October 1990

Total Page:16

File Type:pdf, Size:1020Kb

October 1990 Volume 9 Number 2 Journal of the ISTE Special Interest Group for Logo-Using Educators October 1990 Founding Editor Contents Tom Lough From the (Guest) Editor- How Soon They Forget Editor-In-Chief Dave Moursund Sharon Yoder 2 International Editor Monthly Musings- Should the Turtle Go to High School? Dennis Harper Tom Lough 3 Contributing Editors Eadie Adamson Beginner's Comer-What's Cooking? Gina Bull Dorothy Fitch 4 Glen Bull Frank Corley Questions Please! Doug Clements Frank Corley 7 Sandy Dawson Dorothy Fitch Judi Harris Logo Spirograph Marte Homey Paula Sarver 8 SIGLogo Board of Directors Logo Ideas- The Name's the Project, fQS.(ition) Gary Stager, President Is the Game Lora Friedman, Vice-President Eadie Adamson 12 Bev and Lee Cunningham, Secretary/Treasurer Logo LinX- Turtling Around in Circles Publisher Judi Harris 14 International Society for Technology in Education Thinking Like the Turtle Dave Moursund, Executive Officer Bert Eliason 16 Anita Best, Managing Editor Talbot Bielefeldt, Associate Editor Marte Horney, SIG Coordinator Logo Connections- Creating a Hypermedia Adventure Lynda Ferguson, Advertising Coordinator Story with Logo Ian Byington, Production Glen L. Bull and Gina L. Bull 22 Advertising space in each issue of Logo Exchange is limited. Extra for Experts- Fractals ll: Representations Please contacttheAdvenisingMgr.foravailability and details. Mark Homey 26 Logo Exchange is the journal of the International Society for Technology in Education Special Interest Group for Logo­ MathWorlds- Chaotic Attractors in Logo using Educators (SIGLogo), published monthly September Hannu Korhonen through May by ISTE, University of Oregon, 1787 Agate Sandy Dawson, editor Street, Eugene, OR 97403-9905, USA; 5031346-4414. This 30 publication was produced using Aldus PageMalcer®. Logo: Search and Research- Turtle Soup: A Beginning POSTMASTER: Send address changes to Logo Exchange, Look at Logo Research U of 0, 1787 Agate St., Eugene, OR 97403. Second-class Douglas Clements 32 postage paid at Eugene OR. USPS #000-554. Global Logo Comment- Logo at the WCCE Dennis Harper, editor 36 < --·- : ) -~~~n j:~=i~~· \ ----- -------------- -- - -------------------- ---------------- --------- -- ---- ------ .-------- -------- ----------------------- .. -- -- -- .. -- .. ,'~~i!~~~~.i:: ._.:_.___ ,_._·_•_•• ,._,_ ••_._._ .• ,._,,'_,•,._.,._-•,.,,_.,•_,·,·_ •. _., •._,•---~_!. __t_.t __ ·-~-·-e,k_·_,_·,~_._·_·-.wor._._-_--~_-_._~.·,·_,·~-··_• __•• _-·_•_._._• __,_._., •. _;-_, •._._._._··_.--•_·~ent• __ :_~.,_:_:_·_._·-·the·-·-~-C_._._._._._Q-~--_![_._.;m_··-·~-•~-·_._:_-_._._._~_:_·--_,t_.,·_ww_ •._.~,~-•.·-•--,;-,·_.~_=_·,·· .._.,••.__ ~_._~_'_._~,··_·.oo- .•_~---I·_·,·~-~,·._._._. ,·-·-~·,····--·_i_-___ •..•.•. b.•.m_._ili.·_·-•.•_·_._-•_us_-_ .•,L_-_._._m ,!_._._•_._l&lr•;__ ~J=~cii:!@:~:: • } ~~~ ~<>u-. • uu.~r•"~~-"~ _..,., Page2 -----LoG 0 EXCHANGE -----Dr.~· October 1990 How Soon They Forget better problem solvers both within the Logo environment and by David Moursund in other areas. Unfortunately, that is just not true. The research says that In this issue of LX, Dennis Harper provides a brief report such discovery of powerful ideas and transfer to other areas on Logo at the World Educational Computing Conference that does not occur without the help of well qualified teachers and was recently held in Australia. He reports: without an instructional environment explicitly designed to help increase ttansfer. (See Doug Clements' column, Search During one crowded session, Seymour Papen made and Research, in this issue.) In recent years, Seymour Papert some statements, filling in for one of the panelists. has repeatedly emphasized this point in the talks he has An Australian teacher asked SIGLogo president presented at conferences. Logo cannot stand by itself. Its Gary Stager, "Who was that guy?" When Gary told success in education depends on well qualified and motivated her it was Seymour Papert she replied, "How do you teachers who have a good understanding of what they are spell Papert?" working to accomplish as they place their students in a Logo environment. This statementreally struck a note with me. It suggests that the Australian teacher had enough interest to attend a Logo About two years ago, Sharon Yoder and I published a session, but was not familiar with the work of Seymour Papert series of articles in LX on Logo and problem solving. We and his seminal work in helping to create Logo. While it is emphasized that Logo provides a rich environment for the painful for long-time Logo users to admit this possibility, it explicit teaching of many important problem solving ideas. does reflect a maturation of Logo. Logo is an idea that We have continued to work on those ideas in the ensuing transcends its creators and early disciples. months. Most recently we