Fractals in the Fundamental and Applied Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review Article Survey Report on Space Filling Curves
International Journal of Modern Science and Technology Vol. 1, No. 8, November 2016. Page 264-268. http://www.ijmst.co/ ISSN: 2456-0235. Review Article Survey Report on Space Filling Curves R. Prethee, A. R. Rishivarman Department of Mathematics, Theivanai Ammal College for Women (Autonomous) Villupuram - 605 401. Tamilnadu, India. *Corresponding author’s e-mail: [email protected] Abstract Space-filling Curves have been extensively used as a mapping from the multi-dimensional space into the one-dimensional space. Space filling curve represent one of the oldest areas of fractal geometry. Mapping the multi-dimensional space into one-dimensional domain plays an important role in every application that involves multidimensional data. We describe the notion of space filling curves and describe some of the popularly used curves. There are numerous kinds of space filling curves. The difference between such curves is in their way of mapping to the one dimensional space. Selecting the appropriate curve for any application requires knowledge of the mapping scheme provided by each space filling curve. Space filling curves are the basis for scheduling has numerous advantages like scalability in terms of the number of scheduling parameters, ease of code development and maintenance. The present paper report on various space filling curves, classifications, and its applications. It elaborates the space filling curves and their applicability in scheduling, especially in transaction. Keywords: Space filling curve, Holder Continuity, Bi-Measure-Preserving Property, Transaction Scheduling. Introduction these other curves, sometimes space-filling In mathematical analysis, a space-filling curves are still referred to as Peano curves. curve is a curve whose range contains the entire Mathematical tools 2-dimensional unit square or more generally an The Euclidean Vector Norm n-dimensional unit hypercube. -
Harmonious Hilbert Curves and Other Extradimensional Space-Filling Curves
Harmonious Hilbert curves and other extradimensional space-filling curves∗ Herman Haverkorty November 2, 2012 Abstract This paper introduces a new way of generalizing Hilbert's two-dimensional space-filling curve to arbitrary dimensions. The new curves, called harmonious Hilbert curves, have the unique property that for any d0 < d, the d-dimensional curve is compatible with the d0-dimensional curve with respect to the order in which the curves visit the points of any d0-dimensional axis-parallel space that contains the origin. Similar generalizations to arbitrary dimensions are described for several variants of Peano's curve (the original Peano curve, the coil curve, the half-coil curve, and the Meurthe curve). The d-dimensional harmonious Hilbert curves and the Meurthe curves have neutral orientation: as compared to the curve as a whole, arbitrary pieces of the curve have each of d! possible rotations with equal probability. Thus one could say these curves are `statistically invariant' under rotation|unlike the Peano curves, the coil curves, the half-coil curves, and the familiar generalization of Hilbert curves by Butz and Moore. In addition, prompted by an application in the construction of R-trees, this paper shows how to construct a 2d-dimensional generalized Hilbert or Peano curve that traverses the points of a certain d-dimensional diagonally placed subspace in the order of a given d-dimensional generalized Hilbert or Peano curve. Pseudocode is provided for comparison operators based on the curves presented in this paper. 1 Introduction Space-filling curves A space-filling curve in d dimensions is a continuous, surjective mapping from R to Rd. -
Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development. -
Redalyc.Self-Similarity of Space Filling Curves
Ingeniería y Competitividad ISSN: 0123-3033 [email protected] Universidad del Valle Colombia Cardona, Luis F.; Múnera, Luis E. Self-Similarity of Space Filling Curves Ingeniería y Competitividad, vol. 18, núm. 2, 2016, pp. 113-124 Universidad del Valle Cali, Colombia Available in: http://www.redalyc.org/articulo.oa?id=291346311010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ingeniería y Competitividad, Volumen 18, No. 2, p. 113 - 124 (2016) COMPUTATIONAL SCIENCE AND ENGINEERING Self-Similarity of Space Filling Curves INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Auto-similaridad de las Space Filling Curves Luis F. Cardona*, Luis E. Múnera** *Industrial Engineering, University of Louisville. KY, USA. ** ICT Department, School of Engineering, Department of Information and Telecommunication Technologies, Faculty of Engineering, Universidad Icesi. Cali, Colombia. [email protected]*, [email protected]** (Recibido: Noviembre 04 de 2015 – Aceptado: Abril 05 de 2016) Abstract We define exact self-similarity of Space Filling Curves on the plane. For that purpose, we adapt the general definition of exact self-similarity on sets, a typical property of fractals, to the specific characteristics of discrete approximations of Space Filling Curves. We also develop an algorithm to test exact self- similarity of discrete approximations of Space Filling Curves on the plane. In addition, we use our algorithm to determine exact self-similarity of discrete approximations of four of the most representative Space Filling Curves. -
Fractal Texture and Structure of Central Place Systems
