Bitwise Operators

Total Page:16

File Type:pdf, Size:1020Kb

Bitwise Operators Logical operations ANDORNOTXORAND,OR,NOT,XOR •Loggpical operations are the o perations that have its result as a true or false. • The logical operations can be: • Unary operations that has only one operand (NOT) • ex. NOT operand • Binary operations that has two operands (AND,OR,XOR) • ex. operand 1 AND operand 2 operand 1 OR operand 2 operand 1 XOR operand 2 1 Dr.AbuArqoub Logical operations ANDORNOTXORAND,OR,NOT,XOR • Operands of logical operations can be: - operands that have values true or false - operands that have binary digits 0 or 1. (in this case the operations called bitwise operations). • In computer programming ,a bitwise operation operates on one or two bit patterns or binary numerals at the level of their individual bits. 2 Dr.AbuArqoub Truth tables • The following tables (truth tables ) that shows the result of logical operations that operates on values true, false. x y Z=x AND y x y Z=x OR y F F F F F F F T F F T T T F F T F T T T T T T T x y Z=x XOR y x NOT X F F F F T F T T T F T F T T T F 3 Dr.AbuArqoub Bitwise Operations • In computer programming ,a bitwise operation operates on one or two bit patterns or binary numerals at the level of their individual bits. • Bitwise operators • NOT • The bitwise NOT, or complement, is an unary operation that performs logical negation on each bit, forming the ones' complement of the given binary value. Digits which were 0 become 1, and vice versa. For example: • NOT 0111 (decimal 7) = 1000 (decimal 8) • In many programming languages (including those in the C family), the bitwise NOT operator is "~" (tilde). This operator must not be confused with the "logical not" operator, "!" (exclamation point), • OR •A bitwise OR takes two bit patterns of equal length, and produces another one of the same length by matching up corresponding bits (the first of each; the second of each; and so on) and performing the logical inclusive OR oppppgp,eration on each pair of corresponding bits. In each pair, the result is 1 if the first bit is 1 OR the second bit is 1 OR both bits are 1, and otherwise the result is 0. For example: • 0101 (decimal 5) OR 0011 (decimal 3) = 0111 (decimal 7) • In the C & Java ppgrogrammin g lan gua ge famil y, the bitwise OR o perator is " |" (pipe). 4 Dr.AbuArqoub Bitwise Operations • AND •A bitwise AND takes two binary representations of equal length and ppgerforms the logical AND oppppgeration on each pair of corresponding bits. In each pair, the result is 1 if the first bit is 1 AND the second bit is 1. Otherwise, the result is 0. For example: • 0101AND 0011 = 0001 • In the C programming language family, the bitwise AND operator is "&" (ampersand). • XOR • A bitwise exclusive or takes two bit patterns of equal length and performs the logical XOR operation on each pair of corresponding bits. The result in each position is 1 if the two bits are different, and 0 if they are the same. For example: • 0101 XOR 0011 = 0110 • In the C programming language family, the bitwise XOR operator is "^" (caret). 5 Dr.AbuArqoub Bitwise Operations • Bit shifts • In this operation, the digits are moved, or shifted ,to the left or right . Registers in a computer processor have a fixed number of available bits for storing numerals, so some bits will be "shifted out" of the register at one end, while the same number of bits are "shifted in" from the other end; the differences between bit shift operators lie in how they compute the values of those shifted-in bits . • Arithmetic shift • In an arithmetic shift, the bits that are shifted out of either end are discarded. In a left arithmetic shift,,g;g zeros are shifted in on the right; in a right arithmetic shift, the sign bit is shifted in on the left, thus preserving the sign of the operand. This example uses an 8-bit register: • 00010111 LEFT-SHIFT = 00101110 • 00010111 RIGHT-SHIFT = 00001011 6 Dr.AbuArqoub Bitwise Operations • Logical shift •In a logical shift ,the bits that are shifted out are discarded,,( and zeros are shifted in (on either end). Therefore, the logical and arithmetic left- shifts are exactly the same operation. However, the logical right-shift inserts bits with value 0 instead of copying in the sign bit. Hence the logical shift is suitable for unsigned binary numbers, while the arithmetic shift is suitable for signed two' s complement binary numbers. 7 Dr.AbuArqoub Bitwise Operations • 8 Dr.AbuArqoub Bitwise Operations • Shifts in C, C++ and Java • ICIn C-iidlinspired languages, t hlfdihhifhe left and right shift operators are ">>" and ,"<<" respectively. The number of places to shift is given as the second argument to the shift operators. For example, •x = y << 2; • assigns x the result of shifting y to the left by two bits. • In C and C++, computations with the left operand as an unsigned integer use logical shifts. • In C, the result s with the le ft operan d as a s igne d in teger are: •for :">>" y×2left •for :"<<" y/2right . • In Java ,all integer types are signed, and the ">>" and "<<" operators perform arithmetic shifts. Java adds the operator "to<<<" perform logical right shifts 9 Dr.AbuArqoub.
