Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using the LUMI-CELL ER Bioassay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating Non-Targeted Screening and Accurate Quantitation of Trace Surface Water Contaminants Using High-Resolution Mass Spectrometry
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2018 3:00 PM Investigating non-targeted screening and accurate quantitation of trace surface water contaminants using high-resolution mass spectrometry Lucas M. Morrison The University of Western Ontario Supervisor Sumarah, Mark W. The University of Western Ontario Co-Supervisor Yeung, Ken K-C. The University of Western Ontario Graduate Program in Chemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Lucas M. Morrison 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Analytical Chemistry Commons, and the Environmental Chemistry Commons Recommended Citation Morrison, Lucas M., "Investigating non-targeted screening and accurate quantitation of trace surface water contaminants using high-resolution mass spectrometry" (2018). Electronic Thesis and Dissertation Repository. 5612. https://ir.lib.uwo.ca/etd/5612 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The human impact on surface water is a growing concern and the chemical surveying of contaminants including pharmaceuticals and pesticides is currently lacking. Neonicotinoids in particular, are among the most widely used insecticides that have prompted environmental concern and require monitoring. Chemical contaminants in environmental water samples are commonly analyzed by targeted tandem mass spectrometry. However, this requires a prior knowledge of the contaminants in the area of interest. Here, surface water samples were screened by utilizing optimized data-independent acquisition (DIA) methods and the spectra were databased for future retrospective analysis. -
COMBINED LIST of Particularly Hazardous Substances
COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane -
OECD Environment Health and Safety Publications Series on Testing and Assessment No
OECD Environment Health and Safety Publications Series on Testing and Assessment No. 21 Detailed Review Paper Appraisal of Test Methods for Sex Hormone Disrupting Chemicals Environment Directorate ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Paris May 2001 1 Also Published in the Series Testing and Assessment: No. 1, Guidance Document for the Development of OECD Guidelines for Testing of Chemicals (1993; reformatted 1995) No. 2, Detailed Review Paper on Biodegradability Testing (1995) No. 3, Guidance Document for Aquatic Effects Assessment (1995) No. 4, Report of the OECD Workshop on Environmental Hazard/Risk Assessment (1995) No. 5, Report of the SETAC/OECD Workshop on Avian Toxicity Testing (1996) No. 6, Report of the Final Ring-test of the Daphnia magna Reproduction Test (1997) No. 7, Guidance Document on Direct Phototransformation of Chemicals in Water (1997) No. 8, Report of the OECD Workshop on Sharing Information about New Industrial Chemicals Assessment (1997) No. 9 Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application (1997) No. 10, Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data (1998) No. 11, Detailed Review Paper on Aquatic Testing Methods for Pesticides and industrial Chemicals (1998) No. 12, Detailed Review Document on Classification Systems for Germ Cell Mutagenicity in OECD Member Countries (1998) No. 13, Detailed Review Document on Classification Systems for Sensitising Substances in OECD Member Countries 1998) No. 14, Detailed Review Document on Classification Systems for Eye Irritation/Corrosion in OECD Member Countries (1998) No. 15, Detailed Review Document on Classification Systems for Reproductive Toxicity in OECD Member Countries (1998) No. -
WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/107 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A 61 47/10 (2006.0V) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US2012/034361 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 20 April 2012 (20.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/480,259 28 April 201 1 (28.04.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): BOARD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, OF REGENTS, THE UNIVERSITY OF TEXAS SYS¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TEM [US/US]; 201 West 7th St., Austin, TX 78701 (US). -
Endocrine Disruptors
