker Benoît Es waren aber letztendlich insbesondere die Mandelbrot im Jahr 1975 den Begriff Fraktal[01] für Verwendung des Computers und die dadurch zur Verfügung natürliche und künstliche Gebilde mit stehenden visuellen Darstellungen[04], die den Siegeszug der bestimmten charakteristischen Eigen- Fraktal – Eine fraktale Geometrie und ihren raschen Einzug in zahlreiche schaften prägte, wurden derartige Einführung Forschungsfelder ermöglichten. Folglich wurden auch Strukturen von Mathematikern Architekten auf diese Form der Geometrie aufmerksam, untersucht, die sie aber zunächst als außergewöhnlich und die ihnen nun neue Denkanstöße für die künstlerische selten einstuften. B. Mandelbrot fasste schließlich die Auseinandersetzung mit ihren eigenen Entwürfen gab. Ergebnisse unter anderen von Georg Cantor (Cantor-Menge In der Architektur liegt der Fokus in der Beschäftigung 1870), Giuseppe Peano (Peano-Kurve 1890), Helge von mit der fraktalen Geometrie vor allem darauf, einerseits Koch (Koch-Kurve 1904), Waclaw Sierpinski die Eigenschaften der gebauten Umwelt über Fraktale (Sierpinski-Dreieck 1915) und Gaston Maurice Julia zu beschreiben und andererseits diese in Entwürfen (Julia-Menge 1918) zusammen und formulierte die umzusetzen. Bei der Analyse von Gebäuden eröffnet sich Fraktale Theorie, die auch als Theorie
Recommended publications
  • Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
    Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development.
    [Show full text]
  • Bachelorarbeit Im Studiengang Audiovisuelle Medien Die
    Bachelorarbeit im Studiengang Audiovisuelle Medien Die Nutzbarkeit von Fraktalen in VFX Produktionen vorgelegt von Denise Hauck an der Hochschule der Medien Stuttgart am 29.03.2019 zur Erlangung des akademischen Grades eines Bachelor of Engineering Erst-Prüferin: Prof. Katja Schmid Zweit-Prüfer: Prof. Jan Adamczyk Eidesstattliche Erklärung Name: Vorname: Hauck Denise Matrikel-Nr.: 30394 Studiengang: Audiovisuelle Medien Hiermit versichere ich, Denise Hauck, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „Die Nutzbarkeit von Fraktalen in VFX Produktionen“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen. Stuttgart, den 29.03.2019 2 Kurzfassung Das Ziel dieser Bachelorarbeit ist es, ein Verständnis für die Generierung und Verwendung von Fraktalen in VFX Produktionen, zu vermitteln. Dabei bildet der Einblick in die Arten und Entstehung der Fraktale
    [Show full text]
  • Using Fractal Dimensions for Characterizing Intra-Urban Diversity
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Thomas, Isabelle; Keersmaecker, Marie-Laurence De; Frankhauser, Pierre Conference Paper Using fractal dimensions for characterizing intra- urban diversity. The example of Brussels 43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland Provided in Cooperation with: European Regional Science Association (ERSA) Suggested Citation: Thomas, Isabelle; Keersmaecker, Marie-Laurence De; Frankhauser, Pierre (2003) : Using fractal dimensions for characterizing intra-urban diversity. The example of Brussels, 43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland, European Regional Science Association (ERSA), Louvain-la-Neuve This Version is available at: http://hdl.handle.net/10419/115977 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Dal Problema Della Lumaca Al Fiocco Di Neve in Sei Gradi Di Separazione
    Dal problema della lumaca al fiocco di neve in sei gradi di separazione Andrea Colesanti Mathesis Firenze 5 ottobre 2016 Questa presentazione nasce dalla tesi di Laurea di Chiara Baglioni, discussa nel 2015 presso l'Universit`adi Firenze. E` una teoria sociologica proposta da Frigyes Karinthy nel 1929, secondo la quale ogni persona pu`oessere collegata a qualunque altra persona attraverso non pi`udi 6 collegamenti. Esempio. Prendiamo il dottor Giovanni Biagioli, di Pistoia, e la principessa Aiko, appartenente alla famiglia imperiale del Giappone. Secondo la teoria esistono cinque persone, A, B, C, D, E, tali che: 1. Giovanni Biagioli conosce personalmente A; 2. A conosce personalmente B; 3. B conosce personalmente C; 4. C conosce personalmente D; 5. D conosce personalmente E; 6. E conosce personalmente la principessa Aiko. La teoria dei sei gradi di separazione Esempio. Prendiamo il dottor Giovanni Biagioli, di Pistoia, e la principessa Aiko, appartenente alla famiglia imperiale del Giappone. Secondo la teoria esistono cinque persone, A, B, C, D, E, tali che: 1. Giovanni Biagioli conosce personalmente A; 2. A conosce personalmente B; 3. B conosce personalmente C; 4. C conosce personalmente D; 5. D conosce personalmente E; 6. E conosce personalmente la principessa Aiko. La teoria dei sei gradi di separazione E` una teoria sociologica proposta da Frigyes Karinthy nel 1929, secondo la quale ogni persona pu`oessere collegata a qualunque altra persona attraverso non pi`udi 6 collegamenti. Secondo la teoria esistono cinque persone, A, B, C, D, E, tali che: 1. Giovanni Biagioli conosce personalmente A; 2. A conosce personalmente B; 3.