Fractal Texture and Structure of Central Place Systems Yanguang Chen (Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P.R. China. Email: [email protected]) Abstract: The boundaries of central place models proved to be fractal lines, which compose fractal texture of central place networks. A textural fractal can be employed to explain the scale-free property of regional boundaries such as border lines, but it cannot be directly applied to spatial structure of real human settlement systems. To solve this problem, this paper is devoted to deriving structural fractals of central place models from the textural fractals. The method is theoretical deduction based on the dimension rules of fractal sets. The textural fractals of central place models are reconstructed, the structural dimensions are derived from the textural dimensions, and the central place fractals are formulated by the k numbers and g numbers. Three structural fractal models are constructed for central place systems according to the corresponding fractal dimensions. A theoretical finding is that the classic central place models comprise Koch snowflake curve and Sierpinski space filling curve, and an inference is that the traffic principle plays a leading role in urban and rural evolution. The conclusion can be reached that the textural fractal dimensions can be converted into the structural fractal dimensions. The latter dimensions can be directly used to appraise urban and rural settlement distributions in the real world. Thus, the textural fractals can be indirectly utilized to explain the development of the systems of human settlements. Key words: Central place fractals; Systems of human settlement; Fractal dimension; Koch snowflake; Sierpinski space-filling curve; Gosper island 1. -
Fractal Initialization for High-Quality Mapping with Self-Organizing Maps
Neural Comput & Applic DOI 10.1007/s00521-010-0413-5 ORIGINAL ARTICLE Fractal initialization for high-quality mapping with self-organizing maps Iren Valova • Derek Beaton • Alexandre Buer • Daniel MacLean Received: 15 July 2008 / Accepted: 4 June 2010 Ó Springer-Verlag London Limited 2010 Abstract Initialization of self-organizing maps is typi- 1.1 Biological foundations cally based on random vectors within the given input space. The implicit problem with random initialization is Progress in neurophysiology and the understanding of brain the overlap (entanglement) of connections between neu- mechanisms prompted an argument by Changeux [5], that rons. In this paper, we present a new method of initiali- man and his thought process can be reduced to the physics zation based on a set of self-similar curves known as and chemistry of the brain. One logical consequence is that Hilbert curves. Hilbert curves can be scaled in network size a replication of the functions of neurons in silicon would for the number of neurons based on a simple recursive allow for a replication of man’s intelligence. Artificial (fractal) technique, implicit in the properties of Hilbert neural networks (ANN) form a class of computation sys- curves. We have shown that when using Hilbert curve tems that were inspired by early simplified model of vector (HCV) initialization in both classical SOM algo- neurons. rithm and in a parallel-growing algorithm (ParaSOM), Neurons are the basic biological cells that make up the the neural network reaches better coverage and faster brain. They form highly interconnected communication organization. networks that are the seat of thought, memory, con- sciousness, and learning [4, 6, 15]. -
FRACTAL CURVES 1. Introduction “Hike Into a Forest and You Are Surrounded by Fractals. the In- Exhaustible Detail of the Livin
FRACTAL CURVES CHELLE RITZENTHALER Abstract. Fractal curves are employed in many different disci- plines to describe anything from the growth of a tree to measuring the length of a coastline. We define a fractal curve, and as a con- sequence a rectifiable curve. We explore two well known fractals: the Koch Snowflake and the space-filling Peano Curve. Addition- ally we describe a modified version of the Snowflake that is not a fractal itself. 1. Introduction \Hike into a forest and you are surrounded by fractals. The in- exhaustible detail of the living world (with its worlds within worlds) provides inspiration for photographers, painters, and seekers of spiri- tual solace; the rugged whorls of bark, the recurring branching of trees, the erratic path of a rabbit bursting from the underfoot into the brush, and the fractal pattern in the cacophonous call of peepers on a spring night." Figure 1. The Koch Snowflake, a fractal curve, taken to the 3rd iteration. 1 2 CHELLE RITZENTHALER In his book \Fractals," John Briggs gives a wonderful introduction to fractals as they are found in nature. Figure 1 shows the first three iterations of the Koch Snowflake. When the number of iterations ap- proaches infinity this figure becomes a fractal curve. It is named for its creator Helge von Koch (1904) and the interior is also known as the Koch Island. This is just one of thousands of fractal curves studied by mathematicians today. This project explores curves in the context of the definition of a fractal. In Section 3 we define what is meant when a curve is fractal. -
Bachelorarbeit Im Studiengang Audiovisuelle Medien Die
Bachelorarbeit im Studiengang Audiovisuelle Medien Die Nutzbarkeit von Fraktalen in VFX Produktionen vorgelegt von Denise Hauck an der Hochschule der Medien Stuttgart am 29.03.2019 zur Erlangung des akademischen Grades eines Bachelor of Engineering Erst-Prüferin: Prof. Katja Schmid Zweit-Prüfer: Prof. Jan Adamczyk Eidesstattliche Erklärung Name: Vorname: Hauck Denise Matrikel-Nr.: 30394 Studiengang: Audiovisuelle Medien Hiermit versichere ich, Denise Hauck, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „Die Nutzbarkeit von Fraktalen in VFX Produktionen“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen. Stuttgart, den 29.03.2019 2 Kurzfassung Das Ziel dieser Bachelorarbeit ist es, ein Verständnis für die Generierung und Verwendung von Fraktalen in VFX Produktionen, zu vermitteln. Dabei bildet der Einblick in die Arten und Entstehung der Fraktale -