Recommended publications
  • Bit Shifts Bit Operations, Logical Shifts, Arithmetic Shifts, Rotate Shifts
    Why bit operations Assembly languages all provide ways to manipulate individual bits in multi-byte values Some of the coolest “tricks” in assembly rely on Bit Shifts bit operations With only a few instructions one can do a lot very quickly using judicious bit operations And you can do them in almost all high-level ICS312 programming languages! Let’s look at some of the common operations, Machine-Level and starting with shifts Systems Programming logical shifts arithmetic shifts Henri Casanova ([email protected]) rotate shifts Shift Operations Logical Shifts The simplest shifts: bits disappear at one end A shift moves the bits around in some data and zeros appear at the other A shift can be toward the left (i.e., toward the most significant bits), or toward the right (i.e., original byte 1 0 1 1 0 1 0 1 toward the least significant bits) left log. shift 0 1 1 0 1 0 1 0 left log. shift 1 1 0 1 0 1 0 0 left log. shift 1 0 1 0 1 0 0 0 There are two kinds of shifts: right log. shift 0 1 0 1 0 1 0 0 Logical Shifts right log. shift 0 0 1 0 1 0 1 0 Arithmetic Shifts right log. shift 0 0 0 1 0 1 0 1 Logical Shift Instructions Shifts and Numbers Two instructions: shl and shr The common use for shifts: quickly multiply and divide by powers of 2 One specifies by how many bits the data is shifted In decimal, for instance: multiplying 0013 by 10 amounts to doing one left shift to obtain 0130 Either by just passing a constant to the instruction multiplying by 100=102 amounts to doing two left shifts to obtain 1300 Or by using whatever
    [Show full text]
  • Technical Report TR-2020-10
    Simulation-Based Engineering Lab University of Wisconsin-Madison Technical Report TR-2020-10 CryptoEmu: An Instruction Set Emulator for Computation Over Ciphers Xiaoyang Gong and Dan Negrut December 28, 2020 Abstract Fully homomorphic encryption (FHE) allows computations over encrypted data. This technique makes privacy-preserving cloud computing a reality. Users can send their encrypted sensitive data to a cloud server, get encrypted results returned and decrypt them, without worrying about data breaches. This project report presents a homomorphic instruction set emulator, CryptoEmu, that enables fully homomorphic computation over encrypted data. The software-based instruction set emulator is built upon an open-source, state-of-the-art homomorphic encryption library that supports gate-level homomorphic evaluation. The instruction set architecture supports multiple instructions that belong to the subset of ARMv8 instruction set architecture. The instruction set emulator utilizes parallel computing techniques to emulate every functional unit for minimum latency. This project re- port includes details on design considerations, instruction set emulator architecture, and datapath and control unit implementation. We evaluated and demonstrated the instruction set emulator's performance and scalability on a 48-core workstation. Cryp- toEmu shown a significant speed up in homomorphic computation performance when compared with HELib, a state-of-the-art homomorphic encryption library. Keywords: Fully Homomorphic Encryption, Parallel Computing, Homomorphic Instruction Set, Homomorphic Processor, Computer Architecture 1 Contents 1 Introduction 3 2 Background 4 3 TFHE Library 5 4 CryptoEmu Architecture Overview 7 4.1 Data Processing . .8 4.2 Branch and Control Flow . .9 5 Data Processing Units 9 5.1 Load/Store Unit . .9 5.2 Adder .
