OECD Environment Health and Safety Publications Series on Testing and Assessment No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multi-Scale Impact of Chronic Exposure to Environmental Concentrations Of
Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta Romain Colpaert, Pierre-Henri Villard, Laetitia de Jong, Marina Mambert, Karim Benbrahim, Joelle Abraldes, Claire Cerini, Valérie Pique, Maxime Robin, Xavier Moreau To cite this version: Romain Colpaert, Pierre-Henri Villard, Laetitia de Jong, Marina Mambert, Karim Benbrahim, et al.. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. Environmental Science and Pollution Research, Springer Verlag, 2020, 27 (33), pp.41052-41062. 10.1007/s11356-019-06859-4. hal-02451113 HAL Id: hal-02451113 https://hal-amu.archives-ouvertes.fr/hal-02451113 Submitted on 23 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. Romain COLPAERT1, Pierre-Henri VILLARD1, Laetitia DE JONG1, Marina MAMBERT1, Karim BENBRAHIM1, Joelle ABRALDES1, Claire CERINI2, Valérie PIQUE1, Maxime ROBIN1, Xavier MOREAU1 1 : Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France 2 : Aix Marseille Univ, Inserm U1263, C2VN, Marseille, France Corresponding author: email : [email protected] phone : +33-(0)4-91-83-56-38 Abstract Chlordecone (CLD) is an organochlorine pesticide widely used by the past to control pest insects in banana plantations in the French West Indies. -
Investigating Non-Targeted Screening and Accurate Quantitation of Trace Surface Water Contaminants Using High-Resolution Mass Spectrometry
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2018 3:00 PM Investigating non-targeted screening and accurate quantitation of trace surface water contaminants using high-resolution mass spectrometry Lucas M. Morrison The University of Western Ontario Supervisor Sumarah, Mark W. The University of Western Ontario Co-Supervisor Yeung, Ken K-C. The University of Western Ontario Graduate Program in Chemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Lucas M. Morrison 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Analytical Chemistry Commons, and the Environmental Chemistry Commons Recommended Citation Morrison, Lucas M., "Investigating non-targeted screening and accurate quantitation of trace surface water contaminants using high-resolution mass spectrometry" (2018). Electronic Thesis and Dissertation Repository. 5612. https://ir.lib.uwo.ca/etd/5612 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The human impact on surface water is a growing concern and the chemical surveying of contaminants including pharmaceuticals and pesticides is currently lacking. Neonicotinoids in particular, are among the most widely used insecticides that have prompted environmental concern and require monitoring. Chemical contaminants in environmental water samples are commonly analyzed by targeted tandem mass spectrometry. However, this requires a prior knowledge of the contaminants in the area of interest. Here, surface water samples were screened by utilizing optimized data-independent acquisition (DIA) methods and the spectra were databased for future retrospective analysis. -
ECO-Ssls for Pahs
Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1 -
2019 AAPLOG Position Statement on Abortion Pill Reversal
2019 AAPLOG Position Statement on Abortion Pill Reversal Some women change their mind about abortion after taking the first drug of the abortion regimen. For those women, Abortion Pill Rescue offers a medically sound choice to attempt to reverse the effects of Mifepristone, and to save their baby. The American Association of Pro-Life Obstetricians and Gynecologists strongly supports efforts to require all women presenting for abortion to be given information about abortion pill reversal as part of informed consent prior to abortion. Biological Background on the Chemical Abortion Regimen and Abortion Pill Reversal The chemical abortion regimen consists of two drugs: Mifeprex (a.k.a. mifepristone or RU-486) and Cytotec (misoprostol). Mifeprex is the first drug developed in a class of drugs called “selective progesterone receptor blockers”. This class also includes Ella (ulipristal) and onapristone among others. Mifeprex is the first drug approved by the FDA for inducing abortion. However, Mifeprex by itself is only effective at accomplishing embryo demise about 75% of the time1. So, roughly one out of four women who take Mifeprex alone will have an unborn child in utero who continues to live. So, in order to increase the number of women who complete the abortion, a second drug, Cytotec (misoprostol), is administered to the woman. Cytotec is of the class of drugs known as prostaglandins. Other prostaglandins can also be used for this purpose (e.g. gemeprost) Prostaglandins cause the uterus to contract, forcing the expulsion of the unborn -
Effect of Surfactant–Bile Interactions on the Solubility of Hydrophobic
