The Arabic Version of Ptolemy's Planisphere Or Flattening The

Total Page:16

File Type:pdf, Size:1020Kb

The Arabic Version of Ptolemy's Planisphere Or Flattening The SCIAMVS 8 (2007), 37–139 The Arabic version of Ptolemy’s Planisphere or Flattening the Surface of the Sphere: Text, Translation, Commentary Nathan Sidoli J. L. Berggren Department of Mathematics Department of Mathematics Simon Fraser University Simon Fraser University There are currently no known manuscripts containing the Greek text of Ptolemy’s Planisphere.1 Nevertheless, there are two medieval translations from which an as- sessment of the original work can be made. The oldest of these is in Arabic, un- dertaken by an unknown scholar, presumably as part of the Baghdad translation movement [Kunitzsch 1993, 97; Kunitzsch 1995, 150–153]. There has never been any doubt that this was based on a Greek text written by Ptolemy, and those who are familiar with Ptolemy’s Almagest will notice many similarities of style and struc- ture between the two texts, despite the different rhetorical tendencies of Greek and Arabic prose. Moreover, Ptolemy assumes that the reader of the Planisphere has already read his Almagest, which he refers to in a number of places. In the 12th century, a loose Latin translation was made by Hermann of Carinthia on the basis of a different Arabic version than that found in the two known Arabic manuscripts.2 Hermann’s version was edited by Heiberg [1907, 227–259], translated into German by Drecker [1927], and has been the source of much of the modern schol- arship on the text.3 Hermann’s text served as the basis for the early-modern Latin editions, the most influential of which was by Commandino [1558], who appended a commentary that includes a study in linear perspective.4 Although Anagnostakis [1984] produced an English translation and study of one of the Arabic manuscripts as part of his dissertation, the text has never been formally 1The 10th-century Suidas gives the Greek title as the VAplwsic âpifaneÐac sfaÐrac, Simplification of the Sphere [Adler 1928–1938, 254]. Kaufmann corrected the fist word to âxĹplwsic, which he took as “unfolding” [Pauly-Wissowa 1894–1980, vol. 2, 1801], and Neugebauer [1975, 870–871] accepted this correction. It is possible to read either of these words as “unfolding” or “spreading out.” 2An earlier Latin translation survives only in fragments [Kunitzsch 1993]. There is too little of this text to be able to say much about the Arabic source. 3There is also a medieval Hebrew translation, but this appears to have been based on the Latin [Lorch 1995, 276, n. 11]. 4Commandino’s text, as well as two earlier modern editions, was reprinted by Sinisgalli and Vastola [1992], who also provided an Italian translation. Commandino’s commentary is reprinted, with an Italian translation, by Sinisgalli [1993]. 38 Sidoli and Berggren SCIAMVS 8 edited. The present study supplies a critical edition of the extant Arabic text, along with our translation and commentary. The commentary provides a new reading of the text that encompasses the entire treatise and integrates it into its context as a work in the Greek mathematical tradition. There have been relatively few historical studies of the Planisphere as a whole. Probably, the most useful summary of the mathematics underlying Ptolemy’s ap- proach is by Neugebauer [1975, 857–868], who read the text as principally concerned with the construction of astrolabes [Neugebauer 1949, 247–248]. The commentary of Sinisgalli and Vastola [1992] is likewise useful for understanding the text in terms of modern mathematical methods and projective geometry. In neither case, how- ever, is there much attempt to understand Ptolemy’s project in terms of ancient mathematical methods. Moreover, both of these studies are based on the Latin text. Anagnostakis [1984], in his study of the Arabic text, gave a commentary to the whole treatise, but did not attempt to situate the overall approach and goals of the treatise in the context of ancient mathematical methods. These last issues have been addressed in papers by Berggren [1991], who sought to understand Ptolemy’s aim in the Planisphere by comparison with his Geography, and Lorch [1995], who compared Ptolemy’s methods with those of a medieval commentator. Our reading makes use of these studies; however, we make some key differences of interpretation, which are discussed in the commentary. Moreover, ours is the first reading based on a critical edition of the oldest extant version of the text. The Planisphere is the first known treatise that develops a plane diagram of the celestial sphere using methods mathematically related to stereographic projection. Although Ptolemy wrote the text, the methods contained in it probably go back at least as far as Hipparchus [Neugebauer 1975, 868–869]. Moreover, the text appears to have been written for the advanced student, or expert, in mathematical astronomy. For these reasons, the Planisphere should be of great interest to historians of the ancient and medieval exact sciences. By studying this text, we may learn what sort of knowledge could be assumed on the part of a mathematically competent reader in the 2nd century, and probably for a number of centuries before this time. In this way, historians of astronomy can produce a more detailed picture of the mathematical methods of ancient astronomers, and historians of mathematics can develop a broader understanding of the range and methods of Greek mathematics. The kinds of mathematical thought preserved in the Planisphere are especially important if we are interested in those cultures that inherited the Greek mathemati- cal tradition. The Greek conception of the celestial sphere, in both its geometric and arithmetic articulations, was of great interest during the medieval period to scholars working in Sanskrit, Pahlavi, Arabic, Hebrew and Latin. Although many modern historians have a tendency to draw disciplinary divisions between astronomy and mathematics, such distinctions would hardly have been evident to ancient and me- dieval scholars. In particular, there