Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review Article Survey Report on Space Filling Curves
International Journal of Modern Science and Technology Vol. 1, No. 8, November 2016. Page 264-268. http://www.ijmst.co/ ISSN: 2456-0235. Review Article Survey Report on Space Filling Curves R. Prethee, A. R. Rishivarman Department of Mathematics, Theivanai Ammal College for Women (Autonomous) Villupuram - 605 401. Tamilnadu, India. *Corresponding author’s e-mail: [email protected] Abstract Space-filling Curves have been extensively used as a mapping from the multi-dimensional space into the one-dimensional space. Space filling curve represent one of the oldest areas of fractal geometry. Mapping the multi-dimensional space into one-dimensional domain plays an important role in every application that involves multidimensional data. We describe the notion of space filling curves and describe some of the popularly used curves. There are numerous kinds of space filling curves. The difference between such curves is in their way of mapping to the one dimensional space. Selecting the appropriate curve for any application requires knowledge of the mapping scheme provided by each space filling curve. Space filling curves are the basis for scheduling has numerous advantages like scalability in terms of the number of scheduling parameters, ease of code development and maintenance. The present paper report on various space filling curves, classifications, and its applications. It elaborates the space filling curves and their applicability in scheduling, especially in transaction. Keywords: Space filling curve, Holder Continuity, Bi-Measure-Preserving Property, Transaction Scheduling. Introduction these other curves, sometimes space-filling In mathematical analysis, a space-filling curves are still referred to as Peano curves. curve is a curve whose range contains the entire Mathematical tools 2-dimensional unit square or more generally an The Euclidean Vector Norm n-dimensional unit hypercube. -
Fractal-Based Magnetic Resonance Imaging Coils for 3T Xenon Imaging Fractal-Based Magnetic Resonance Imaging Coils for 3T Xenon Imaging
Fractal-based magnetic resonance imaging coils for 3T Xenon imaging Fractal-based magnetic resonance imaging coils for 3T Xenon imaging By Jimmy Nguyen A Thesis Submitted to the School of Graduate Studies in thePartial Fulfillment of the Requirements for the Degree Master of Applied Science McMaster University © Copyright by Jimmy Nguyen 10 July 2020 McMaster University Master of Applied Science (2020) Hamilton, Ontario (Department of Electrical & Computer Engineering) TITLE: Fractal-based magnetic resonance imaging coils for 3T Xenon imaging AUTHOR: Jimmy Nguyen, B.Eng., (McMaster University) SUPERVISOR: Dr. Michael D. Noseworthy NUMBER OF PAGES: ix, 77 ii Abstract Traditional 1H lung imaging using MRI faces numerous challenges and difficulties due to low proton density and air-tissue susceptibility artifacts. New imaging techniques using inhaled xenon gas can overcome these challenges at the cost of lower signal to noise ratio. The signal to noise ratio determines reconstructed image quality andis an essential parameter in ensuring reliable results in MR imaging. The traditional RF surface coils used in MR imaging exhibit an inhomogeneous field, leading to reduced image quality. For the last few decades, fractal-shaped antennas have been used to optimize the performance of antennas for radiofrequency systems. Although widely used in radiofrequency identification systems, mobile phones, and other applications, fractal designs have yet to be fully researched in the MRI application space. The use of fractal geometries for RF coils may prove to be fruitful and thus prompts an investiga- tion as the main goal of this thesis. Preliminary simulation results and experimental validation results show that RF coils created using the Gosper and pentaflake offer improved signal to noise ratio and exhibit a more homogeneous field than that ofa traditional circular surface coil. -
Mathematics As “Gate-Keeper” (?): Three Theoretical Perspectives That Aim Toward Empowering All Children with a Key to the Gate DAVID W
____ THE _____ MATHEMATICS ___ ________ EDUCATOR _____ Volume 14 Number 1 Spring 2004 MATHEMATICS EDUCATION STUDENT ASSOCIATION THE UNIVERSITY OF GEORGIA Editorial Staff A Note from the Editor Editor Dear TME readers, Holly Garrett Anthony Along with the editorial team, I present the first of two issues to be produced during my brief tenure as editor of Volume 14 of The Mathematics Educator. This issue showcases the work of both Associate Editors veteran and budding scholars in mathematics education. The articles range in topic and thus invite all Ginger Rhodes those vested in mathematics education to read on. Margaret Sloan Both David Stinson and Amy Hackenberg direct our attention toward equity and social justice in Erik Tillema mathematics education. Stinson discusses the “gatekeeping” status of mathematics, offers theoretical perspectives he believes can change this, and motivates mathematics educators at all levels to rethink Publication their roles in empowering