Article Cite This: Mol. Pharmaceutics 2018, 15, 5741−5753 pubs.acs.org/molecularpharmaceutics Effect of Surfactant−Bile Interactions on the Solubility of Hydrophobic Drugs in Biorelevant Dissolution Media Zahari Vinarov,*,† Vladimir Katev,† Nikola Burdzhiev,‡ Slavka Tcholakova,† and Nikolai Denkov† † Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria ‡ Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria *S Supporting Information ABSTRACT: Biorelevant dissolution media (BDM) methods are commonly employed to investigate the oral absorption of poorly water-soluble drugs. Despite the significant progress in this area, the effect of commonly employed pharmaceutical excipients, such as surfactants, on the solubility of drugs in BDM has not been characterized in detail. The aim of this study is to clarify the impact of surfactant−bile interactions on drug solubility by using a set of 12 surfactants, 3 model hydrophobic drugs (fenofibrate, danazol, and progesterone) and two types of BDM (porcine bile extract and sodium taurodeoxycholate). Drug precipitation and sharp nonlinear decrease in the solubility of all studied drugs is observed when drug-loaded ionic surfactant micelles are introduced in solutions of both BDM, whereas the drugs remain solubilized in the mixtures of nonionic polysorbate surfactants + BDM. One-dimensional and diffusion-ordered 1H NMR spectroscopy show that mixed bile salt + surfactant micelles with low drug solubilization capacity are formed for the ionic surfactants. On the other hand, separate surfactant-rich and bile salt-rich micelles coexist in the nonionic polysorbate surfactant + bile salt mixtures, explaining the better drug solubility in these systems. -
(A) Sources, Including As Appropriate (Provide Summary Information
UNEP/POPS/POPRC.1/4 Format for submitting pursuant to Article 8 of the Stockholm Convention the information specified in Annex E of the Convention Introductory information Name of the submitting Party/observer NGO Observer: Pesticide Action Network on behalf of the International POPs Elimination Network (IPEN) Contact details Clare Butler Ellis PhD, M.Inst.P, C.Env. Pesticide Action Network UK [email protected] Joseph DiGangi, PhD Environmental Health Fund +001-312-566-0985 [email protected] Chemical name Chlordecone Chemical name: 1,1a,3,3a,4,5,5,5a,5b,6-decachloro-octahydro-1,3,4-metheno-2H- cyclobuta[cd]pentalen-2-one CAS=143-50-0 Common trade names: GC 1189, Kepone, Merex Synonyms: Chlordecone, Chlordecone Kepone, Decachloroketone, Decachlorooctahydro-1,3,4-metheno-2H-cyclobuta(cd)pentalen-2-one, Decachloropentacyclo(5.3.0.0.0.0 2,6,4,10,5,9)decane-3-one, Decachlorotetracyclodecanone decachlorooctahydro- , Date of submission 27 January 2006 (a) Sources, including as appropriate (provide summary information and relevant references) (i) Production data: Quantity 1 “Chlordecone is no longer produced commercially in the United States. Between 1951 and 1975, approximately 3.6 million pounds (1.6 million kg) of chlordecone were produced in the United States (Epstein 1978). During this period, Allied Chemical Annex E information on chlordecone 1 UNEP/POPS/POPRC.1/4 Company produced approximately 1.8 million pounds (816,500 kg) of chlordecone at plants in Claymont, Delaware; Marcus Hook, Pennsylvania and Hopewell, Virginia. In 1974, because of increasing demand for chlordecone and a need to use their facility in Hopewell, Virginia, for other purposes, Allied Chemical transferred its chlordecone manufacturing to Life Sciences Products Company (EPA 1978b). -
Research Article Effect of Chlordecone on The
NorCal Open Access Publications Journal of Aquatic Research and NORCAL Marine Sciences OPEN ACCESS PUBLICATION Volume 2; Issue 2 Asifa KP and Chitra KC Research Article ISSN 2639-4618 Effect of Chlordecone on the Reproductive Potential of the Cichlid Fish, Pseudetroplus Maculatus (Bloch, 1795) Asifa KP, Chitra KC* Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Kerala, India. *Corresponding author: Chitra KC, Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Kerala, India. Email: [email protected] Received Date: 16 March, 2019; Accepted Date: 03 May, 2019; Published Date: 17 May, 2019 Abstract Introduction The present study was undertaken to evaluate that chlordecone, During the past few decades, large number of environmental an organochlorine pesticide, possessing estrogenic properties contaminants such as, pesticides, pharmaceutical drugs, plas- are known to influence the reproductive potential of the cich- tic products, natural phytochemicals etc. has been continu- lid fish, Pseudetroplus maculatus. Chlordecone at two sublethal ously released into various compartments of both terrestrial concentrations, 3.5 and 7µg/L, were exposed to fish for 4, 7, 15 and aquatic ecosystems, which are known to disrupt the en- and 30 days in order to evaluate the level of vitellogenin, main- docrine system of animals, including humans. Such chemicals taining the control groups. Vitellogenin concentrations were are called endocrine-disrupting chemicals (EDCs), which can measured in both male and female fishes by using indirect end- interfere with biosynthesis, transport, action, metabolism and points, such as alkali-labile phosphoprotein (ALP), total pro- removal of various hormones in the body resulting in varia- tein and calcium concentrations in the blood plasma. -
Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using the LUMI-CELL ER Bioassay
DEVELOPMENTAL AND REPRODUCTIVE TOXICITY Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using The LUMI-CELL ER Bioassay John D. Gordon1, Andrew C: Chu1, Michael D. Chu2, Michael S. Denison3, George C. Clark1 1Xenobiotic Detection Systems, Inc., 1601 E. Geer St., Suite S, Durham, NC 27704, USA 2Alta Analytical Perspectives, 2714 Exchange Drive, Wilmington, NC 28405, USA 3Dept. of Environmental Toxicology, Meyer Hall, Univ. of California, Davis; Davis, CA 95616 USA Introduction Organochlorine pesticides are found in many ecosystems worldwide as result of agricultural and industrial activities and exist as complex mixtures. The use of these organochlorine pesticides has resulted in the contamination of lakes and streams, and eventually the animal and human food chain. Many of these pesticides, such as pp ’-DDT, pp ’-DDE, Kepone, Vinclozolin, and Methoxychlor (a substitute for the banned DDT), have been described as putative estrogenic endocrine disruptors, and act by mimicking endogenous estrogen 1-3 . Estrogenic compounds can have a significant detrimental effect on the endocrine and reproductive systems of both human and other animal populations 4 . Previous studies have shown a strong association between several EDCs (17p-Estradiol, DES, Zeralanol, Zeralenone, Coumestrol, Genistein, Biochanin A, Diadzein, Naringenin, Tamoxifin) and estrogenic activity via uterotropic assay, cell height, gland number, increased lactoferrin, and a transcriptional activity assay using BG1Luc4E2 cells4 . Some other examples of the effects of these EDCs are: decreased reproductive success and feminization of males in several wildlife species; increased hypospadias along with reductions in sperm counts in men; increase in the incidence of human breast and prostate cancers; and endometriosis 3-5 . -
In Silico Pharmacodynamics, Toxicity Profile and Biological Activities of the Saharan Medicinal Plant Limoniastrum Feei
Brazilian Journal of Pharmaceutical Sciences Article http://dx.doi.org/10.1590/s2175-97902017000300061 In silico pharmacodynamics, toxicity profile and biological activities of the Saharan medicinal plant Limoniastrum feei Ouahab Ammar* Department of Pharmacy, Faculty of Medical Sciences, University of Batna 2, Algeria In-silico study was performed to find the pharmacodynamics, toxicity profiles and biological activities of three phytochemicals isolated from Limoniastrum feei (Plumbagenaceae). Online pharmacokinetic tools were used to estimate the potential of Quercetin, kaempferol-3-O-β-D-glucopyranoside (astragalin) and quercitin-7-O-β-D-glucopyranoside as specific drugs. Then the prediction of potential targets of these compounds were investigated using PharmMapper. Auto-Dock 4.0 software was used to investigate the different interactions of these compounds with the targets predicted earlier. The permeability of quercetin s rule of five. Hematopoietic prostaglandin (PG) D׳ was found within the range stated by Lipinski synthase (HPGDS), farnesyl diphosphate synthetase (FPPS) and the deoxycytidine kinase (DCK) were potential targets for quercetin, astragalin and quercetin 7, respectively. Quercetin showed antiallergic and anti-inflammatory activity, while astragalin and quercetin 7 were predicted to have anticancer activities. The activity of Astragalin appeared to be mediated by FPPS inhibition. The inhibition of DCK was predicted as the anticancer mechanisms of quercetin 7. The compounds showed interesting interactions and satisfactory binding energies when docked into their targets. These compounds are proposed to have activities against a variety of human aliments such as allergy, tumors, muscular dystrophy, and diabetic cataracts. Keywords: Limoniastrum feei/pharmacokinetics. Limoniastrum feei/biological activity. Quercetin. Astragalin. Quercetin 7. Medicinal plants. Molecular docking. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0299054 A1 Chandar Et Al