completed two short books on these ideas: Introduction to Logo Writer and Problem Solving for Logo has come a long way in the past 20 years. It has Educators, and introduction to Logo Plus and Problem Solv­ made significant conuibutions to the overall field of comput­ ing for Educators The concepts needed to get started using ers in education, has been vastly changed and improved Logo and the explicit teaching of problem solving are woven through a process of continual formative and summative together throughout the books. evaluation, and has spread worldwide. Logo's ability to captivatenovicecomputerusingteachersremainsasstrongas These books are designed to be used in a two to three ever. It is obvious that Logo will continue to be a major force week introduction to Logo. The problem solving ideas in both in computer education for the foreseeable future. books are the same, and are independent of any particular version of Logo. If you are a teacher of teachers. ISTE would I would have liked to have had the chance to talk to the be happy to provide you with a free examination copy of one Australian teacher who was not familiar with Seymour Papert. of these books. Write to Sharon Yoder at ISTE and indicate I would have asked her about how she felt Logo could be used which one you would like to receive. Let her know that you to help her students. I wonder if she would display under­ read about this free offer in LX! standing of some of Seymour Papert's powerful ideas on creating learning environments in which students get better at Dave Moursund is Executive Officer ofiSTE, super­ problem solving? vises masters and doctoral programs in computers in education at the University of Oregon, and has This past summer I taught a course entitled Frontiers of written numerous books and articles in the area of Computers in Education. One of the topics we covered was computers in education. roles of computers in problem solving. The class got into a rather heated discussion about "pure" discovery-based learn­ Dave Moursund ing versus "guided" discovery versus direct instruction. One ISTE of my doctoral students had just finished a dissertation on the 1787 Agate Street issue of transfer of learning in problem solving, so I was Eugene. OR 97403 somewhat familiar with the current research and underlying BITNET: ISTE@Oregon ideas. Many Log<rusing educators seem to feel that if students are placed in a Logo environment, they will discover Sharon Yoder for themselves powerful ideas that will help them to become ISTE BITNET: YODER@Oregon October 1990 ··-·-----LOGO EXCHANGE -----1~ Page3 S~ould the' Turtle Go to Hjgh School? students with Logo experience who have some idea what the by Tom Lough language can really do. I really feel frustrated for those students, because they are in a position for some very special learning experiences that will never come to pass if they fmish Logo? Ah,.yes, the comp,uter language for children. high school, without ever invoking their Logo skills. Yes, Logo is the language for children. B utit comp~ier I hope you are as tired as I am of Logo not getting the is also the computer language for many other people, too. "respect" it deserves. What can and should we do about that? And I'm tired of it getting a bum rap! Why not write to CLIME for information about their organi­ zation? (10 Bogert Avenue, White Plains, NY 10606.) Get During the past few Il!Onths, I have been ma\Qng confer­ oneormoreoftheMITLogo books and show them to students ence presentations about the potential of Logo use in secon­ and secondary teachers. Learn something about LogoWriter dary education. In partieular, I discussed Logo possibilities Secondary or Logo PLUS. Try to find some way to encourage in secondary mathematics topics at tb,e1lilllual meeting of the high school students and their teachers. Students might be National Council of Teachers of Mathematics in Salt Lake surprised at how much high school learning they could ac­ City, and spoke on Logo use in secondary science and mathe" complish. High school teachers will most likely be flabber­ matics at the World Conference on Computers in Education gasted! in Sydney, Australia Then something just might begin to happen. And it's In both cases, the presentations were well attended, and about time. included those who were already using Logo as well as many who were not familiar with it In both presentations, the Until then, attendees gave a remarkably enthusiastic reception to the ideas and examples presented. When given an appropriate FD 100! introduction to Logo with relevant examples, these secon­ dary teachers appeared to be more than wiling to give it a try. Tom Lough Founding Editor I do not believe that my presentation was particularly POBox394 innovative. I simply reported my professional experiences Simsbury, CT 06070 and my assessment of Logo use at the higher grade levels.