    [Show full text]
  • X86 Assembly Language Syllabus for Subject: Assembly (Machine) Language
    VŠB - Technical University of Ostrava Department of Computer Science, FEECS x86 Assembly Language Syllabus for Subject: Assembly (Machine) Language Ing. Petr Olivka, Ph.D. 2021 e-mail: [email protected] http://poli.cs.vsb.cz Contents 1 Processor Intel i486 and Higher – 32-bit Mode3 1.1 Registers of i486.........................3 1.2 Addressing............................6 1.3 Assembly Language, Machine Code...............6 1.4 Data Types............................6 2 Linking Assembly and C Language Programs7 2.1 Linking C and C Module....................7 2.2 Linking C and ASM Module................... 10 2.3 Variables in Assembly Language................ 11 3 Instruction Set 14 3.1 Moving Instruction........................ 14 3.2 Logical and Bitwise Instruction................. 16 3.3 Arithmetical Instruction..................... 18 3.4 Jump Instructions........................ 20 3.5 String Instructions........................ 21 3.6 Control and Auxiliary Instructions............... 23 3.7 Multiplication and Division Instructions............ 24 4 32-bit Interfacing to C Language 25 4.1 Return Values from Functions.................. 25 4.2 Rules of Registers Usage..................... 25 4.3 Calling Function with Arguments................ 26 4.3.1 Order of Passed Arguments............... 26 4.3.2 Calling the Function and Set Register EBP...... 27 4.3.3 Access to Arguments and Local Variables....... 28 4.3.4 Return from Function, the Stack Cleanup....... 28 4.3.5 Function Example.................... 29 4.4 Typical Examples of Arguments Passed to Functions..... 30 4.5 The Example of Using String Instructions........... 34 5 AMD and Intel x86 Processors – 64-bit Mode 36 5.1 Registers.............................. 36 5.2 Addressing in 64-bit Mode.................... 37 6 64-bit Interfacing to C Language 37 6.1 Return Values..........................
    [Show full text]
  • Bitwise Operators in C Examples
    Bitwise Operators In C Examples Alphonse misworships discommodiously. Epigastric Thorvald perishes changefully while Oliver always intercut accusatively.his anthology plumps bravely, he shown so cheerlessly. Baillie argufying her lashkar coweringly, she mass it Find the program below table which is c operators associate from star from the positive Left shift shifts each bit in its left operand to the left. Tying up some Arduino loose ends before moving on. The next example shows you how to do this. We can understand this better using the following Example. These operators move each bit either left or right a specified number of times. Amazon and the Amazon logo are trademarks of Amazon. Binary form of these values are given below. Shifting the bits of the string of bitwise operators in c examples and does not show the result of this means the truth table for making. Mommy, security and web. When integers are divided, it shifts the bits to the right. Operators are the basic concept of any programming language, subtraction, we are going to see how to use bitwise operators for counting number of trailing zeros in the binary representation of an integer? Adding a negative and positive number together never means the overflow indicates an exception! Not valid for string or complex operands. Les cookies essentiels sont absolument necessaires au bon fonctionnement du site. Like the assembly in C language, unlike other magazines, you may treat this as true. Bitwise OR operator is used to turn bits ON. To me this looks clearer as is. We will talk more about operator overloading in a future section, and the second specifies the number of bit positions by which the first operand is to be shifted.