US 20080299054A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0299054 A1 Chandar et al. (43) Pub. Date: Dec. 4, 2008 (54) PERSONAL CARE COMPOSITIONS WITH Publication Classification ENHANCED FRAGRANCE DELVERY (51) Int. Cl. (75) Inventors: Prem Chandar, Closter, NJ (US); A6IR 8/34 (2006.01) Lin Yang, Woodbridge, CT (US) A6II 3/14 (2006.01) A6II 3/17 (2006.01) Correspondence Address: UNILEVER PATENT GROUP (52) U.S. Cl. .............. 424/54; 424/59: 424/65; 424/70.1; 800 SYLVANAVENUE, AG West S. Wing 514/588 ENGLEWOOD CLIFFS, NJ 07632-3100 (US) (57) ABSTRACT (73) Assignee: CONOPCO, INC., d/b/a UNILEVER, Englewood Cliffs, NJ A personal care product is provided which includes a fra (US) grance, a Substituted urea and a quaternary ammonium salt. The Substituted urea and quaternary ammonium salt operate (21) Appl. No.: 11/755,009 together as a scent boosting system to enhance Volatilization offragrance components upon the personal care composition (22) Filed: May 30, 2007 being first applied to human skin or hair. US 2008/0299054 A1 Dec. 4, 2008 PERSONAL CARE COMPOSITIONS WITH structure AB, wherein A is a cationic charged compo ENHANCED FRAGRANCE DELVERY nent of the salt AB, B is an anionic charged component of the salt AB, and BACKGROUND OF THE INVENTION 0013 A has a single quaternized nitrogen atom, at least two hydroxy groups and a molecular weight no 0001 1. Field of the Invention higher than about 250. 0002 The invention concerns personal care compositions which upon application to a human body Surface quickly release fragrance components thereby improving aesthetics DETAILED DESCRIPTION OF THE INVENTION of these compositions. -
Download in English
UNITED NATIONS BC UNEP/CHW.12/5/Add.9 Distr.: General 10 July 2015 Original: English Conference of the Parties to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal Twelfth meeting Geneva, 4–15 May 2015 Agenda item 4 (b) (i) Matters related to the implementation of the Convention: scientific and technical matters: technical guidelines Technical guidelines Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with the pesticides aldrin, alpha hexachlorocyclohexane, beta hexachlorocyclohexane, chlordane, chlordecone, dieldrin, endrin, heptachlor, hexachlorobenzene, lindane, mirex, pentachlorobenzene, perfluorooctane sulfonic acid, technical endosulfan and its related isomers or toxaphene or with hexachlorobenzene as an industrial chemical Note by the Secretariat At its twelfth meeting, the Conference of the Parties to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal adopted, in decision BC-12/3 on technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants, the technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with the pesticides aldrin, alpha hexachlorocyclohexane, beta hexachlorocyclohexane, chlordane, chlordecone, dieldrin, endrin, heptachlor, hexachlorobenzene, lindane, mirex, pentachlorobenzene, perfluorooctane sulfonic acid, technical endosulfan and its related isomers or toxaphene or with hexachlorobenzene as an industrial chemical, on the basis of the draft technical guidelines contained in document UNEP/CHW.12/INF/15. The technical guidelines referred to above were prepared by the Food and Agriculture Organization of the United Nations as lead organization for this work taking into account comments received from members of the small intersesssional working group on persistent organic pollutants wastes by 27 March 2015. -
The “Notice”) Is Provided to You Pursuant to and in Compliance with California Health and Safety Code Section 25249.7(D)
NOTICE OF VIOLATION California Safe Drinking Water and Toxic Enforcement Act January 17, 2020 This Notice of Violation (the “Notice”) is provided to you pursuant to and in compliance with California Health and Safety Code Section 25249.7(d). • For general information regarding the California Safe Drinking Water and Toxic Enforcement Act (“Proposition 65”), please see the attached summary prepared by California's Office of Environmental Health Hazard Assessment. • This Notice is provided by Maria Elizabeth Romero, a concerned citizen of the State of California and resident of Monterey County. Description of Violation: • Violators: LGC Standards Inc. LGC North America, Inc. VHG Labs, Incorporated LGC Limited (collectively, “LGC”) • Time Period of Exposure: The violations have been occurring since at latest January 17, 2018, and are ongoing. • Statutory Authority: This Notice is provided for failure to comply with the warning requirements of Proposition 65, found at California Health and Safety Code section 25249.6. • Chemicals Involved: The chemicals involved in these violations are listed in Attachment B hereto, and have been identified by the State of California as causing cancer or reproductive harm. • Type of Product: All products offered for sale by LGC on the Web site at https://us.lgcstandards.com whose primary component is a chemical listed on Attachment B (“Covered Products”). • Description of Exposure: Student use of the Covered Products in academic laboratories results in human exposure to toxic chemicals via dermal contact, eye contact, ingestion, inhalation, and accidental injection. No clear and reasonable warning of toxicity is provided by LGC in connection with the Covered Products. / / Notice of Violation Romero / LGC Page 2 Resolution of Noticed Claim: Within the next 60 days, California's Office of the Attorney General and other government attorneys may choose to bring an enforcement action against you in this matter.