Language: a Complex-Systems Approach

Total Page:16

File Type:pdf, Size:1020Kb

Language: a Complex-Systems Approach University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Language: A Complex-systems Approach Jacques Steyn Box 27348 Sunnyside 0132 Tel (012) 329-4193 ABSTRACT Mainstream twentieth-century linguistics, a segregational approach, cannot explain the most obvious characteristics of language. The reasons for this are investigated. It is concluded that linguistics suffers from an incoherent conceptual framework which is the result of influences from three major sources: 1. The desire to establish linguistics as a proper science which led to the acceptance of a mechanistic and positivistic view of science and a pre-quantum conception of matter. 2. The language myth: there are many notions about language and related issues which we have inherited from our ancestors and tacitly accepted without scrutiny. Contemporary ideas about language are biased by this inherited stock of 'knowledge'. 3. Saussure's theory of language, later adopted and adapted by Chomsky, in which the 'true object of linguistic investigation' is abstracted away from what we ordinarily view as language. Together these three sources resulted in a peculiar view of language which cannot explain the most obvious things about it. The proposed alternative view, an integrational approach, redefines language in the holistic terms of a complex-systems approach. Language is the outcome of the dynamic interaction between social and physiological systems -- particular attention is paid to consciousness. Neither language, society or culture is an 'object', but is created through the interaction between individuals in communicative situations. Language is not 'being', but results from 'becoming'. Meaning is not given in advance, but created in each event of communication. Meaning is not a static closed system, but an open system which is dynamically constructed from moment to moment. Concepts of mathematical topology (fractal geometry and catastrophe theory), non-linear, dynamic, open and complex systems, and of chaology are used as conceptual tools to break away from the stronghold our inherited view of language has on our contemporary thinking about it. University of Cape Town A great many thanks to my supervisor, Prof Nigel Love, for his patience through my battles of expressing the complex and novel ideas in this thesis. His comments were always very insightful and valuable, and he spent endless hours assisting me in my war with language. Prof JP (Jannie) Louw taught me to see not only trees, but also forests. My parents motivated me in many different ways to attend university and they deserve my sincere gratitude. Their continuous assistance and motivation enabled me to submit this thesis. This thesis is presented as fulfilment of the requirement for the degree of Doctor of Philosophy The work on which this thesis is based is original and has not been submitted for any other degree at this university or any other university. University of Cape Town ABSTRACT Mainstream twentieth-century linguistics, a segregational approach, cannot explain the most obvious characteristics of language. The reasons for this are investigated. It is concluded that linguistics suffers from an incoherent conceptual framework which is the result of influences from three major sources: 1. The desire to establish linguistics as a proper science which led to the acceptance of a mechanistic and positivistic view of science and a pre-quantum conception of matter. 2. The language myth: there are many notions about language and related issues which we have inherited from our ancestors and tacitly accepted without scrutiny. Contemporary ideas about language are biased by this inherited stock of 'knowledge'. 3. Saussure's theory of language, later adopted and adapted by Chomsky, in which the 'true object of linguistic investigation' is abstracted away from what we ordinarily view as language. Together these three sources resulted in a peculiar view of language which cannot explain the most obvious things about it. The proposed alternative view, an integrational approach, redefines language in the holistic terms of a complex-systems approach. Language is the outcome of the dynamic interaction between social and physiological systems -- particular attention is paid to consciousness. Neither language, society or culture is an 'object', but is created through the interaction between individuals in communicative situations. Language is not 'being', but results from 'becoming'. Meaning is not given in advance, but created in each event of communication. Meaning is not a static closed system, but an open system which is dynamically constructed from moment to moment. Concepts of mathematical topology (fractal geometry and catastrophe theory), non-linear, dynamic, open and complex systems, and of chaology are used as conceptual tools to break away from the stronghold our inherited view of language has on our contemporary thinking about it. Contents Introduction ............................................................ .. II The myth of science 1. Views of science A. Introduction.................................................... 13 B. Reason and science....................................... 17 C. Positivism...................................................... 21 D. Kuhn's paradigm............................................ 23 E. Post-analytical science................................... 25 F. Conclusion..................................................... 