students. Hackenberg’s review of Burton’s edited book, Which Way Social Stephen Bismarck Justice in Mathematics Education? is both critical and engaging. She artfully draws connections across Laurel Bleich chapters and applauds the picture of social justice painted by the diversity of voices therein. Dennis Hembree Two invited pieces, one by Chandra Orrill and the other by Sybilla Beckmann, ask mathematics Advisors educators to step outside themselves and reexamine features of PhD programs and elementary Denise S. Mewborn textbooks. Orrill’s title question invites mathematics educators to consider what we value in classroom Nicholas Oppong teaching, how we engage in and write about research on or with teachers, and what features of a PhD program can inform teacher education. -
Review On: Fractal Antenna Design Geometries and Its Applications
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume - 3 Issue -9 September, 2014 Page No. 8270-8275 Review On: Fractal Antenna Design Geometries and Its Applications Ankita Tiwari1, Dr. Munish Rattan2, Isha Gupta3 1GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] 2GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] 3GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] Abstract: In this review paper, we provide a comprehensive review of developments in the field of fractal antenna engineering. First we give brief introduction about fractal antennas and then proceed with its design geometries along with its applications in different fields. It will be shown how to quantify the space filling abilities of fractal geometries, and how this correlates with miniaturization of fractal antennas. Keywords – Fractals, self -similar, space filling, multiband 1. Introduction Modern telecommunication systems require antennas with irrespective of various extremely irregular curves or shapes wider bandwidths and smaller dimensions as compared to the that repeat themselves at any scale on which they are conventional antennas. This was beginning of antenna research examined. in various directions; use of fractal shaped antenna elements was one of them. Some of these geometries have been The term “Fractal” means linguistically “broken” or particularly useful in reducing the size of the antenna, while “fractured” from the Latin “fractus.” The term was coined by others exhibit multi-band characteristics. Several antenna Benoit Mandelbrot, a French mathematician about 20 years configurations based on fractal geometries have been reported ago in his book “The fractal geometry of Nature” [5]. -
Redalyc.Self-Similarity of Space Filling Curves
Ingeniería y Competitividad ISSN: 0123-3033 [email protected] Universidad del Valle Colombia Cardona, Luis F.; Múnera, Luis E. Self-Similarity of Space Filling Curves Ingeniería y Competitividad, vol. 18, núm. 2, 2016, pp. 113-124 Universidad del Valle Cali, Colombia Available in: http://www.redalyc.org/articulo.oa?id=291346311010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ingeniería y Competitividad, Volumen 18, No. 2, p. 113 - 124 (2016) COMPUTATIONAL SCIENCE AND ENGINEERING Self-Similarity of Space Filling Curves INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Auto-similaridad de las Space Filling Curves Luis F. Cardona*, Luis E. Múnera** *Industrial Engineering, University of Louisville. KY, USA. ** ICT Department, School of Engineering, Department of Information and Telecommunication Technologies, Faculty of Engineering, Universidad Icesi. Cali, Colombia. [email protected]*, [email protected]** (Recibido: Noviembre 04 de 2015 – Aceptado: Abril 05 de 2016) Abstract We define exact self-similarity of Space Filling Curves on the plane. For that purpose, we adapt the general definition of exact self-similarity on sets, a typical property of fractals, to the specific characteristics of discrete approximations of Space Filling Curves. We also develop an algorithm to test exact self- similarity of discrete approximations of Space Filling Curves on the plane. In addition, we use our algorithm to determine exact self-similarity of discrete approximations of four of the most representative Space Filling Curves. -
An Extended Correlation Dimension of Complex Networks
entropy Article An Extended Correlation Dimension of Complex Networks Sheng Zhang 1,*, Wenxiang Lan 1,*, Weikai Dai 1, Feng Wu 1 and Caisen Chen 2 1 School of Information Engineering, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China; [email protected] (W.D.); [email protected] (F.W.) 2 Military Exercise and Training Center, Academy of Army Armored Force, Beijing 100072, China; [email protected] * Correspondence: [email protected] (S.Z.); [email protected] (W.L.) Abstract: Fractal and self-similarity are important characteristics of complex networks. The correla- tion dimension is one of the measures implemented to characterize the fractal nature of unweighted structures, but it has not been extended to weighted networks. In this paper, the correlation dimen- sion is extended to the weighted networks. The proposed method uses edge-weights accumulation to obtain scale distances. It can be used not only for weighted networks but also for