Recommended publications
  • Image Encryption and Decryption Schemes Using Linear and Quadratic Fractal Algorithms and Their Systems
    Image Encryption and Decryption Schemes Using Linear and Quadratic Fractal Algorithms and Their Systems Anatoliy Kovalchuk 1 [0000-0001-5910-4734], Ivan Izonin 1 [0000-0002-9761-0096] Christine Strauss 2 [0000-0003-0276-3610], Mariia Podavalkina 1 [0000-0001-6544-0654], Natalia Lotoshynska 1 [0000-0002-6618-0070] and Nataliya Kustra 1 [0000-0002-3562-2032] 1 Department of Publishing Information Technologies, Lviv Polytechnic National University, Lviv, Ukraine [email protected], [email protected], [email protected], [email protected], [email protected] 2 Department of Electronic Business, University of Vienna, Vienna, Austria [email protected] Abstract. Image protection and organizing the associated processes is based on the assumption that an image is a stochastic signal. This results in the transition of the classic encryption methods into the image perspective. However the image is some specific signal that, in addition to the typical informativeness (informative data), also involves visual informativeness. The visual informativeness implies additional and new challenges for the issue of protection. As it involves the highly sophisticated modern image processing techniques, this informativeness enables unauthorized access. In fact, the organization of the attack on an encrypted image is possible in two ways: through the traditional hacking of encryption methods or through the methods of visual image processing (filtering methods, contour separation, etc.). Although the methods mentioned above do not fully reproduce the encrypted image, they can provide an opportunity to obtain some information from the image. In this regard, the encryption methods, when used in images, have another task - the complete noise of the encrypted image.
    [Show full text]
  • Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
    Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development.
    [Show full text]
  • Classical Math Fractals in Postscript Fractal Geometry I
    Kees van der Laan VOORJAAR 2013 49 Classical Math Fractals in PostScript Fractal Geometry I Abstract Classical mathematical fractals in BASIC are explained and converted into mean-and-lean EPSF defs, of which the .eps pictures are delivered in .pdf format and cropped to the prescribed BoundingBox when processed by Acrobat Pro, to be included easily in pdf(La)TEX, Word, … documents. The EPSF fractals are transcriptions of the Turtle Graphics BASIC codes or pro- grammed anew, recursively, based on the production rules of oriented objects. The Linden- mayer production rules are enriched by PostScript concepts. Experience gained in converting a TEX script into WYSIWYG Word is communicated. Keywords Acrobat Pro, Adobe, art, attractor, backtracking, BASIC, Cantor Dust, C curve, dragon curve, EPSF, FIFO, fractal, fractal dimension, fractal geometry, Game of Life, Hilbert curve, IDE (In- tegrated development Environment), IFS (Iterated Function System), infinity, kronkel (twist), Lauwerier, Lévy, LIFO, Lindenmayer, minimal encapsulated PostScript, minimal plain TeX, Minkowski, Monte Carlo, Photoshop, production rule, PSlib, self-similarity, Sierpiński (island, carpet), Star fractals, TACP,TEXworks, Turtle Graphics, (adaptable) user space, von Koch (island), Word Contents - Introduction - Lévy (Properties, PostScript program, Run the program, Turtle Graphics) Cantor - Lindenmayer enriched by PostScript concepts for the Lévy fractal 0 - von Koch (Properties, PostScript def, Turtle Graphics, von Koch island) Cantor1 - Lindenmayer enriched by PostScript concepts for the von Koch fractal Cantor2 - Kronkel Cantor - Minkowski 3 - Dragon figures - Stars - Game of Life - Annotated References - Conclusions (TEX mark up, Conversion into Word) - Acknowledgements (IDE) - Appendix: Fractal Dimension - Appendix: Cantor Dust Peano curves: order 1, 2, 3 - Appendix: Hilbert Curve - Appendix: Sierpiński islands Introduction My late professor Hans Lauwerier published nice, inspiring booklets about fractals with programs in BASIC.