27 2. Myth and metaphor A. Introduction.................................................... 29 B. Myth............................................................... 29 C. Metaphor....................................................... 36 D. The matter myth............................................ 39 E. Conclusion..................................................... 47 Ill A sy.stems mythology 1. Systems approach A. The systems approach................................... 49 B. A brief historical overview of systems theory.. 52 1. The traditional period.................................. 52 2. The classical period.................................... 57 3. The modern period..................................... 59 C. Criticism of the systems approach................. 59 D. Mathematics and logic................................... 61 E. Conclusion..................................................... 67 2. Systems concepts A. Introduction.................................................... 69 B. Kinds of systems............................................ 69 C. Teleology, causality and network.................. 73 D. Organicism and the organism metaphor........ 79 E. Function and purpose.................................... 81 F. Order from chaos: self-organisation............... 83 G. Time and the arrow of time............................ 88 H. Conclusion..................................................... 93 3. Systems tools A. Introduction.................................................... 95 B. Topology........................................................ 96 C. Attractors........... ........ .................................... 100 D. Fractal geometry............................................ 103 E. Catastrophe theory......................................... 112 F. Conclusion..................................................... 117 4. Systems in linguistics: the status quo A. Introduction.................................................... 119 B. Saussure's system of language...................... 119 C. Chomsky's system of language...................... 129 D. Firth's system of language............................. 133 E. The German school's system of language...... 135 F. Conclusion..................................................... 140 IV The language.myth 1. The inherited language myth.............................. 141 2. The nature of language A. Introduction.................................................... 143 B. Language is species-specific.......................... 143 C. Language is universal.................................... 149 D. Language, logic and knowledge..................... 154 E. Language as a closed system........................ 157 F. Lexicalism.................. ...... .. .. ......................... 161 1. Closed system............................................ 162 2. Exhaustive system..................................... 163 3. Equal status of words................................. 164 4. Unique identity of words............................. 165 5. Autonomy of words..................................... 166 6. Orthographic bias....................................... 167 7. The type-token distinction........................... 167 8. lntralinguistic meaning................................ 168 9. Metalanguage............................................. 169 G. Conclusion..................................................... 169 3. The function of language A. Introduction.................................................... 173 B. Communication............................................. 173 1. The model of communication..................... 174 2. Only communication?................................ 176 C. Nomenclaturism............................................ 1n
Recommended publications
  • Harmonious Hilbert Curves and Other Extradimensional Space-Filling Curves
    Harmonious Hilbert curves and other extradimensional space-filling curves∗ Herman Haverkorty November 2, 2012 Abstract This paper introduces a new way of generalizing Hilbert's two-dimensional space-filling curve to arbitrary dimensions. The new curves, called harmonious Hilbert curves, have the unique property that for any d0 < d, the d-dimensional curve is compatible with the d0-dimensional curve with respect to the order in which the curves visit the points of any d0-dimensional axis-parallel space that contains the origin. Similar generalizations to arbitrary dimensions are described for several variants of Peano's curve (the original Peano curve, the coil curve, the half-coil curve, and the Meurthe curve). The d-dimensional harmonious Hilbert curves and the Meurthe curves have neutral orientation: as compared to the curve as a whole, arbitrary pieces of the curve have each of d! possible rotations with equal probability. Thus one could say these curves are `statistically invariant' under rotation|unlike the Peano curves, the coil curves, the half-coil curves, and the familiar generalization of Hilbert curves by Butz and Moore. In addition, prompted by an application in the construction of R-trees, this paper shows how to construct a 2d-dimensional generalized Hilbert or Peano curve that traverses the points of a certain d-dimensional diagonally placed subspace in the order of a given d-dimensional generalized Hilbert or Peano curve. Pseudocode is provided for comparison operators based on the curves presented in this paper. 1 Introduction Space-filling curves A space-filling curve in d dimensions is a continuous, surjective mapping from R to Rd.