    [Show full text]
  • Operations Per Se, to See If the Proposed Chi Is Indeed Fruitful
    DOCUMENT RESUME ED 204 124 SE 035 176 AUTHOR Weaver, J. F. TTTLE "Addition," "Subtraction" and Mathematical Operations. 7NSTITOTION. Wisconsin Univ., Madison. Research and Development Center for Individualized Schooling. SPONS AGENCY Neional Inst. 1pf Education (ED), Washington. D.C. REPORT NO WIOCIS-PP-79-7 PUB DATE Nov 79 GRANT OS-NIE-G-91-0009 NOTE 98p.: Report from the Mathematics Work Group. Paper prepared for the'Seminar on the Initial Learning of Addition and' Subtraction. Skills (Racine, WI, November 26-29, 1979). Contains occasional light and broken type. Not available in hard copy due to copyright restrictions.. EDPS PRICE MF01 Plum Postage. PC Not Available from EDRS. DEseR.TPT00S *Addition: Behavioral Obiectives: Cognitive Oblectives: Cognitive Processes: *Elementary School Mathematics: Elementary Secondary Education: Learning Theories: Mathematical Concepts: Mathematics Curriculum: *Mathematics Education: *Mathematics Instruction: Number Concepts: *Subtraction: Teaching Methods IDENTIFIERS *Mathematics Education ResearCh: *Number 4 Operations ABSTRACT This-report opens by asking how operations in general, and addition and subtraction in particular, ante characterized for 'elementary school students, and examines the "standard" Instruction of these topics through secondary. schooling. Some common errors and/or "sloppiness" in the typical textbook presentations are noted, and suggestions are made that these probleks could lend to pupil difficulties in understanding mathematics. The ambiguity of interpretation .of number sentences of the VW's "a+b=c". and "a-b=c" leads into a comparison of the familiar use of binary operations with a unary-operator interpretation of such sentences. The second half of this document focuses on points of vier that promote .varying approaches to the development of mathematical skills and abilities within young children.
    [Show full text]
  • Using LLVM for Optimized Lightweight Binary Re-Writing at Runtime
    Using LLVM for Optimized Lightweight Binary Re-Writing at Runtime Alexis Engelke, Josef Weidendorfer Department of Informatics Technical University of Munich Munich, Germany EMail: [email protected], [email protected] Abstract—Providing new parallel programming models/ab- helpful in reducing any overhead of provided abstractions. stractions as a set of library functions has the huge advantage But with new languages, porting of existing application that it allows for an relatively easy incremental porting path for code is required, being a high burden for adoption with legacy HPC applications, in contrast to the huge effort needed when novel concepts are only provided in new programming old code bases. Therefore, to provide abstractions such as languages or language extensions. However, performance issues PGAS for legacy codes, APIs implemented as libraries are are to be expected with fine granular usage of library functions. proposed [5], [6]. Libraries have the benefit that they easily In previous work, we argued that binary rewriting can bridge can be composed and can stay small and focused. However, the gap by tightly coupling application and library functions at libraries come with the caveat that fine granular usage of runtime. We showed that runtime specialization at the binary level, starting from a compiled, generic stencil code can help library functions in inner kernels will severely limit compiler in approaching performance of manually written, statically optimizations such as vectorization and thus, may heavily compiled version. reduce performance. In this paper, we analyze the benefits of post-processing the To this end, in previous work [7], we proposed a technique re-written binary code using standard compiler optimizations for lightweight code generation by re-combining existing as provided by LLVM.
    [Show full text]
  • Hyperoperations and Nopt Structures
    Hyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles.