    [Show full text]
  • Bachelorarbeit Im Studiengang Audiovisuelle Medien Die
    Bachelorarbeit im Studiengang Audiovisuelle Medien Die Nutzbarkeit von Fraktalen in VFX Produktionen vorgelegt von Denise Hauck an der Hochschule der Medien Stuttgart am 29.03.2019 zur Erlangung des akademischen Grades eines Bachelor of Engineering Erst-Prüferin: Prof. Katja Schmid Zweit-Prüfer: Prof. Jan Adamczyk Eidesstattliche Erklärung Name: Vorname: Hauck Denise Matrikel-Nr.: 30394 Studiengang: Audiovisuelle Medien Hiermit versichere ich, Denise Hauck, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „Die Nutzbarkeit von Fraktalen in VFX Produktionen“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen. Stuttgart, den 29.03.2019 2 Kurzfassung Das Ziel dieser Bachelorarbeit ist es, ein Verständnis für die Generierung und Verwendung von Fraktalen in VFX Produktionen, zu vermitteln. Dabei bildet der Einblick in die Arten und Entstehung der Fraktale
    [Show full text]
  • Fractals a Fractal Is a Shape That Seem to Have the Same Structure No Matter How Far You Zoom In, Like the figure Below
    Fractals A fractal is a shape that seem to have the same structure no matter how far you zoom in, like the figure below. Sometimes it's only part of the shape that repeats. In the figure below, called an Apollonian Gasket, no part looks like the whole shape, but the parts near the edges still repeat when you zoom in. Today you'll learn how to construct a few fractals: • The Snowflake • The Sierpinski Carpet • The Sierpinski Triangle • The Pythagoras Tree • The Dragon Curve After you make a few of those, try constructing some fractals of your own design! There's more on the back. ! Challenge Problems In order to solve some of the more difficult problems today, you'll need to know about the geometric series. In a geometric series, we add up a sequence of terms, 1 each of which is a fixed multiple of the previous one. For example, if the ratio is 2 , then a geometric series looks like 1 1 1 1 1 1 1 + + · + · · + ::: 2 2 2 2 2 2 1 12 13 = 1 + + + + ::: 2 2 2 The geometric series has the incredibly useful property that we have a good way of 1 figuring out what the sum equals. Let's let r equal the common ratio (like 2 above) and n be the number of terms we're adding up. Our series looks like 1 + r + r2 + ::: + rn−2 + rn−1 If we multiply this by 1 − r we get something rather simple. (1 − r)(1 + r + r2 + ::: + rn−2 + rn−1) = 1 + r + r2 + ::: + rn−2 + rn−1 − ( r + r2 + ::: + rn−2 + rn−1 + rn ) = 1 − rn Thus 1 − rn 1 + r + r2 + ::: + rn−2 + rn−1 = : 1 − r If we're clever, we can use this formula to compute the areas and perimeters of some of the shapes we create.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Understanding the Mandelbrot and Julia Set
    Understanding the Mandelbrot and Julia Set Jake Zyons Wood August 31, 2015 Introduction Fractals infiltrate the disciplinary spectra of set theory, complex algebra, generative art, computer science, chaos theory, and more. Fractals visually embody recursive structures endowing them with the ability of nigh infinite complexity. The Sierpinski Triangle, Koch Snowflake, and Dragon Curve comprise a few of the more widely recognized iterated function fractals. These recursive structures possess an intuitive geometric simplicity which makes their creation, at least at a shallow recursive depth, easy to do by hand with pencil and paper. The Mandelbrot and Julia set, on the other hand, allow no such convenience. These fractals are part of the class: escape-time fractals, and have only really entered mathematicians’ consciousness in the late 1970’s[1]. The purpose of this paper is to clearly explain the logical procedures of creating escape-time fractals. This will include reviewing the necessary math for this type of fractal, then specifically explaining the algorithms commonly used in the Mandelbrot Set as well as its variations. By the end, the careful reader should, without too much effort, feel totally at ease with the underlying principles of these fractals. What Makes The Mandelbrot Set a set? 1 Figure 1: Black and white Mandelbrot visualization The Mandelbrot Set truly is a set in the mathematica sense of the word. A set is a collection of anything with a specific property, the Mandelbrot Set, for instance, is a collection of complex numbers which all share a common property (explained in Part II). All complex numbers can in fact be labeled as either a member of the Mandelbrot set, or not.