    [Show full text]
  • On the Structures of Generating Iterated Function Systems of Cantor Sets
    ON THE STRUCTURES OF GENERATING ITERATED FUNCTION SYSTEMS OF CANTOR SETS DE-JUN FENG AND YANG WANG Abstract. A generating IFS of a Cantor set F is an IFS whose attractor is F . For a given Cantor set such as the middle-3rd Cantor set we consider the set of its generating IFSs. We examine the existence of a minimal generating IFS, i.e. every other generating IFS of F is an iterating of that IFS. We also study the structures of the semi-group of homogeneous generating IFSs of a Cantor set F in R under the open set condition (OSC). If dimH F < 1 we prove that all generating IFSs of the set must have logarithmically commensurable contraction factors. From this Logarithmic Commensurability Theorem we derive a structure theorem for the semi-group of generating IFSs of F under the OSC. We also examine the impact of geometry on the structures of the semi-groups. Several examples will be given to illustrate the difficulty of the problem we study. 1. Introduction N d In this paper, a family of contractive affine maps Φ = fφjgj=1 in R is called an iterated function system (IFS). According to Hutchinson [12], there is a unique non-empty compact d SN F = FΦ ⊂ R , which is called the attractor of Φ, such that F = j=1 φj(F ). Furthermore, FΦ is called a self-similar set if Φ consists of similitudes. It is well known that the standard middle-third Cantor set C is the attractor of the iterated function system (IFS) fφ0; φ1g where 1 1 2 (1.1) φ (x) = x; φ (x) = x + : 0 3 1 3 3 A natural question is: Is it possible to express C as the attractor of another IFS? Surprisingly, the general question whether the attractor of an IFS can be expressed as the attractor of another IFS, which seems a rather fundamental question in fractal geometry, has 1991 Mathematics Subject Classification.
    [Show full text]
  • Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
    Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development.
    [Show full text]
  • Redalyc.Self-Similarity of Space Filling Curves
    Ingeniería y Competitividad ISSN: 0123-3033 [email protected] Universidad del Valle Colombia Cardona, Luis F.; Múnera, Luis E. Self-Similarity of Space Filling Curves Ingeniería y Competitividad, vol. 18, núm. 2, 2016, pp. 113-124 Universidad del Valle Cali, Colombia Available in: http://www.redalyc.org/articulo.oa?id=291346311010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ingeniería y Competitividad, Volumen 18, No. 2, p. 113 - 124 (2016) COMPUTATIONAL SCIENCE AND ENGINEERING Self-Similarity of Space Filling Curves INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Auto-similaridad de las Space Filling Curves Luis F. Cardona*, Luis E. Múnera** *Industrial Engineering, University of Louisville. KY, USA. ** ICT Department, School of Engineering, Department of Information and Telecommunication Technologies, Faculty of Engineering, Universidad Icesi. Cali, Colombia. [email protected]*, [email protected]** (Recibido: Noviembre 04 de 2015 – Aceptado: Abril 05 de 2016) Abstract We define exact self-similarity of Space Filling Curves on the plane. For that purpose, we adapt the general definition of exact self-similarity on sets, a typical property of fractals, to the specific characteristics of discrete approximations of Space Filling Curves. We also develop an algorithm to test exact self- similarity of discrete approximations of Space Filling Curves on the plane. In addition, we use our algorithm to determine exact self-similarity of discrete approximations of four of the most representative Space Filling Curves.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]
  • Fractal Initialization for High-Quality Mapping with Self-Organizing Maps
    Neural Comput & Applic DOI 10.1007/s00521-010-0413-5 ORIGINAL ARTICLE Fractal initialization for high-quality mapping with self-organizing maps Iren Valova • Derek Beaton • Alexandre Buer • Daniel MacLean Received: 15 July 2008 / Accepted: 4 June 2010 Ó Springer-Verlag London Limited 2010 Abstract Initialization of self-organizing maps is typi- 1.1 Biological foundations cally based on random vectors within the given input space. The implicit problem with random initialization is Progress in neurophysiology and the understanding of brain the overlap (entanglement) of connections between neu- mechanisms prompted an argument by Changeux [5], that rons. In this paper, we present a new method of initiali- man and his thought process can be reduced to the physics zation based on a set of self-similar curves known as and chemistry of the brain. One logical consequence is that Hilbert curves. Hilbert curves can be scaled in network size a replication of the functions of neurons in silicon would for the number of neurons based on a simple recursive allow for a replication of man’s intelligence. Artificial (fractal) technique, implicit in the properties of Hilbert neural networks (ANN) form a class of computation sys- curves. We have shown that when using Hilbert curve tems that were inspired by early simplified model of vector (HCV) initialization in both classical SOM algo- neurons. rithm and in a parallel-growing algorithm (ParaSOM), Neurons are the basic biological cells that make up the the neural network reaches better coverage and faster brain. They form highly interconnected communication organization. networks that are the seat of thought, memory, con- sciousness, and learning [4, 6, 15].