Endocrine disruptors Afke Groen & Christine Neuhold The RECIPES project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824665 Authors Afke Groen, Maastricht University* Christine Neuhold, Maastricht University * currently works at the think tank Mr. Hans van Mierlo Stichting With thanks to our two anonymous interviewees Manuscript completed in April 2020 Document title WP2 Case study: Endocrine disruptors Work Package WP2 Document Type Deliverable Date 13 April 2020 Document Status Final version Acknowledgments & Disclaimer This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824665. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the European Commission. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. WP2 Case study: Endocrine disruptors i Abstract Endocrine disrupting chemicals (EDCs) are at the centre stage of a scientific and regulatory controversy. Given the complexities, ambiguities and particularly the uncertainties surrounding the hazards of EDCs, the precautionary principle is of utmost relevance to the case. Even the definition of EDCs remains much contested, as do the scientific processes and methods through which to identify them. On the one hand, there is considerable societal pressure to regulate ECDs ‘now’. On the other hand, this quick regulation is often impossible as the limited evidence available does not suffice in the context of traditional EU scientific risk assessment. -
Prenatal Testosterone Supplementation Alters Puberty Onset, Aggressive Behavior, and Partner Preference in Adult Male Rats
J Physiol Sci (2012) 62:123–131 DOI 10.1007/s12576-011-0190-7 ORIGINAL PAPER Prenatal testosterone supplementation alters puberty onset, aggressive behavior, and partner preference in adult male rats Cynthia Dela Cruz • Oduvaldo C. M. Pereira Received: 26 October 2011 / Accepted: 19 December 2011 / Published online: 11 January 2012 Ó The Physiological Society of Japan and Springer 2012 Abstract The objective of this study was to investigate because pregnant women exposed to hyperandrogenemia whether prenatal exposure to testosterone (T) could change and then potentially exposing their unborn children to ele- the body weight (BW), anogenital distance (AGD), ano- vated androgen levels in the uterus can undergo alteration of genital distance index (AGDI), puberty onset, social normal levels of T during the sexual differentiation period, behavior, fertility, sexual behavior, sexual preference, and T and, as a consequence, affect the reproductive and behavior level of male rats in adulthood. To test this hypothesis, patterns of their children in adulthood. pregnant rats received either 1 mg/animal of T propionate diluted in 0.1 ml peanut oil or 0.1 ml peanut oil, as control, Keywords Aggressive behavior Á Male rats Á on the 17th, 18th and 19th gestational days. No alterations in Prenatal testosterone Á Puberty onset Á Sexual behavior Á BW, AGD, AGDI, fertility, and sexual behavior were Sexual differentiation observed (p [ 0.05). Delayed onset of puberty (p \ 0.0001), increased aggressive behavior (p [ 0.05), altered pattern of sexual preference (p \ 0.05), and reduced T plasma level Introduction (p \ 0.05) were observed for adult male rats exposed pre- natally to T. -
The “Notice”) Is Provided to You Pursuant to and in Compliance with California Health and Safety Code Section 25249.7(D)
NOTICE OF VIOLATION California Safe Drinking Water and Toxic Enforcement Act January 17, 2020 This Notice of Violation (the “Notice”) is provided to you pursuant to and in compliance with California Health and Safety Code Section 25249.7(d). • For general information regarding the California Safe Drinking Water and Toxic Enforcement Act (“Proposition 65”), please see the attached summary prepared by California's Office of Environmental Health Hazard Assessment. • This Notice is provided by Maria Elizabeth Romero, a concerned citizen of the State of California and resident of Monterey County. Description of Violation: • Violators: LGC Standards Inc. LGC North America, Inc. VHG Labs, Incorporated LGC Limited (collectively, “LGC”) • Time Period of Exposure: The violations have been occurring since at latest January 17, 2018, and are ongoing. • Statutory Authority: This Notice is provided for failure to comply with the warning requirements of Proposition 65, found at California Health and Safety Code section 25249.6. • Chemicals Involved: The chemicals involved in these violations are listed in Attachment B hereto, and have