    [Show full text]
  • Chapter 8 Fractal Properties of Plants
    Chapter 8 Fractal properties of plants What is a fractal? In his 1982 book, Mandelbrot defines it as a set with Fractals vs. Hausdorff-Besicovitch dimension DH strictly exceeding the topological finite curves dimension DT [95, page 15]. In this sense, none of the figures presented in this book are fractals, since they all consist of a finite number of primitives (lines or polygons), and DH = DT . However, the situation changes dramatically if the term “fractal” is used in a broader sense [95, page 39]: Strictly speaking, the triangle, the Star of David, and the finite Koch teragons are of dimension 1. However, both intuitively and from the pragmatic point of view of the sim- plicity and naturalness of the corrective terms required, it is reasonable to consider an advanced Koch teragon as being closer to a curve of dimension log 4/log 3 than to a curve of dimension 1. Thus, a finite curve can be considered an approximate rendering of an infinite fractal as long as the interesting properties of both are closely related. In the case of plant models, this distinctive feature is self-similarity. The use of approximate figures to illustrate abstract concepts has a Fractals vs. long tradition in geometry. After all, even the primitives of Euclidean plants geometry — a point and a line — cannot be drawn exactly. An in- teresting question, however, concerns the relationship between fractals and real biological structures. The latter consist of a finite number of cells, thus are not fractals in the strict sense of the word. To consider real plants as approximations of “perfect” fractal structures would be acceptable only if we assumed Plato’s view of the supremacy of ideas over their mundane realization.
    [Show full text]
  • Characterizing Factors Associated with Built-Up Land Expansion in Urban and Non-Urban Areas from a Morphological Perspective
    sustainability Article Characterizing Factors Associated with Built-Up Land Expansion in Urban and Non-Urban Areas from a Morphological Perspective Zhonghao Zhang 1,2,3,4, Rui Xiao 2,*, Weixuan Yu 2 ID , Yue Liu 2, Meng Lin 2 and Meng Wang 5 1 Institute of Urban Studies, Shanghai Normal University, Shanghai 200234, China; [email protected] 2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; [email protected] (W.Y.); [email protected] (Y.L.); [email protected] (M.L.) 3 Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geo-Information, Wuhan University, Wuhan 430079, China 4 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 73000, China 5 Wuhan Planning & Design Institute, Wuhan 430014, China; [email protected] * Correspondence: [email protected]; Tel.: +86-182-7182-7900 Received: 10 July 2017; Accepted: 4 August 2017; Published: 10 August 2017 Abstract: In this paper, built-up land expansion patterns and the associated factors were characterized in urban and non-urban areas across the Wen-Tai region of eastern China. Fractal dimension can be used as a reliable indicator of the complexity of built-up land form, and the increasing trend of fractal dimension indicated a more complex, dispersed pattern of built-up land in urban areas. Spatial regression models were quantitatively implemented to identify the indicators influencing the variation of fractal dimensions. Our findings suggested that the fractal dimension of built-up land forms was positively correlated to the patch density and elevation when built-up land expansion was more concentrated.
    [Show full text]
  • Language: a Complex-Systems Approach
    University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Language: A Complex-systems Approach Jacques Steyn Box 27348 Sunnyside 0132 Tel (012) 329-4193 ABSTRACT Mainstream twentieth-century linguistics, a segregational approach, cannot explain the most obvious characteristics of language. The reasons for this are investigated. It is concluded that linguistics suffers from an incoherent conceptual framework which is the result of influences from three major sources: 1. The desire to establish linguistics as a proper science which led to the acceptance of a mechanistic and positivistic view of science and a pre-quantum conception of matter. 2. The language myth: there are many notions about language and related issues which we have inherited from our ancestors and tacitly accepted without scrutiny. Contemporary ideas about language are biased by this inherited stock of 'knowledge'. 3. Saussure's theory of language, later adopted and adapted by Chomsky, in which the 'true object of linguistic investigation' is abstracted away from what we ordinarily view as language. Together these three sources resulted in a peculiar view of language which cannot explain the most obvious things about it. The proposed alternative view, an integrational approach, redefines language in the holistic terms of a complex-systems approach.