Efficient Neighbor-Finding on Space-Filling Curves
Universitat¨ Stuttgart Efficient Neighbor-Finding on Space-Filling Curves Bachelor Thesis Author: David Holzm¨uller* Degree: B. Sc. Mathematik Examiner: Prof. Dr. Dominik G¨oddeke, IANS Supervisor: Prof. Dr. Miriam Mehl, IPVS October 18, 2017 arXiv:1710.06384v3 [cs.CG] 2 Nov 2019 *E-Mail: [email protected], where the ¨uin the last name has to be replaced by ue. Abstract Space-filling curves (SFC, also known as FASS-curves) are a useful tool in scientific computing and other areas of computer science to sequentialize multidimensional grids in a cache-efficient and parallelization-friendly way for storage in an array. Many algorithms, for example grid-based numerical PDE solvers, have to access all neighbor cells of each grid cell during a grid traversal. While the array indices of neighbors can be stored in a cell, they still have to be computed for initialization or when the grid is adaptively refined. A fast neighbor- finding algorithm can thus significantly improve the runtime of computations on multidimensional grids. In this thesis, we show how neighbors on many regular grids ordered by space-filling curves can be found in an average-case time complexity of (1). In 풪 general, this assumes that the local orientation (i.e. a variable of a describing grammar) of the SFC inside the grid cell is known in advance, which can be efficiently realized during traversals. Supported SFCs include Hilbert, Peano and Sierpinski curves in arbitrary dimensions. We assume that integer arithmetic operations can be performed in (1), i.e. independent of the size of the integer. -
Math Morphing Proximate and Evolutionary Mechanisms
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales. -
Space & Electronic Warfare Lexicon
1 Space & Electronic Warfare Lexicon Terms 2 Space & Electronic Warfare Lexicon Terms # - A 3 PLUS 3 - A National Missile Defense System using satellites and ground-based radars deployed close to the regions from which threats are likely. The space-based system would detect the exhaust plume from the burning rocket motor of an attacking missile. Forward-based radars and infrared-detecting satellites would resolve smaller objects to try to distinguish warheads from clutter and decoys. Based on that data, the ground-based interceptor - a hit-to-kill weapon - would fly toward an approximate intercept point, receiving course corrections along the way from the battle management system based on more up-to-date tracking data. As the interceptor neared the target its own sensors would guide it to the impact point. See also BALLISTIC MISSILE DEFENSE (BMD.) 3D-iD - A Local Positioning System (LPS) that is capable of determining the 3-D location of items (and persons) within a 3-dimensional indoor, or otherwise bounded, space. The system consists of inexpensive physical devices, called "tags" associated with people or assets to be tracked, and an infrastructure for tracking the location of each tag. NOTE: Related technology applications include EAS, EHAM, GPS, IRID, and RFID. 4GL - See FOURTH GENERATION LANGUAGE 5GL - See FIFTH GENERATION LANGUAGE A-POLE - The distance between a missile-firing platform and its target at the instant the missile becomes autonomous. Contrast with F-POLE. ABSORPTION - (RF propagation) The irreversible conversion of the energy of an electromagnetic WAVE into another form of energy as a result of its interaction with matter. -
Algorithms for Scientific Computing
Algorithms for Scientific Computing Space-Filling Curves Michael Bader Technical University of Munich Summer 2017 Start: Morton Order / Cantor’s Mapping 00 01 0000 0001 0100 0101 0010 0011 0110 0111 1000 1001 1100 1101 10 11 1010 1011 1110 1111 Questions: • Can this mapping lead to a contiguous “curve”? • i.e.: Can we find a continuous mapping? • and: Can this continuous mapping fill the entire square? Michael Bader j Algorithms for Scientific Computing j Space-Filling Curves j Summer 2017 2 Morton Order and Cantor’s Mapping Georg Cantor (1877): 0:0110 ::: 0:01111001 ::: ! 0:1101 ::: • bijective mapping [0; 1] ! [0; 1]2 • proved identical cardinality of [0; 1] and [0; 1]2 • provoked the question: is there a continuous mapping? (i.e. a curve) Michael Bader j Algorithms for Scientific Computing j Space-Filling Curves j Summer 2017 3 History of Space-Filling Curves 1877: Georg Cantor finds a bijective mapping from the unit interval [0; 1] into the unit square [0; 1]2. 1879: Eugen Netto proves that a bijective mapping f : I ! Q ⊂ Rn can not be continuous (i.e., a curve) at the same time (as long as Q has a smooth boundary). 1886: rigorous definition of curves introduced by Camille Jordan 1890: Giuseppe Peano constructs the first space-filling curves. 1890: Hilbert gives a geometric construction of Peano’s curve; and introduces a new example – the Hilbert curve 1904: Lebesgue curve 1912: Sierpinski curve Michael Bader j Algorithms for Scientific Computing j Space-Filling Curves j Summer 2017 4 Part I Space-Filling Curves Michael Bader j Algorithms for Scientific Computing j Space-Filling Curves j Summer 2017 5 What is a Curve? Definition (Curve) n As a curve, we define the image f∗(I) of a continuous mapping f : I! R .