Ontologia De Domínio Fractal

Total Page:16

File Type:pdf, Size:1020Kb

Ontologia De Domínio Fractal MÉTODOS COMPUTACIONAIS PARA A CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil. Orientadores: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Rio de Janeiro Agosto de 2011 MÉTODOS COMPUTACIONAIS PARA CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL. Examinada por: ________________________________________________ Prof. Nelson Francisco Favilla Ebecken, D.Sc. ________________________________________________ Prof. Luiz Bevilacqua, Ph.D. ________________________________________________ Prof. Marta Lima de Queirós Mattoso, D.Sc. ________________________________________________ Prof. Fernanda Araújo Baião, D.Sc. RIO DE JANEIRO, RJ - BRASIL AGOSTO DE 2011 Gersberg, Ivo Wolff Métodos computacionais para a construção da Ontologia de Domínio Fractal/ Ivo Wolff Gersberg. – Rio de Janeiro: UFRJ/COPPE, 2011. XIII, 144 p.: il.; 29,7 cm. Orientador: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2011. Referências Bibliográficas: p. 130-133. 1. Ontologias. 2. Mineração de Textos. 3. Fractal. 4. Metodologia para Construção de Ontologias de Domínio. I. Ebecken, Nelson Francisco Favilla et al . II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil. III. Titulo. iii À minha mãe e meu pai, Basia e Jayme Gersberg. iv AGRADECIMENTOS Agradeço aos meus orientadores, professores Nelson Ebecken e Luiz Bevilacqua, pelo incentivo e paciência. Ao professor Luiz Bevilacqua por ter me ensinado ser possível retirar um colete de uma pessoa sem retirar o paletó. Aos professores Luiz Landau e Fernando Pellon pelo livre pensar em minhas atividades. Ao professor Jorge de Albuquerque Vieira por semear as primeiras noções sobre a Complexidade, germinantes desta dissertação. Aos companheiros de laboratório, LABSAR-COPPE/UFRJ. Ao Orlando e Célio, do laboratório de informática do Programa de Engenharia Civil, por disponibilizar espaço, equipamento e café. v Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.) MÉTODOS COMPUTACIONAIS PARA A CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg Agosto/2011 Orientadores: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Programa: Engenharia Civil Este trabalho propõe uma metodologia para construção de uma ontologia de domínio baseada em Mineração de Textos, tendo o saber matemático fractal como domínio específico. A metodologia proposta leva em consideração uma base textual composta de livros essenciais do saber fractal, comparando os resultados obtidos oriundos dos conteúdos dos livros com os resultados identificados por um especialista e também apenas considerando os índices remissivos dos livros em questão (especialista virtual). Um protótipo de uma aplicação Web foi implantado, permitindo buscas contextuais por aproximação ontológica na Ontologia de Domínio Fractal criada. vi Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) COMPUTATIONAL METHODS TO BUILD THE FRACTAL DOMAIN ONTOLOGY Ivo Wolff Gersberg August/2011 Advisors: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Department: Civil Engineering This work proposes a methodology for building a domain ontology based on Text Mining and the fractal mathematical knowledge as domain specific. The proposed methodology takes into account a textual knowledge base composed of fractal essential books, comparing the results obtained from the contents of books with the results identified by an expert and, also, just considering the indexes of the books in question (virtual expert). A prototype of a web application was deployed, allowing contextual search by ontological approach in the Fractal Domain Ontology created. vii Sumário CAPÍTULO 1. DA INTRODUÇÃO .............................................................................. 1 1.1 dos Objetivos ..................................................................................................................... 4 1.2 do Recorte do Domínio Matemático, Fractal ..................................................................... 6 1.3 da Organização da Dissertação ........................................................................................ 7 CAPÍTULO 2. DAS MOTIVAÇÕES ............................................................................ 8 CAPÍTULO 3. DA CONCEPÇÃO DE ONTOLOGIAS E AFINS ............................... 14 3.1 de Ontologias e suas Definições ..................................................................................... 14 3.1.1 da pergunta, O que é Ontologia ? ................................................................................ 14 3.1.2 dos Tipos de Ontologias .............................................................................................. 18 3.1.3 das Linguagens Formais de Ontologias ...................................................................... 23 3.2 das Considerações sobre Mineração de Textos ( Text Mining ) ....................................... 24 3.3 de Técnicas de Mineração de Textos Úteis à Construção de Ontologias ...................... 26 3.3.1 da Importância de Substantivos e a Extração de Termos .......................................... 26 3.3.2 da Distribuição de Termos .......................................................................................... 