    [Show full text]
  • A Thesis Submitted to Lancaster University for the Degree of Doctor of Philosophy (Ph.D)
    CRAIG A. HAMMOND – BA (HONS), PGCE, MSC. Reccomended citation for this work: Hammond, C., (2012). Towards a Neo-Blochian Theory of Complexity, Hope and Cinematic Utopia. PhD Thesis. Lancaster: Lancaster University This work is made available under the following Creative Commons Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/ Contact: [email protected] A thesis submitted to Lancaster University for the Degree of Doctor of Philosophy (Ph.D) Towards a Neo-Blochian Theory of Complexity, Hope and Cinematic Utopia. Department of Sociology Lancaster University (February, 2012). Accepted with Minor Amendments July 2012 Emil Nolde Fighting Forms (1910) Dr Craig A. Hammond, [email protected] Declaration I declare that this thesis consists of original work undertaken solely by myself, during the course of my studies, at Lancaster University between October 2006 and February 2012; where work by other authors is referred to, it has been properly referenced. (Craig Hammond; February 2012) Abstract The thesis sketches-out three main and general philosophical, analytical and utopian-strategic areas: Initially, the project begins with a cumulative overview (i.e. drawing upon a collection of authors and publications) of the Marxist philosopher of hope and utopia Ernst Bloch, and, the Blochian philosophical framework. I focus upon, and, analyse several specific philosophical areas within the Blochian framework, notably, those of the chaos of the trace, and Bloch’s unifying (unfolding, trans- historical) category of Hope and Utopia. In order to navigate this difficult philosophical terrain, the thesis proposes several conceptual and neologistic “inventions” – associated with chaos and complexity – so as to invoke a potentially useful (neo)-Blochian philosophical vocabulary.
    [Show full text]
  • Appendix a Opengl Function Reference
    Appendix A OpenGL Function Reference The graphics routines of OPEN GEOMETRY are based on OPENGL. In order to use OPEN GEOMETRY you need do not need to know anything about OPENGL, but still it may be interesting to get a more profound insight in the background of the OPEN GEOMETRY class library. If you want to use OPEN GEOMETRY for a certain specific task, you might feel the need to adapt some of its drawing and shading routines. In this case you will need to know a few basics about OPENGL. Therefore, we give a very short description of the most important OPENG L functions. Of course, this list is far from complete. If you need more information, please refer to "pure" OPENGL books (e.g., [1], [17], or [36]). We have sorted the routines according to the following groups: 1. Coordinate Transformations glFrustum, glLoadldentity, glLoadMatrix, glMatrixMode, glMultMatrix, glPopMatrix, glPusbMatrix, glRotate, glScale, glTranslate 2. Primitives (Lines, Polygons, Points, ... ) glBegin, glCullFace, glEdgeFIag, glEnd, glFrontFace, glGetPolygonStripple, glLineStrippIe, glLine Widtb, glPointSize, glPolygonMode, glPolygonStrip­ pIe, glVertex 3. Color glClearColor, glClearlndex, glColor, glColorv, glColorMask, glIndex, glIn­ dexMask, glLogicOp, glSbadeModel 622 Appendix A. OpenGL Function Reference 4. Lighting glColorMaterial, glGetMaterial, glGetLight, glLight, glLightModel, glMate­ rial, glNorma13 5. Texture Mapping glTexCoord, glTexEnv, glTexGen, glTexlmage2D, glTexImagelD, glTexPa­ rameter, glEnable 6. Raster Graphics glCopyPixels, glDrawPixels, glPixelMap, glPixelStore, glPixelTransfer, glPix­ elZoom, glReadPixels, glRasterPos A.I Coordinate Transformations Whenever you write OPENGL code, it is important to have an understanding of how coordinate transformations in OPENGL work. In particular, you have to think about the order of the transformations if you apply several in a row.