been identified by the State of California as causing cancer or reproductive harm. • Type of Product: All products offered for sale by LGC on the Web site at https://us.lgcstandards.com whose primary component is a chemical listed on Attachment B (“Covered Products”). • Description of Exposure: Student use of the Covered Products in academic laboratories results in human exposure to toxic chemicals via dermal contact, eye contact, ingestion, inhalation, and accidental injection. No clear and reasonable warning of toxicity is provided by LGC in connection with the Covered Products. / / Notice of Violation Romero / LGC Page 2 Resolution of Noticed Claim: Within the next 60 days, California's Office of the Attorney General and other government attorneys may choose to bring an enforcement action against you in this matter. -
California Proposition 65 (Prop65)
20 NOVEMBER 2018 To Whom It May Concern: Certificate of Compliance California Proposition 65 California’s Proposition 65 entitles California consumers to special warnings for products that contain chemicals known to the state of California to cause cancer and birth defects or other reproductive harm if those products expose consumers to such chemicals above certain threshold levels. This is to certify that Alliance Memory comply with Safe Drinking Water and Toxic Enforcement Act of 1986, commonly known as California Proposition 65, that are ‘known to the state to cause cancer or reproductive toxicity’ as of December 29, 2017, by following the labelling guidelines set out therein. Alliance Memory labelling system clearly states a ‘Prop65 warning’ as and when necessary, on product packaging that is destined for the state of California, USA. This document certifies that to the best of our current knowledge and belief and under normal usage, Alliance Memory’s IC products are in compliance with California Proposition 65 – The Safe Drinking Water and Toxic Enforcement Act, 1986) and do not contain chemical elements of those listed within the California Proposition 65 chemical listing as shown below. Signature : Date: 20 November 2018 Name : Kim Bagby Title : Director QRA Department/Alliance Memory California Proposition 65 list of chemicals. The following is a list of chemicals published as a requirement of Safe Drinking Water and Toxic Enforcement Act of 1986, commonly known as California Proposition 65, that are ‘known to the state to cause -
EPA Method 525.2
METHOD 525.2 DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER BY LIQUID-SOLID EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY Revision 2.0 J.W. Eichelberger, T.D. Behymer, W.L. Budde - Method 525, Revision 1.0, 2.0, 2.1 (1988) J.W. Eichelberger, T.D. Behymer, and W.L. Budde - Method 525.1 Revision 2.2 (July 1991) J.W. Eichelberger, J.W. Munch, and J.A. Shoemaker Method 525.2 Revision 1.0 (February, 1994) J.W. Munch - Method 525.2, Revision 2.0 (1995) NATIONAL EXPOSURE RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 525.2-1 METHOD 525.2 DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER BY LIQUID-SOLID EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY 1.0 SCOPE AND APPLICATION 1.1 This is a general purpose method that provides procedures for determination of organic compounds in finished drinking water, source water, or drinking water in any treatment stage. The method is applicable to a wide range of organic compounds that are efficiently partitioned from the water sample onto a C18 organic phase chemically bonded to a solid matrix in a disk or cartridge, and sufficiently volatile and thermally stable for gas chromatog-raphy. Single-laboratory accuracy and precision data have been determined with two instrument systems using both disks and cartridges for most of the following compounds: Chemical Abstract Services Analyte MW1 Registry Number Acenaphthylene 152 208-96-8 Alachlor 269 15972-60-8 Aldrin 362 309-00-2 Ametryn 227 -
Health Effects Support Document for 1,1-Dichloro-2,2- Bis(P-Chlorophenyl)Ethylene (DDE)