30 3.4 das Metodologias para Construção de Ontologias Relatadas na Literatura................... 31 3.4.1 de uma Ontologia Aplicada à Química, Methontology ................................................ 37 3.4.2 de uma Abordagem Colaborativa para e-commerce e Ensino à Distância ................ 40 3.4.3 de uma Ontologia Aplicada à Engenharia ................................................................... 41 CAPÍTULO 4. DA CONSTRUÇÃO DA ONTOLOGIA .............................................. 52 4.1 da Metodologia Empregada nesta Dissertação .............................................................. 54 4.1.1 da Metodologia Proposta: Fase 1, Especificação ....................................................... 55 4.1.2 da Metodologia Proposta: Fase 2, Pré-Processamento ............................................. 57 4.1.3 da Metodologia Proposta: Fase 3, Aquisição .............................................................. 59 4.1.4 da Metodologia Proposta: Fase 4, Escolha de Termos e Relações ........................... 60 4.1.5 da Metodologia Proposta: Fase 5, Formalização ........................................................ 61 4.1.6 da Metodologia Proposta: Fase 6, Validação ............................................................. 61 4.2 dos Resultados do Processamento................................................................................. 61 4.2.1 da Extração e Escolha de Termos .............................................................................. 61 viii 4.2.2 da Extração de Possíveis Relações ............................................................................ 77 4.3 da Construção da Ontologia de Domínio Fractal ............................................................ 81 4.3.1 da Escolha do Primeiro Nível da Ontologia ................................................................ 82 4.3.2 da Construção Manual no Protégé-OWL .................................................................... 87 4.4 da Auto-Similaridade do Corpus ..................................................................................... 91 CAPÍTULO 5. DA VALIDAÇÃO ............................................................................... 95 5.1 da Validação pelo Corpus Fractal ................................................................................... 96 5.2 da Validação pelo Corpus ScienceDirect ...................................................................... 104 CAPÍTULO 6. DA VISUALIZAÇÃO ....................................................................... 115 CAPÍTULO 7. DAS CONCLUSÕES ...................................................................... 121 CAPÍTULO 8. DOS TRABALHOS FUTUROS ....................................................... 126 REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................... 130 APÊNDICE I ............................................................................................................. 134 APÊNDICE II ............................................................................................................ 138 APÊNDICE III ........................................................................................................... 144 ix Lista de Figuras Figura 1 – Ontologia e sua Diversidade de Aplicações ................................................. 3 Figura 2 – Livros Adotados para Extração do Paradigma Fractal ................................. 6 Figura 3 - Visão de Polanyi acerca do Conhecimento adaptado de (Grant, 2007) ...... 13 Figura 4 – Primeira Ontologia da História: Porfírio sobre as Categorias de Aristóteles (séc.III) extraído
Recommended publications
  • SUBFRACTALS INDUCED by SUBSHIFTS a Dissertation
    SUBFRACTALS INDUCED BY SUBSHIFTS A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Elizabeth Sattler In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Mathematics May 2016 Fargo, North Dakota NORTH DAKOTA STATE UNIVERSITY Graduate School Title SUBFRACTALS INDUCED BY SUBSHIFTS By Elizabeth Sattler The supervisory committee certifies that this dissertation complies with North Dakota State Uni- versity's regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Do˘ganC¸¨omez Chair Dr. Azer Akhmedov Dr. Mariangel Alfonseca Dr. Simone Ludwig Approved: 05/24/2016 Dr. Benton Duncan Date Department Chair ABSTRACT In this thesis, a subfractal is the subset of points in the attractor of an iterated function system in which every point in the subfractal is associated with an allowable word from a subshift on the underlying symbolic space. In the case in which (1) the subshift is a subshift of finite type with an irreducible adjacency matrix, (2) the iterated function system satisfies the open set condition, and (3) contractive bounds exist for each map in the iterated function system, we find bounds for both the Hausdorff and box dimensions of the subfractal, where the bounds depend both on the adjacency matrix and the contractive bounds on the maps. We extend this result to sofic subshifts, a more general subshift than a subshift of finite type, and to allow the adjacency matrix n to be reducible. The structure of a subfractal naturally defines a measure on R .
    [Show full text]
  • Fractal 3D Magic Free
    FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction.