    [Show full text]
  • Relational Representation of the LLVM Intermediate Language
    NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS UNDERGRADUATE STUDIES UNDERGRADUATE THESIS Relational Representation of the LLVM Intermediate Language Eirini I. Psallida Supervisors: Yannis Smaragdakis, Associate Professor NKUA Georgios Balatsouras, PhD Student NKUA ATHENS JANUARY 2014 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεσιακή Αναπαράσταση της Ενδιάμεσης Γλώσσας του LLVM Ειρήνη Ι. Ψαλλίδα Επιβλέποντες: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ Γεώργιος Μπαλατσούρας, Διδακτορικός φοιτητής ΕΚΠΑ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 UNDERGRADUATE THESIS Relational Representation of the LLVM Intermediate Language Eirini I. Psallida R.N.: 1115200700272 Supervisor: Yannis Smaragdakis, Associate Professor NKUA Georgios Balatsouras, PhD Student NKUA ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεσιακή Αναπαράσταση της ενδιάμεσης γλώσσας του LLVM Ειρήνη Ι. Ψαλλίδα Α.Μ.: 1115200700272 Επιβλέπων: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ Γεώργιος Μπαλατσούρας, Διδακτορικός φοιτητής ΕΚΠΑ ΠΕΡΙΛΗΨΗ Περιγράφουμε τη σχεσιακή αναπαράσταση της ενδιάμεσης γλώσσας του LLVM, γνωστή ως LLVM IR. Η υλοποίηση μας παράγει σχέσεις από ένα πρόγραμμα εισόδου σε ενδιάμεση μορφή LLVM. Κάθε σχέση αποθηκεύεται σαν πίνακας βάσης δεδομένων σε ένα περιβάλλον εργασίας Datalog. Αναπαριστούμε το σύστημα τύπων καθώς και το σύνολο εντολών της γλώσσας του LLVM. Υποστηρίζουμε επίσης τους περιορισμούς της γλώσσας προσδιορίζοντάς τους με χρήση της προγραμματιστικής γλώσσας Datalog. ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μεταγλωτιστές, Γλώσσες Προγραμματισμού ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: σχεσιακή αναπαράσταση, ενδιάμεση αναπαράσταση, σύστημα τύπων, σύνολο εντολών, LLVM, Datalog ABSTRACT We describe the relational representation of the LLVM intermediate language, known as the LLVM IR. Our implementation produces the relation contents of an input program in the LLVM intermediate form. Each relation is stored as a database table into a Datalog workspace.
    [Show full text]
  • Fractal Surfaces from Simple Arithmetic Operations
    Fractal surfaces from simple arithmetic operations Vladimir Garc´ıa-Morales Departament de Termodin`amica,Universitat de Val`encia, E-46100 Burjassot, Spain [email protected] Fractal surfaces ('patchwork quilts') are shown to arise under most general circumstances involving simple bitwise operations between real numbers. A theory is presented for all deterministic bitwise operations on a finite alphabet. It is shown that these models give rise to a roughness exponent H that shapes the resulting spatial patterns, larger values of the exponent leading to coarser surfaces. keywords: fractals; self-affinity; free energy landscapes; coarse graining arXiv:1507.01444v3 [cs.OH] 10 Jan 2016 1 I. INTRODUCTION Fractal surfaces [1, 2] are ubiquitously found in biological and physical systems at all scales, ranging from atoms to galaxies [3{6]. Mathematically, fractals arise from iterated function systems [7, 8], strange attractors [9], critical phenomena [10], cellular automata [11, 12], substitution systems [11, 13] and any context where some hierarchical structure is present [14, 15]. Because of these connections, fractals are also important in some recent approaches to nonequilibrium statistical mechanics of steady states [16{19]. Fractality is intimately connected to power laws, real-valued dimensions and exponential growth of details as resulting from an increase in the resolution of a geometric object [20]. Although the rigorous definition of a fractal requires that the Hausdorff-Besicovitch dimension DF is strictly greater than the Euclidean dimension D of the space in which the fractal object is embedded, there are cases in which surfaces are sufficiently broken at all length scales so as to deserve being named `fractals' [1, 20, 21].
    [Show full text]
  • Problem Solving with Programming Course Material
    Problem Solving with Programming Course Material PROBLEM SOLVING WITH PROGRAMMING Hours/Week Marks Year Semester C L T P/D CIE SEE Total I II 2 - - 2 30 70 100 Pre-requisite Nil COURSE OUTCOMES At the end of the course, the students will develop ability to 1. Analyze and implement software development tools like algorithm, pseudo codes and programming structure. 2. Modularize the problems into small modules and then convert them into modular programs 3. Apply the pointers, memory allocation techniques and use of files for dealing with variety of problems. 4. Apply C programming to solve problems related to scientific computing. 5. Develop efficient programs for real world applications. UNIT I Pointers Basics of pointers, pointer to array, array of pointers, void pointer, pointer to pointer- example programs, pointer to string. Project: Simple C project by using pointers. UNIT II Structures Basics of structure in C, structure members, accessing structure members, nested structures, array of structures, pointers to structures - example programs, Unions- accessing union members- example programs. Project: Simple C project by using structures/unions. UNIT III Functions Functions: User-defined functions, categories of functions, parameter passing in functions: call by value, call by reference, recursive functions. passing arrays to functions, passing strings to functions, passing a structure to a function. Department of Computer Science and Engineering Problem Solving with Programming Course Material Project: Simple C project by using functions. UNIT IV File Management Data Files, opening and closing a data file, creating a data file, processing a data file, unformatted data files. Project: Simple C project by using files.