    [Show full text]
  • Exploring the Effect of Direction on Vector-Based Fractals
    Exploring the Effect of Direction on Vector-Based Fractals Magdy Ibrahim and Robert J. Krawczyk College of Architecture Illinois Institute of Technology 3360 S. State St. Chicago, IL, 60616, USA Email: [email protected], [email protected] Abstract This paper investigates an approach to begin the study of fractals in architectural design. Vector-based fractals are studied to determine if the modification of vector direction in either the generator or the initiator will develop alternate fractal forms. The Koch Snowflake is used as the demonstrating fractal. Introduction A fractal is an object or quantity that displays self-similarity on all scales. The object need not exhibit exactly the same structure at all scales, but the same “type” of structures must appear on all scales [7]. Fractals were first discussed by Mandelbrot in the 1970s [4], but the idea was identified as early as 1925. Fractals have been investigated for their visual qualities as art, their relationship to explain natural processes, music, medicine, and in mathematics [5]. Javier Barrallo classified fractals [2] into six main groups depending on their type: 1. Fractals derived from standard geometry by using iterative transformations on an initial common figure. 2. IFS (Iterated Function Systems), this is a type of fractal introduced by Michael Barnsley. 3. Strange attractors. 4. Plasma fractals. Created with techniques like fractional Brownian motion. 5. L-Systems, also called Lindenmayer systems, were not invented to create fractals but to model cellular growth and interactions. 6. Fractals created by the iteration of complex polynomials. From the mathematical point of view, we can classify fractals into three major categories.
    [Show full text]
  • Furniture Design Inspired from Fractals
    169 Rania Mosaad Saad Furniture design inspired from fractals. Dr. Rania Mosaad Saad Assistant Professor, Interior Design and Furniture Department, Faculty of Applied Arts, Helwan University, Cairo, Egypt Abstract: Keywords: Fractals are a new branch of mathematics and art. But what are they really?, How Fractals can they affect on Furniture design?, How to benefit from the formation values and Mandelbrot Set properties of fractals in Furniture Design?, these were the research problem . Julia Sets This research consists of two axis .The first axe describes the most famous fractals IFS fractals were created, studies the Fractals structure, explains the most important fractal L-system fractals properties and their reflections on furniture design. The second axe applying Fractal flame functional and aesthetic values of deferent Fractals formations in furniture design Newton fractals inspired from them to achieve the research objectives. Furniture Design The research follows the descriptive methodology to describe the fractals kinds and properties, and applied methodology in furniture design inspired from fractals. Paper received 12th July 2016, Accepted 22th September 2016 , Published 15st of October 2016 nearly identical starting positions, and have real Introduction: world applications in nature and human creations. Nature is the artist's inspiring since the beginning Some architectures and interior designers turn to of creation. Despite the different artistic trends draw inspiration from the decorative formations, across different eras- ancient and modern- and the geometric and dynamic properties of fractals in artists perception of reality, but that all of these their designs which enriched the field of trends were united in the basic inspiration (the architecture and interior design, and benefited nature).
    [Show full text]
  • Ontologia De Domínio Fractal
    MÉTODOS COMPUTACIONAIS PARA A CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil. Orientadores: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Rio de Janeiro Agosto de 2011 MÉTODOS COMPUTACIONAIS PARA CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL. Examinada por: ________________________________________________ Prof. Nelson Francisco Favilla Ebecken, D.Sc. ________________________________________________ Prof. Luiz Bevilacqua, Ph.D. ________________________________________________ Prof. Marta Lima de Queirós Mattoso, D.Sc. ________________________________________________ Prof. Fernanda Araújo Baião, D.Sc. RIO DE JANEIRO, RJ - BRASIL AGOSTO DE 2011 Gersberg, Ivo Wolff Métodos computacionais para a construção da Ontologia de Domínio Fractal/ Ivo Wolff Gersberg. – Rio de Janeiro: UFRJ/COPPE, 2011. XIII, 144 p.: il.; 29,7 cm. Orientador: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2011. Referências Bibliográficas: p. 130-133. 1. Ontologias. 2. Mineração de Textos. 3. Fractal. 4. Metodologia para Construção de Ontologias de Domínio. I. Ebecken, Nelson Francisco Favilla et al . II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil. III. Titulo. iii À minha mãe e meu pai, Basia e Jayme Gersberg. iv AGRADECIMENTOS Agradeço aos meus orientadores, professores Nelson Ebecken e Luiz Bevilacqua, pelo incentivo e paciência.