Health Effects Support Document for 1,1-Dichloro-2,2- bis(p-chlorophenyl)ethylene (DDE) Health Effects Support Document for 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 www.epa.gov/safewater/ccl/pdf/DDE.pdf EPA Document Number EPA-822-R-08-003 January, 2008 Printed on Recycled Paper DDE — January, 2008 iv FOREWORD The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the Environmental Protection Agency (EPA) to establish a list of contaminants to aid the Agency in regulatory priority setting for the drinking water program. In addition, the SDWA requires EPA to make regulatory determinations for no fewer than five contaminants by August 2001 and every five years thereafter. The criteria used to determine whether or not to regulate a chemical on the Contaminant Candidate List (CCL) are the following: • The contaminant may have an adverse effect on the health of persons. • The contaminant is known to occur or there is a substantial likelihood that the contaminant will occur in public water systems with a frequency and at levels of public health concern. • In the sole judgment of the Administrator, regulation of such contaminant presents a meaningful opportunity for health risk reduction for persons served by public water systems. The Agency’s findings for all three criteria are used in making a determination to regulate a contaminant. The Agency may determine that there is no need for regulation when a contaminant fails to meet one of the criteria. -
Report on Pesticide Rapid Assessments
REPORT ON PESTICIDE RAPID ASSESSMENTS Minnesota Department of Health This report was prepared by the Minnesota Department of Health (MDH), Drinking Water Contaminants of Emerging Concern Program; Dan Balluff, Alexandra Barber, Jim Jacobus, Sarah Johnson, and Pam Shubat. The Pesticide Rapid Assessment Project was made possible by funds from the Clean Water Fund, from the Clean Water, Land and Legacy Amendment. For more information: Drinking Water Contaminants of Emerging Concern Program Phone: 651-201-4899 Website: www.health.state.mn.us/cec Email: [email protected] December 2014 Table of Contents Executive Summary 4 Background 5 Methods for Conducting Rapid Assessments 6 Results 10 Discussion 13 Table 1: Pesticides listed by MDA for which current assessments were available or are pending 16 Table 2: Pesticide degradates for which MDH recommends the non-cancer rapid assessment of a surrogate chemical 17 References 18 Appendix A: Rapid Assessments Table 20 Executive Summary The Minnesota Department of Health (MDH) Health Risk Assessment Unit developed a new, rapid way to assess health risks of chemicals in drinking water. Rapid assessments were completed for 159 pesticides selected by the Minnesota Department of Agriculture or Minnesota Department of Health. The chemicals were selected because no MDH drinking water guidance was available or the guidance was outdated. The result of a rapid assessment is an amount of chemical in water that is unlikely to harm people who drink the water. MDH used information on toxic (harmful) effects of pesticides and risk assessment methods used by MDH for other types of drinking water guidance. The values that result from the rapid assessments are likely to be low compared to the result MDH would produce from an in-depth and lengthy review of the same chemical. -
1 of 3 GC+LC-USA
Updated: 07/18/2016 1 of 3 GC+LC-USA Limit of Quantitation (LOQ): 0.010 mg/kg (ppm) Sample Types: Low Fat Content Samples Minimum Sample Size: 100 grams (~1/4 pound). Certain products require more for better sample representation. Instrument: GC-MS/MS and LC-MS/MS Turnaround: 24-48 hours Accreditation: Part of AGQ USA's ISO/IEC 17025 Accreditation Scope 4,4'-Dichlorobenzophenone Bupirimate Cyantraniliprole Diflufenican Abamectin Buprofezin Cyazofamid Dimethoate Acephate Butachlor Cycloate Dimethoate (Sum) Acequinocyl Butocarboxim Cycloxydim Dimethomorph Acetamiprid Butralin Cyflufenamid Diniconazole Acetochlor Cadusafos Cyfluthrin Dinocap Acrinathrin Captafol Cymoxanil Dinotefuran Alachlor Captan Cyproconazole Diphenylamine Aldicarb Captan (Sum) Cyprodinil Disulfoton Aldicarb (Sum) Carbaryl Cyromazine Disulfoton (Sum) Aldicarb-sulfone Carbofuran DDD-o,p Disulfoton-sulfone Aldicarb-sulfoxide Carbofuran-3-hydroxy DDD-p,p +DDT-o,p Disulfoton-sulfoxide Aldrin Carbophenothion DDE-o,p Ditalimfos Ametryn Carbosulfan DDE-p,p Diuron Amitraz Carboxine DDT (Sum) Dodemorph Atrazine Carfentrazone-ethyl DDT-p,p Dodine Azadirachtin Chinomethionat DEET Emamectin Benzoate Azamethiphos Chlorantraniliprole Deltamethrin Endosulfan (A+B+Sulf) Azinphos-ethyl Chlordane Demeton Endosulfan Alfa Azinphos-methyl Chlordane Trans Demeton-S-methyl-sulfone Endosulfan Beta Azoxystrobin Chlorfenapyr Desmedipham Endosulfan Sulfate Benalaxyl Chlorfenson Diafenturion Endrin Ben-Carb-TPM (Sum) Chlorfenvinphos Dialifos EPN Bendiocarb Chlorfluazuron Diazinon Epoxiconazole