    [Show full text]
  • March 12, 2011 DIAGONALLY NON-RECURSIVE FUNCTIONS and EFFECTIVE HAUSDORFF DIMENSION 1. Introduction Reimann and Terwijn Asked Th
    March 12, 2011 DIAGONALLY NON-RECURSIVE FUNCTIONS AND EFFECTIVE HAUSDORFF DIMENSION NOAM GREENBERG AND JOSEPH S. MILLER Abstract. We prove that every sufficiently slow growing DNR function com- putes a real with effective Hausdorff dimension one. We then show that for any recursive unbounded and nondecreasing function j, there is a DNR function bounded by j that does not compute a Martin-L¨ofrandom real. Hence there is a real of effective Hausdorff dimension 1 that does not compute a Martin-L¨of random real. This answers a question of Reimann and Terwijn. 1. Introduction Reimann and Terwijn asked the dimension extraction problem: can one effec- tively increase the information density of a sequence with positive information den- sity? For a formal definition of information density, they used the notion of effective Hausdorff dimension. This effective version of the classical Hausdorff dimension of geometric measure theory was first defined by Lutz [10], using a martingale defini- tion of Hausdorff dimension. Unlike classical dimension, it is possible for singletons to have positive dimension, and so Lutz defined the dimension dim(A) of a binary sequence A 2 2! to be the effective dimension of the singleton fAg. Later, Mayor- domo [12] (but implicit in Ryabko [15]), gave a characterisation using Kolmogorov complexity: for all A 2 2!, K(A n) C(A n) dim(A) = lim inf = lim inf ; n!1 n n!1 n where C is plain Kolmogorov complexity and K is the prefix-free version.1 Given this formal notion, the dimension extraction problem is the following: if 2 dim(A) > 0, is there necessarily a B 6T A such that dim(B) > dim(A)? The problem was recently solved by the second author [13], who showed that there is ! an A 2 2 such that dim(A) = 1=2 and if B 6T A, then dim(B) 6 1=2.
    [Show full text]
  • Copyright by Timothy Alexander Cousins 2016
    Copyright by Timothy Alexander Cousins 2016 The Thesis Committee for Timothy Alexander Cousins Certifies that this is the approved version of the following thesis: Effect of Rough Fractal Pore-Solid Interface on Single-Phase Permeability in Random Fractal Porous Media APPROVED BY SUPERVISING COMMITTEE: Supervisor: Hugh Daigle Maša Prodanović Effect of Rough Fractal Pore-Solid Interface on Single-Phase Permeability in Random Fractal Porous Media by Timothy Alexander Cousins, B. S. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Texas at Austin August 2016 Dedication I would like to dedicate this to my parents, Michael and Joanne Cousins. Acknowledgements I would like to thank the continuous support of Professor Hugh Daigle over these last two years in guiding throughout my degree and research. I would also like to thank Behzad Ghanbarian for being a great mentor and guide throughout the entire research process, and for constantly giving me invaluable insight and advice, both for the research and for life in general. I would also like to thank my parents for the consistent support throughout my entire life. I would also like to acknowledge Edmund Perfect (Department of Earth and Planetary, University of Tennessee) and Jung-Woo Kim (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) for providing Lacunarity MATLAB code used in this study. v Abstract Effect of Rough Fractal Pore-Solid Interface on Single-Phase Permeability in Random Fractal Porous Media Timothy Alexander Cousins, M.S.E.
    [Show full text]
  • A Note on Pointwise Dimensions
    A Note on Pointwise Dimensions Neil Lutz∗ Department of Computer Science, Rutgers University Piscataway, NJ 08854, USA [email protected] April 6, 2017 Abstract This short note describes a connection between algorithmic dimensions of individual points and classical pointwise dimensions of measures. 1 Introduction Effective dimensions are pointwise notions of dimension that quantify the den- sity of algorithmic information in individual points in continuous domains. This note aims to clarify their relationship to the classical notion of pointwise dimen- sions of measures, which is central to the study of fractals and dynamics. This connection is then used to compare algorithmic and classical characterizations of Hausdorff and packing dimensions. See [15, 17] for surveys of the strong ties between algorithmic information and fractal dimensions. 2 Pointwise Notions of Dimension arXiv:1612.05849v2 [cs.CC] 5 Apr 2017 We begin by defining the two most well-studied formulations of algorithmic dimension [5], the effective Hausdorff and packing dimensions. Given a point x ∈ Rn, a precision parameter r ∈ N, and an oracle set A ⊆ N, let A A n Kr (x) = min{K (q): q ∈ Q ∩ B2−r (x)} , where KA(q) is the prefix-free Kolmogorov complexity of q relative to the oracle −r A, as defined in [10], and B2−r (x) is the closed ball of radius 2 around x. ∗Research supported in part by National Science Foundation Grant 1445755. 1 Definition. The effective Hausdorff dimension and effective packing dimension of x ∈ Rn relative to A are KA(x) dimA(x) = lim inf r r→∞ r KA(x) DimA(x) = lim sup r , r→∞ r respectively [11, 14, 1].