    [Show full text]
  • Using Fractal Dimensions for Characterizing Intra-Urban Diversity
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Thomas, Isabelle; Keersmaecker, Marie-Laurence De; Frankhauser, Pierre Conference Paper Using fractal dimensions for characterizing intra- urban diversity. The example of Brussels 43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland Provided in Cooperation with: European Regional Science Association (ERSA) Suggested Citation: Thomas, Isabelle; Keersmaecker, Marie-Laurence De; Frankhauser, Pierre (2003) : Using fractal dimensions for characterizing intra-urban diversity. The example of Brussels, 43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New Europe", 27th - 30th August 2003, Jyväskylä, Finland, European Regional Science Association (ERSA), Louvain-la-Neuve This Version is available at: http://hdl.handle.net/10419/115977 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Rafael De Andrade Sousa Utilização De Múltiplas
    RAFAEL DE ANDRADE SOUSA UTILIZAÇÃO DE MÚLTIPLAS REPRESENTAÇÕES EXTERNAS PARA CONSTRUÇÃO DE FRACTAIS EM AMBIENTES EXPLORATÓRIOS DE APRENDIZAGEM Proposta de Dissertação de Mestrado apre- sentada ao Programa de Pós-Graduação em Informática, Setor de Ciências Exatas, Uni- versidade Federal do Paraná. Orientador: Prof. Dr. Alexandre Ibrahim Direne CURITIBA 2010 RAFAEL DE ANDRADE SOUSA UTILIZAÇÃO DE MÚLTIPLAS REPRESENTAÇÕES EXTERNAS PARA CONSTRUÇÃO DE FRACTAIS EM AMBIENTES EXPLORATÓRIOS DE APRENDIZAGEM Dissertação apresentada como requisito par- cial à obtenção do grau de Mestre. Pro- grama de Pós-Graduação em Informática, Setor de Ciências Exatas, Universidade Fe- deral do Paraná. Orientador: Prof. Dr. Alexandre Ibrahim Direne CURITIBA 2010 RAFAEL DE ANDRADE SOUSA UTILIZAÇÃO DE MÚLTIPLAS REPRESENTAÇÕES EXTERNAS PARA CONSTRUÇÃO DE FRACTAIS EM AMBIENTES EXPLORATÓRIOS DE APRENDIZAGEM Dissertação apresentada como requisito par- cial à obtenção do grau de Mestre. Pro- grama de Pós-Graduação em Informática, Setor de Ciências Exatas, Universidade Fe- deral do Paraná. Orientador: Prof. Dr. Alexandre Ibrahim Direne CURITIBA 2010 RAFAEL DE ANDRADE SOUSA UTILIZAÇÃO DE MÚLTIPLAS REPRESENTAÇÕES EXTERNAS PARA CONSTRUÇÃO DE FRACTAIS EM AMBIENTES EXPLORATÓRIOS DE APRENDIZAGEM Dissertação aprovada como requisito parcial à obtenção do grau de Mestre no Programa de Pós-Graduação em Informática da Universidade Federal do Paraná, pela Comissão formada pelos professores: Orientador: Prof. Dr. Alexandre Ibrahim Direne Departamento de Informática, UFPR Prof. Dr. Davidson Cury Departamento de Informática, Universidade Federal do Espírito Santo Prof. Dr. Andrey Ricardo Pimentel Departamento de Informática, Universidade Federal do Paraná Curitiba, 30 de agosto de 2010 i AGRADECIMENTOS A Deus, pela imerecida Graça que tenho recebido desde o meu nascimento pois até aqui me ajudou o Senhor.
    [Show full text]