    [Show full text]
  • FRACTAL CURVES 1. Introduction “Hike Into a Forest and You Are Surrounded by Fractals. the In- Exhaustible Detail of the Livin
    FRACTAL CURVES CHELLE RITZENTHALER Abstract. Fractal curves are employed in many different disci- plines to describe anything from the growth of a tree to measuring the length of a coastline. We define a fractal curve, and as a con- sequence a rectifiable curve. We explore two well known fractals: the Koch Snowflake and the space-filling Peano Curve. Addition- ally we describe a modified version of the Snowflake that is not a fractal itself. 1. Introduction \Hike into a forest and you are surrounded by fractals. The in- exhaustible detail of the living world (with its worlds within worlds) provides inspiration for photographers, painters, and seekers of spiri- tual solace; the rugged whorls of bark, the recurring branching of trees, the erratic path of a rabbit bursting from the underfoot into the brush, and the fractal pattern in the cacophonous call of peepers on a spring night." Figure 1. The Koch Snowflake, a fractal curve, taken to the 3rd iteration. 1 2 CHELLE RITZENTHALER In his book \Fractals," John Briggs gives a wonderful introduction to fractals as they are found in nature. Figure 1 shows the first three iterations of the Koch Snowflake. When the number of iterations ap- proaches infinity this figure becomes a fractal curve. It is named for its creator Helge von Koch (1904) and the interior is also known as the Koch Island. This is just one of thousands of fractal curves studied by mathematicians today. This project explores curves in the context of the definition of a fractal. In Section 3 we define what is meant when a curve is fractal.
    [Show full text]
  • Fractal Geometry and Applications in Forest Science
    ACKNOWLEDGMENTS Egolfs V. Bakuzis, Professor Emeritus at the University of Minnesota, College of Natural Resources, collected most of the information upon which this review is based. We express our sincere appreciation for his investment of time and energy in collecting these articles and books, in organizing the diverse material collected, and in sacrificing his personal research time to have weekly meetings with one of us (N.L.) to discuss the relevance and importance of each refer- enced paper and many not included here. Besides his interdisciplinary ap- proach to the scientific literature, his extensive knowledge of forest ecosystems and his early interest in nonlinear dynamics have helped us greatly. We express appreciation to Kevin Nimerfro for generating Diagrams 1, 3, 4, 5, and the cover using the programming package Mathematica. Craig Loehle and Boris Zeide provided review comments that significantly improved the paper. Funded by cooperative agreement #23-91-21, USDA Forest Service, North Central Forest Experiment Station, St. Paul, Minnesota. Yg._. t NAVE A THREE--PART QUE_.gTION,, F_-ACHPARToF:WHICH HA# "THREEPAP,T_.<.,EACFi PART" Of:: F_.AC.HPART oF wHIct4 HA.5 __ "1t4REE MORE PARTS... t_! c_4a EL o. EP-.ACTAL G EOPAgTI_YCoh_FERENCE I G;:_.4-A.-Ti_E AT THB Reprinted courtesy of Omni magazine, June 1994. VoL 16, No. 9. CONTENTS i_ Introduction ....................................................................................................... I 2° Description of Fractals ....................................................................................