    [Show full text]
  • Image Encryption and Decryption Schemes Using Linear and Quadratic Fractal Algorithms and Their Systems
    Image Encryption and Decryption Schemes Using Linear and Quadratic Fractal Algorithms and Their Systems Anatoliy Kovalchuk 1 [0000-0001-5910-4734], Ivan Izonin 1 [0000-0002-9761-0096] Christine Strauss 2 [0000-0003-0276-3610], Mariia Podavalkina 1 [0000-0001-6544-0654], Natalia Lotoshynska 1 [0000-0002-6618-0070] and Nataliya Kustra 1 [0000-0002-3562-2032] 1 Department of Publishing Information Technologies, Lviv Polytechnic National University, Lviv, Ukraine [email protected], [email protected], [email protected], [email protected], [email protected] 2 Department of Electronic Business, University of Vienna, Vienna, Austria [email protected] Abstract. Image protection and organizing the associated processes is based on the assumption that an image is a stochastic signal. This results in the transition of the classic encryption methods into the image perspective. However the image is some specific signal that, in addition to the typical informativeness (informative data), also involves visual informativeness. The visual informativeness implies additional and new challenges for the issue of protection. As it involves the highly sophisticated modern image processing techniques, this informativeness enables unauthorized access. In fact, the organization of the attack on an encrypted image is possible in two ways: through the traditional hacking of encryption methods or through the methods of visual image processing (filtering methods, contour separation, etc.). Although the methods mentioned above do not fully reproduce the encrypted image, they can provide an opportunity to obtain some information from the image. In this regard, the encryption methods, when used in images, have another task - the complete noise of the encrypted image.
    [Show full text]
  • Review On: Fractal Antenna Design Geometries and Its Applications
    www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume - 3 Issue -9 September, 2014 Page No. 8270-8275 Review On: Fractal Antenna Design Geometries and Its Applications Ankita Tiwari1, Dr. Munish Rattan2, Isha Gupta3 1GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] 2GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] 3GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] Abstract: In this review paper, we provide a comprehensive review of developments in the field of fractal antenna engineering. First we give brief introduction about fractal antennas and then proceed with its design geometries along with its applications in different fields. It will be shown how to quantify the space filling abilities of fractal geometries, and how this correlates with miniaturization of fractal antennas. Keywords – Fractals, self -similar, space filling, multiband 1. Introduction Modern telecommunication systems require antennas with irrespective of various extremely irregular curves or shapes wider bandwidths and smaller dimensions as compared to the that repeat themselves at any scale on which they are conventional antennas. This was beginning of antenna research examined. in various directions; use of fractal shaped antenna elements was one of them. Some of these geometries have been The term “Fractal” means linguistically “broken” or particularly useful in reducing the size of the antenna, while “fractured” from the Latin “fractus.” The term was coined by others exhibit multi-band characteristics. Several antenna Benoit Mandelbrot, a French mathematician about 20 years configurations based on fractal geometries have been reported ago in his book “The fractal geometry of Nature” [5].
    [Show full text]
  • On the Structures of Generating Iterated Function Systems of Cantor Sets
    ON THE STRUCTURES OF GENERATING ITERATED FUNCTION SYSTEMS OF CANTOR SETS DE-JUN FENG AND YANG WANG Abstract. A generating IFS of a Cantor set F is an IFS whose attractor is F . For a given Cantor set such as the middle-3rd Cantor set we consider the set of its generating IFSs. We examine the existence of a minimal generating IFS, i.e. every other generating IFS of F is an iterating of that IFS. We also study the structures of the semi-group of homogeneous generating IFSs of a Cantor set F in R under the open set condition (OSC). If dimH F < 1 we prove that all generating IFSs of the set must have logarithmically commensurable contraction factors. From this Logarithmic Commensurability Theorem we derive a structure theorem for the semi-group of generating IFSs of F under the OSC. We also examine the impact of geometry on the structures of the semi-groups. Several examples will be given to illustrate the difficulty of the problem we study. 1. Introduction N d In this paper, a family of contractive affine maps Φ = fφjgj=1 in R is called an iterated function system (IFS). According to Hutchinson [12], there is a unique non-empty compact d SN F = FΦ ⊂ R , which is called the attractor of Φ, such that F = j=1 φj(F ). Furthermore, FΦ is called a self-similar set if Φ consists of similitudes. It is well known that the standard middle-third Cantor set C is the attractor of the iterated function system (IFS) fφ0; φ1g where 1 1 2 (1.1) φ (x) = x; φ (x) = x + : 0 3 1 3 3 A natural question is: Is it possible to express C as the attractor of another IFS? Surprisingly, the general question whether the attractor of an IFS can be expressed as the attractor of another IFS, which seems a rather fundamental question in fractal geometry, has 1991 Mathematics Subject Classification.
