S S symmetry Article Hierarchical Hexagonal Clustering and Indexing VojtˇechUher 1,*, Petr Gajdoš 1, Václav Snášel 1, Yu-Chi Lai 2 and Michal Radecký 1 1 Department of Computer Science, VŠB-Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic;
[email protected] (P.G.);
[email protected] (V.S.);
[email protected] (M.R.) 2 Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 43, Sec.4, Keelung Rd., Taipei 106, Taiwan;
[email protected] * Correspondence:
[email protected] Received: 25 April 2019; Accepted: 23 May 2019; Published: 28 May 2019 Abstract: Space-filling curves (SFCs) represent an efficient and straightforward method for sparse-space indexing to transform an n-dimensional space into a one-dimensional representation. This is often applied for multidimensional point indexing which brings a better perspective for data analysis, visualization and queries. SFCs are involved in many areas such as big data analysis and visualization, image decomposition, computer graphics and geographic information systems (GISs). The indexing methods subdivide the space into logic clusters of close points and they differ in various parameters including the cluster order, the distance metrics, and the pattern shape. Beside the simple and highly preferred triangular and square uniform grids, the hexagonal uniform grids have gained high interest especially in areas such as GISs, image processing and data visualization for the uniform distance between cells and high effectiveness of circle coverage. While the linearization of hexagons is an obvious approach for memory representation, it seems there is no hexagonal SFC indexing method generally used in practice.