Modular SIMD arithmetic in Mathemagix Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin To cite this version: Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin. Modular SIMD arithmetic in Mathemagix. 2014. hal-01022383 HAL Id: hal-01022383 https://hal.archives-ouvertes.fr/hal-01022383 Preprint submitted on 10 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modular SIMD arithmetic in Mathemagix Joris van der Hoevena, Grégoire Lecerfb Laboratoire d’informatique LIX, UMR 7161 CNRS Campus de l’École polytechnique Route de Saclay 91128 Palaiseau Cedex, France a. Email:
[email protected] b. Email:
[email protected] Guillaume Quintin Laboratoire XLIM, UMR 7252 CNRS Université de Limoges 123, avenue Albert Thomas 87060 Limoges Cedex, France Email:
[email protected] Version of June 29, 2014 Modular integer arithmetic occurs in many algorithms for computer algebra, cryp- tography, and error correcting codes. Although recent microprocessors typically offer a wide range of highly optimized arithmetic functions, modular integer operations still require dedicated implementations. In this article, we survey existing algorithms for modular integer arithmetic, and present detailed vectorized counterparts. We also present several applications, such as fast modular Fourier transforms and multiplica- tion of integer polynomials and matrices.