unweighted networks. We selected six weighted networks, including two synthetic fractal networks and four real-world networks, to validate it. The results show that the proposed method was effective for the fractal scaling analysis of weighted complex networks. Meanwhile, this method was used to analyze the fractal properties of the Newman–Watts (NW) unweighted small-world networks. Compared with other fractal dimensions, the correlation dimension is more suitable for the quantitative analysis of small-world effects. Keywords: fractal property; correlation dimension; weighted networks; small-world network Citation: Zhang, S.; Lan, W.; Dai, W.; Wu, F.; Chen, C. An Extended 1. Introduction Correlation Dimension of Complex Recently, revealing and characterizing complex systems from a complex networks Networks. -
Fractal Geometry and Applications in Forest Science
ACKNOWLEDGMENTS Egolfs V. Bakuzis, Professor Emeritus at the University of Minnesota, College of Natural Resources, collected most of the information upon which this review is based. We express our sincere appreciation for his investment of time and energy in collecting these articles and books, in organizing the diverse material collected, and in sacrificing his personal research time to have weekly meetings with one of us (N.L.) to discuss the relevance and importance of each refer- enced paper and many not included here. Besides his interdisciplinary ap- proach to the scientific literature, his extensive knowledge of forest ecosystems and his early interest in nonlinear dynamics have helped us greatly. We express appreciation to Kevin Nimerfro for generating Diagrams 1, 3, 4, 5, and the cover using the programming package Mathematica. Craig Loehle and Boris Zeide provided review comments that significantly improved the paper. Funded by cooperative agreement #23-91-21, USDA Forest Service, North Central Forest Experiment Station, St. Paul, Minnesota. Yg._. t NAVE A THREE--PART QUE_.gTION,, F_-ACHPARToF:WHICH HA# "THREEPAP,T_.<.,EACFi PART" Of:: F_.AC.HPART oF wHIct4 HA.5 __ "1t4REE MORE PARTS... t_! c_4a EL o. EP-.ACTAL G EOPAgTI_YCoh_FERENCE I G;:_.4-A.-Ti_E AT THB Reprinted courtesy of Omni magazine, June 1994. VoL 16, No. 9. CONTENTS i_ Introduction ....................................................................................................... I 2° Description of Fractals .................................................................................... -
Bachelorarbeit Im Studiengang Audiovisuelle Medien Die
Bachelorarbeit im Studiengang Audiovisuelle Medien Die Nutzbarkeit von Fraktalen in VFX Produktionen vorgelegt von Denise Hauck an der Hochschule der Medien Stuttgart am 29.03.2019 zur Erlangung des akademischen Grades eines Bachelor of Engineering Erst-Prüferin: Prof. Katja Schmid Zweit-Prüfer: Prof. Jan Adamczyk Eidesstattliche Erklärung Name: Vorname: Hauck Denise Matrikel-Nr.: 30394 Studiengang: Audiovisuelle Medien Hiermit versichere ich, Denise Hauck, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „Die Nutzbarkeit von Fraktalen in VFX Produktionen“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen. Stuttgart, den 29.03.2019 2 Kurzfassung Das Ziel dieser Bachelorarbeit ist es, ein Verständnis für die Generierung und Verwendung von Fraktalen in VFX Produktionen, zu vermitteln. Dabei bildet der Einblick in die Arten und Entstehung der Fraktale -
Fractals a Fractal Is a Shape That Seem to Have the Same Structure No Matter How Far You Zoom In, Like the figure Below
Fractals A fractal is a shape that seem to have the same structure no matter how far you zoom in, like the figure below. Sometimes it's only part of the shape that repeats. In the figure below, called an Apollonian Gasket, no part looks like the whole shape, but the parts near the edges still repeat when you zoom in. Today you'll learn how to construct a few fractals: • The Snowflake • The Sierpinski Carpet • The Sierpinski Triangle • The Pythagoras Tree • The Dragon Curve After you make a few of those, try constructing some fractals of your own design! There's more on the back. ! Challenge Problems In order to solve some of the more difficult problems today, you'll need to know about the geometric series. In a geometric series, we add up a sequence of terms, 1 each of which is a fixed multiple of the previous one. For example, if the ratio is 2 , then a geometric series looks like 1 1 1 1 1 1 1 + + · + · · + ::: 2 2 2 2 2 2 1 12 13 = 1 + + + + ::: 2 2 2 The geometric series has the incredibly useful property that we have a good way of 1 figuring out what the sum equals. Let's let r equal the common ratio (like 2 above) and n be the number of terms we're adding up. Our series looks like 1 + r + r2 + ::: + rn−2 + rn−1 If we multiply this by 1 − r we get something rather simple. (1 − r)(1 + r + r2 + ::: + rn−2 + rn−1) = 1 + r + r2 + ::: + rn−2 + rn−1 − ( r + r2 + ::: + rn−2 + rn−1 + rn ) = 1 − rn Thus 1 − rn 1 + r + r2 + ::: + rn−2 + rn−1 = : 1 − r If we're clever, we can use this formula to compute the areas and perimeters of some of the shapes we create. -
Equivalent Relation Between Normalized Spatial Entropy and Fractal Dimension