    [Show full text]
  • Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
    Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development.
    [Show full text]
  • Connectivity Calculus of Fractal Polyhedrons
    Pattern Recognition 48 (2015) 1150–1160 Contents lists available at ScienceDirect Pattern Recognition journal homepage: www.elsevier.com/locate/pr Connectivity calculus of fractal polyhedrons Helena Molina-Abril a,n, Pedro Real a, Akira Nakamura b, Reinhard Klette c a Universidad de Sevilla, Spain b Hiroshima University, Japan c The University of Auckland, New Zealand article info abstract Article history: The paper analyzes the connectivity information (more precisely, numbers of tunnels and their Received 27 December 2013 homological (co)cycle classification) of fractal polyhedra. Homology chain contractions and its combi- Received in revised form natorial counterparts, called homological spanning forest (HSF), are presented here as an useful 6 April 2014 topological tool, which codifies such information and provides an hierarchical directed graph-based Accepted 27 May 2014 representation of the initial polyhedra. The Menger sponge and the Sierpiński pyramid are presented as Available online 6 June 2014 examples of these computational algebraic topological techniques and results focussing on the number Keywords: of tunnels for any level of recursion are given. Experiments, performed on synthetic and real image data, Connectivity demonstrate the applicability of the obtained results. The techniques introduced here are tailored to self- Cycles similar discrete sets and exploit homology notions from a representational point of view. Nevertheless, Topological analysis the underlying concepts apply to general cell complexes and digital images and are suitable for Tunnels Directed graphs progressing in the computation of advanced algebraic topological information of 3-dimensional objects. Betti number & 2014 Elsevier Ltd. All rights reserved. Fractal set Menger sponge Sierpiński pyramid 1. Introduction simply-connected sets and those with holes (i.e.
    [Show full text]
  • S27 Fractals References
    S27 FRACTALS S27 Fractals References: Supplies: Geogebra (phones, laptops) • Business cards or index cards for building Sierpinski’s tetrahedron or Menger’s • sponge. 407 What is a fractal? S27 FRACTALS What is a fractal? Definition. A fractal is a shape that has 408 What is a fractal? S27 FRACTALS Animation at Wikimedia Commons 409 What is a fractal? S27 FRACTALS Question. Do fractals necessarily have reflection, rotation, translation, or glide reflec- tion symmetry? What kind of symmetry do they have? What natural objects approximate fractals? 410 Fractals in the world S27 FRACTALS Fractals in the world A fractal is formed when pulling apart two glue-covered acrylic sheets. 411 Fractals in the world S27 FRACTALS High voltage breakdown within a block of acrylic creates a fractal Lichtenberg figure. 412 Fractals in the world S27 FRACTALS What happens to a CD in the microwave? 413 Fractals in the world S27 FRACTALS A DLA cluster grown from a copper sulfate solution in an electrodeposition cell. 414 Fractals in the world S27 FRACTALS Anatomy 415 Fractals in the world S27 FRACTALS 416 Fractals in the world S27 FRACTALS Natural tree 417 Fractals in the world S27 FRACTALS Simulated tree 418 Fractals in the world S27 FRACTALS Natural coastline 419 Fractals in the world S27 FRACTALS Simulated coastline 420 Fractals in the world S27 FRACTALS Natural mountain range 421 Fractals in the world S27 FRACTALS Simulated mountain range 422 Fractals in the world S27 FRACTALS The Great Wave o↵ Kanagawa by Katsushika Hokusai 423 Fractals in the world S27 FRACTALS Patterns formed by bacteria grown in a petri dish.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]