    [Show full text]
  • Adjunct: an Undigest Peter Manson
    Adjunct: an Undigest Peter Manson /ubu editions 2001 Adjunct: an Undigest By Peter Manson Glasgow, May 1993 - August 2000. For Robin Purves, Andrew Holmes and Alasdair Marshall and in memoriam Barry MacSweeney, 1948 - 2000. Texts derived from Adjunct have appeared in The Gig, Southfields, Terrible Work, First Offense, AND, and in the pamphlet me generation(Writers Forum, 1997). Peter Manson Flat 3/2 16 Ancroft Street Glasgow G20 7HU Email: [email protected] ©2001 /ubu editions /ubu editions www.ubu.com contact: [email protected] /ubu editions series editor: Brian Kim Stefans The game of Life played on the surface of a torus. Guilt. Concept album about garlic. Some verbs allow clitic climbing and others do not. The nat- ural gas produced was radioactive, which made it unattractive for the home user. Jimmy Jewell is dead. But we are all Lib-Labs now, and in 1997 New Labour’s triumph will free Labour history from its sectarian socialist and classbound cocoon and incorporate it fully into British histo- ry. Athletic Celerity. Martin McQuillan sings chorus to Tubthumping by Chumbawamba during paper on Derrida, apparently. Eric Fenby is dead. Manet’s Olympia as still from X-rated Tom and Jerry cartoon. Julian Green is dead. Dick Higgins is dead. Must try not to get killed before fin- ishing this because nobody else’s going to be able to read my handwrit- ing. Final demand for rent payed months ago, and threat of court order. This statement, I wonder why he has retracted. Beep repaired. Not to mention the obscene National Lottery and fast-food hamburger joints.
    [Show full text]
  • October 1990
    Volume 9 Number 2 Journal of the ISTE Special Interest Group for Logo-Using Educators October 1990 Founding Editor Contents Tom Lough From the (Guest) Editor- How Soon They Forget Editor-In-Chief Dave Moursund Sharon Yoder 2 International Editor Monthly Musings- Should the Turtle Go to High School? Dennis Harper Tom Lough 3 Contributing Editors Eadie Adamson Beginner's Comer-What's Cooking? Gina Bull Dorothy Fitch 4 Glen Bull Frank Corley Questions Please! Doug Clements Frank Corley 7 Sandy Dawson Dorothy Fitch Judi Harris Logo Spirograph Marte Homey Paula Sarver 8 SIGLogo Board of Directors Logo Ideas- The Name's the Project, fQS.(ition) Gary Stager, President Is the Game Lora Friedman, Vice-President Eadie Adamson 12 Bev and Lee Cunningham, Secretary/Treasurer Logo LinX- Turtling Around in Circles Publisher Judi Harris 14 International Society for Technology in Education Thinking Like the Turtle Dave Moursund, Executive Officer Bert Eliason 16 Anita Best, Managing Editor Talbot Bielefeldt, Associate Editor Marte Horney, SIG Coordinator Logo Connections- Creating a Hypermedia Adventure Lynda Ferguson, Advertising Coordinator Story with Logo Ian Byington, Production Glen L. Bull and Gina L. Bull 22 Advertising space in each issue of Logo Exchange is limited. Extra for Experts- Fractals ll: Representations Please contacttheAdvenisingMgr.foravailability and details. Mark Homey 26 Logo Exchange is the journal of the International Society for Technology in Education Special Interest Group for Logo­ MathWorlds- Chaotic Attractors in Logo using Educators (SIGLogo), published monthly September Hannu Korhonen through May by ISTE, University of Oregon, 1787 Agate Sandy Dawson, editor Street, Eugene, OR 97403-9905, USA; 5031346-4414.
    [Show full text]
  • 1689; Doi:10.3390/App8091689 Appl
    applied sciences Review Frequency Selective Surfaces: A Review Rana Sadaf Anwar 1, Lingfeng Mao 1 and Huansheng Ning 1,2,* 1 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (R.S.A.); [email protected] (L.M.) 2 Beijing Engineering Research Center for Cyberspace Data Analysis and Applications, Beijing 100083, China * Correspondence: [email protected] Received: 6 August 2018; Accepted: 10 September 2018; Published: 18 September 2018 Abstract: The intent of this paper is to provide an overview of basic concepts, types, techniques, and experimental studies of the current state-of-the-art Frequency Selective Surfaces (FSSs). FSS is a periodic surface with identical two-dimensional arrays of elements arranged on a dielectric substrate. An incoming plane wave will either be transmitted (passband) or reflected back (stopband), completely or partially, depending on the nature of array element. This occurs when the frequency of electromagnetic (EM) wave matches with the resonant frequency of the FSS elements. Therefore, an FSS is capable of passing or blocking the EM waves of certain range of frequencies in the free space; consequently, identified as spatial filters. Nowadays, FSSs have been studied comprehensively and huge growth is perceived in the field of its designing and implementation for different practical applications at frequency ranges of microwave to optical. In this review article, we illustrate the recent researches on different categories of FSSs based on structure design, array element used, and applications. We also focus on theoretical breakthroughs with fabrication techniques, experimental verifications of design examples as well as prospects and challenges, especially in the microwave regime.
    [Show full text]