    [Show full text]
  • X86 Intrinsics Cheat Sheet Jan Finis [email protected]
    x86 Intrinsics Cheat Sheet Jan Finis [email protected] Bit Operations Conversions Boolean Logic Bit Shifting & Rotation Packed Conversions Convert all elements in a packed SSE register Reinterpet Casts Rounding Arithmetic Logic Shift Convert Float See also: Conversion to int Rotate Left/ Pack With S/D/I32 performs rounding implicitly Bool XOR Bool AND Bool NOT AND Bool OR Right Sign Extend Zero Extend 128bit Cast Shift Right Left/Right ≤64 16bit ↔ 32bit Saturation Conversion 128 SSE SSE SSE SSE Round up SSE2 xor SSE2 and SSE2 andnot SSE2 or SSE2 sra[i] SSE2 sl/rl[i] x86 _[l]rot[w]l/r CVT16 cvtX_Y SSE4.1 cvtX_Y SSE4.1 cvtX_Y SSE2 castX_Y si128,ps[SSE],pd si128,ps[SSE],pd si128,ps[SSE],pd si128,ps[SSE],pd epi16-64 epi16-64 (u16-64) ph ↔ ps SSE2 pack[u]s epi8-32 epu8-32 → epi8-32 SSE2 cvt[t]X_Y si128,ps/d (ceiling) mi xor_si128(mi a,mi b) mi and_si128(mi a,mi b) mi andnot_si128(mi a,mi b) mi or_si128(mi a,mi b) NOTE: Shifts elements right NOTE: Shifts elements left/ NOTE: Rotates bits in a left/ NOTE: Converts between 4x epi16,epi32 NOTE: Sign extends each NOTE: Zero extends each epi32,ps/d NOTE: Reinterpret casts !a & b while shifting in sign bits. right while shifting in zeros. right by a number of bits 16 bit floats and 4x 32 bit element from X to Y. Y must element from X to Y. Y must from X to Y. No operation is SSE4.1 ceil NOTE: Packs ints from two NOTE: Converts packed generated.
    [Show full text]
  • A Cross-Platform Programmer's Calculator
    – Independent Work Report Fall, 2015 – A Cross-Platform Programmer’s Calculator Brian Rosenfeld Advisor: Robert Dondero Abstract This paper details the development of the first cross-platform programmer’s calculator. As users of programmer’s calculators, we wanted to address limitations of existing, platform-specific options in order to make a new, better calculator for us and others. And rather than develop for only one- platform, we wanted to make an application that could run on multiple ones, maximizing its reach and utility. From the start, we emphasized software-engineering and human-computer-interaction best practices, prioritizing portability, robustness, and usability. In this paper, we explain the decision to build a Google Chrome Application and illustrate how using the developer-preview Chrome Apps for Mobile Toolchain enabled us to build an application that could also run as native iOS and Android applications [18]. We discuss how we achieved support of signed and unsigned 8, 16, 32, and 64-bit integral types in JavaScript, a language with only one numerical type [15], and we demonstrate how we adapted the user interface for different devices. Lastly, we describe our usability testing and explain how we addressed learnability concerns in a second version. The end result is a user-friendly and versatile calculator that offers value to programmers, students, and educators alike. 1. Introduction This project originated from a conversation with Dr. Dondero in which I expressed an interest in software engineering, and he mentioned a need for a good programmer’s calculator. Dr. Dondero uses a programmer’s calculator while teaching Introduction to Programming Systems at Princeton (COS 217), and he had found that the pre-installed Mac OS X calculator did not handle all of his use cases.
    [Show full text]