    [Show full text]
  • Bachelorarbeit Im Studiengang Audiovisuelle Medien Die
    Bachelorarbeit im Studiengang Audiovisuelle Medien Die Nutzbarkeit von Fraktalen in VFX Produktionen vorgelegt von Denise Hauck an der Hochschule der Medien Stuttgart am 29.03.2019 zur Erlangung des akademischen Grades eines Bachelor of Engineering Erst-Prüferin: Prof. Katja Schmid Zweit-Prüfer: Prof. Jan Adamczyk Eidesstattliche Erklärung Name: Vorname: Hauck Denise Matrikel-Nr.: 30394 Studiengang: Audiovisuelle Medien Hiermit versichere ich, Denise Hauck, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „Die Nutzbarkeit von Fraktalen in VFX Produktionen“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen. Stuttgart, den 29.03.2019 2 Kurzfassung Das Ziel dieser Bachelorarbeit ist es, ein Verständnis für die Generierung und Verwendung von Fraktalen in VFX Produktionen, zu vermitteln. Dabei bildet der Einblick in die Arten und Entstehung der Fraktale
    [Show full text]
  • Efficient Neighbor-Finding on Space-Filling Curves
    Universitat¨ Stuttgart Efficient Neighbor-Finding on Space-Filling Curves Bachelor Thesis Author: David Holzm¨uller* Degree: B. Sc. Mathematik Examiner: Prof. Dr. Dominik G¨oddeke, IANS Supervisor: Prof. Dr. Miriam Mehl, IPVS October 18, 2017 arXiv:1710.06384v3 [cs.CG] 2 Nov 2019 *E-Mail: [email protected], where the ¨uin the last name has to be replaced by ue. Abstract Space-filling curves (SFC, also known as FASS-curves) are a useful tool in scientific computing and other areas of computer science to sequentialize multidimensional grids in a cache-efficient and parallelization-friendly way for storage in an array. Many algorithms, for example grid-based numerical PDE solvers, have to access all neighbor cells of each grid cell during a grid traversal. While the array indices of neighbors can be stored in a cell, they still have to be computed for initialization or when the grid is adaptively refined. A fast neighbor- finding algorithm can thus significantly improve the runtime of computations on multidimensional grids. In this thesis, we show how neighbors on many regular grids ordered by space-filling curves can be found in an average-case time complexity of (1). In 풪 general, this assumes that the local orientation (i.e. a variable of a describing grammar) of the SFC inside the grid cell is known in advance, which can be efficiently realized during traversals. Supported SFCs include Hilbert, Peano and Sierpinski curves in arbitrary dimensions. We assume that integer arithmetic operations can be performed in (1), i.e. independent of the size of the integer.
    [Show full text]
  • Fractals Lindenmayer Systems
    FRACTALS LINDENMAYER SYSTEMS November 22, 2013 Rolf Pfeifer Rudolf M. Füchslin RECAP HIDDEN MARKOV MODELS What Letter Is Written Here? What Letter Is Written Here? What Letter Is Written Here? The Idea Behind Hidden Markov Models First letter: Maybe „a“, maybe „q“ Second letter: Maybe „r“ or „v“ or „u“ Take the most probable combination as a guess! Hidden Markov Models Sometimes, you don‘t see the states, but only a mapping of the states. A main task is then to derive, from the visible mapped sequence of states, the actual underlying sequence of „hidden“ states. HMM: A Fundamental Question What you see are the observables. But what are the actual states behind the observables? What is the most probable sequence of states leading to a given sequence of observations? The Viterbi-Algorithm We are looking for indices M1,M2,...MT, such that P(qM1,...qMT) = Pmax,T is maximal. 1. Initialization ()ib 1 i i k1 1(i ) 0 2. Recursion (1 t T-1) t1(j ) max( t ( i ) a i j ) b j k i t1 t1(j ) i : t ( i ) a i j max. 3. Termination Pimax,TT max( ( )) qmax,T q i: T ( i ) max. 4. Backtracking MMt t11() t Efficiency of the Viterbi Algorithm • The brute force approach takes O(TNT) steps. This is even for N = 2 and T = 100 difficult to do. • The Viterbi – algorithm in contrast takes only O(TN2) which is easy to do with todays computational means. Applications of HMM • Analysis of handwriting. • Speech analysis. • Construction of models for prediction.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]