Equivalent Relation between Normalized Spatial Entropy and Fractal Dimension Yanguang Chen (Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P.R. China. E-mail: [email protected]) Abstract: Fractal dimension is defined on the base of entropy, including macro state entropy and information entropy. The generalized correlation dimension of multifractals is based on Renyi entropy. However, the mathematical transform from entropy to fractal dimension is not yet clear in both theory and practice. This paper is devoted to revealing the new equivalence relation between spatial entropy and fractal dimension using functional box-counting method. Based on varied regular fractals, the numerical relationship between spatial entropy and fractal dimension is examined. The results show that the ratio of actual entropy (Mq) to the maximum entropy (Mmax) equals the ratio of actual dimension (Dq) to the maximum dimension (Dmax). The spatial entropy and fractal dimension of complex spatial systems can be converted into one another by means of functional box-counting method. The theoretical inference is verified by observational data of urban form. A conclusion is that normalized spatial entropy is equal to normalized fractal dimension. Fractal dimensions proved to be the characteristic values of entropies. In empirical studies, if the linear size of spatial measurement is small enough, a normalized entropy value is infinitely approximate to the corresponding normalized fractal dimension value. Based on the theoretical result, new spatial measurements of urban space filling can be defined, and multifractal parameters can be generalized to describe both simple systems and complex systems. Key words: spatial entropy; multifractals; functional box-counting method; space filling; urban form; Chinese cities 2 1. -
Determination of Lyapunov Exponents in Discrete Chaotic Models
International Journal of Theoretical & Applied Sciences, 4(2): 89-94(2012) ISSN No. (Print) : 0975-1718 ISSN No. (Online) : 2249-3247 DeterminationISSN No. (Print) of Lyapunov: 0975-1718 Exponents in Discrete Chaotic Models ISSN No. (Online) : 2249-3247 Dr. Nabajyoti Das Department of Mathematics, J.N. College Kamrup, Assam, India (Received 21 October, 2012, Accepted 02 November, 2012) ABSTRACT: This paper discusses the Lyapunov exponents as a quantifier of chaos with two dimensional discrete chaotic model: F(x,y) = (y, µx+λy – y3 ), Where, µ and λ are adjustable parameters. Our prime objective is to find First Lyapunov exponent, Second Lyapunov exponent and Maximal Lyapunov exponent as the notion of exponential divergence of nearby trajectories indicating the existence of chaos in our concerned map. Moreover, these results have paused many challenging open problems in our field of research. Key Words: Discrete System/ Lyapunov Exponent / Quantifier of Chaos 2010 AMS Subject Classification : 37 G 15, 37 G 35, 37 C 45 I. INTRODUCTION component in the direction associated with the MLE, Distinguishing deterministic chaos from noise has and because of the exponential growth rate the effect become an important problem in many diverse fields of the other exponents will be obliterated over time. This is due, in part, to the availability of numerical For a dynamical system with evolution equation ft in algorithms for quantifying chaos using experimental a n–dimensional phase space, the spectrum of time series. In particular, methods exist for Lyapunov exponents in general, depends on the calculating correlation dimension (D2) Kolmogorov starting point x0. However, we are usually interested entropy, and Lyapunov exponents. -
Correlation Dimension for Self-Similar Cantor Sets with Overlaps
FUNDAMENTA MATHEMATICAE 155 (1998) Correlation dimension for self-similar Cantor sets with overlaps by K´arolyS i m o n (Miskolc) and Boris S o l o m y a k (Seattle, Wash.) Abstract. We consider self-similar Cantor sets Λ ⊂ R which are either homogeneous and Λ − Λ is an interval, or not homogeneous but having thickness greater than one. We have a natural labeling of the points of Λ which comes from its construction. In case of overlaps among the cylinders of Λ, there are some “bad” pairs (τ, ω) of labels such that τ and ω label the same point of Λ. We express how much the correlation dimension of Λ is smaller than the similarity dimension in terms of the size of the set of “bad” pairs of labels. 1. Introduction. In the literature there are some results (see [Fa1], [PS] or [Si] for a survey) which show that for a family of Cantor sets of overlapping construction on R, the dimension (Hausdorff or box counting) is almost surely equal to the similarity dimension, that is, the overlap between the cylinders typically does not lead to dimension drop. However, we do not understand the cause of the decrease of dimension in the exceptional cases. In this paper we consider self-similar Cantor sets Λ on R for which either the thickness of Λ is greater than one or Λ is homogeneous and Λ − Λ is an interval. We prove that the only reason for the drop of the correlation dimension is the size of the set of those pairs of symbolic sequences which label the same point of the Cantor set.