would have been little of the institutional and SCIAMVS 8 Ptolemy’s Planisphere 39 professional segregation that we now take so much for granted. The different ways of categorizing and arranging the mathematical sciences were nearly as numerous as the practitioners, but mathematical studies of the celestial sphere were always seen as an important branch of the exact sciences. In the medieval and early modern periods, the projection of the sphere onto the plane became a fruitful area of new research and Ptolemy’s text was understood as fundamental to the field. It is our hope that this study will bring new understanding to the endeavors of the ancient and medieval scholars who investigated the fundamental mathematical structures of their cosmos. I Editorial Procedures We have prepared the text on the basis of images of the only two manuscripts presently known and available. I: Istanbul, Aya Sofya 2671 T: Tehran, Kh¯anMalik S¯as¯an¯ı Anagnostakis [1984, 226–267] printed the first of these in facsimile, while the second is described in detail by Kunitzsch [1994a], who collated the two and listed what he considered to be the superior readings of T. A third ms is listed by Beaure- cueil [1956, 19] as having belonged to the Maktabat Ri-¯asatal-Mat.b¯u,¯atin Kabul; however, this library has not survived the recent wars. Our apparatus refers to three other sources which are not mss but which have been useful in establishing the text. Mas: Maslama’s notes Her: Hermann’s Latin translation Ana: Anagnostakis’s English translation The 10th-century Andalusian astronomer Ab¯ual-Q¯asimMaslama ibn Ah. mad al-Farad.¯ıal-Majr¯ıt.¯ıstudied the treatise and produced a series of notes and supple- mentary material of use for the construction of astrolabes [Vernet and Catal´a1965, 1998; Kunitzsch and Lorch 1994]. As well as being useful for understanding the mathematics of the treatise, Maslama’s notes contain sixteen citations, all but one of which can be usefully compared to the text contained in TI. There are, however, differences between the text Maslama quotes and that preserved in TI. These are usually minor, but in places they are enough to show that the two versions could not be edited so as to produce a single text (for examples, see lines 423, 481, 498, Mas107). 40 Sidoli and Berggren SCIAMVS 8 Hermann’s Latin translation was made on the basis of some version of Maslama’s edition and included Maslama’s notes and additional material [Kunitzsch and Lorch 1994, 34–71]. We have used this text to justify a number of corrections to the Arabic, especially in the numbers. The superior readings found in Hermann’s text are probably corrections introduced by Maslama, or less likely Hermann, as opposed to evidence for a more pristine text. Nevertheless, they represent medieval readings without which the text would, in a number of cases, make no mathematical or astronomical sense. It would also be possible to correct many of the letter names of geometric objects on the basis of Hermann’s text, but since he often uses different lettering, and sometimes a slightly different figure, this would be more trouble than it could be worth. There are numerous errors in the letter names of geometric objects. In the early part of the treatise, a more recent hand has corrected many of these in T. Moreover, in his translation, Anagnostakis [1984, 99–101] introduces many corrections, most of which concern the letter names. Where we follow these corrections, they are attributed to one or both of these sources. I.1 Orthography In the edited text, we have attempted to follow the orthography of the manuscripts, so that where TI agree on a particular form, we follow that even when it differs from modern conventions.5 For example, since they both write IÊ K for HC K, we have printed the former.
Recommended publications
  • Theon of Alexandria and Hypatia
    CREATIVE MATH. 12 (2003), 111 - 115 Theon of Alexandria and Hypatia Michael Lambrou Abstract. In this paper we present the story of the most famous ancient female math- ematician, Hypatia, and her father Theon of Alexandria. The mathematician and philosopher Hypatia flourished in Alexandria from the second part of the 4th century until her violent death incurred by a mob in 415. She was the daughter of Theon of Alexandria, a math- ematician and astronomer, who flourished in Alexandria during the second part of the fourth century. Information on Theon’s life is only brief, coming mainly from a note in the Suda (Suida’s Lexicon, written about 1000 AD) stating that he lived in Alexandria in the times of Theodosius I (who reigned AD 379-395) and taught at the Museum. He is, in fact, the Museum’s last attested member. Descriptions of two eclipses he observed in Alexandria included in his commentary to Ptolemy’s Mathematical Syntaxis (Almagest) and elsewhere have been dated as the eclipses that occurred in AD 364, which is consistent with Suda. Although originality in Theon’s works cannot be claimed, he was certainly immensely influential in the preservation, dissemination and editing of clas- sic texts of previous generations. Indeed, with the exception of Vaticanus Graecus 190 all surviving Greek manuscripts of Euclid’s Elements stem from Theon’s edition. A comparison to Vaticanus Graecus 190 reveals that Theon did not actually change the mathematical content of the Elements except in minor points, but rather re-wrote it in Koini and in a form more suitable for the students he taught (some manuscripts refer to Theon’s sinousiai).
    [Show full text]
  • Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths.
    [Show full text]
  • Alexandrea Ad Aegyptvm the Legacy of Multiculturalism in Antiquity
    Alexandrea ad aegyptvm the legacy of multiculturalism in antiquity editors rogério sousa maria do céu fialho mona haggag nuno simões rodrigues Título: Alexandrea ad Aegyptum – The Legacy of Multiculturalism in Antiquity Coord.: Rogério Sousa, Maria do Céu Fialho, Mona Haggag e Nuno Simões Rodrigues Design gráfico: Helena Lobo Design | www.hldesign.pt Revisão: Paula Montes Leal Inês Nemésio Obra sujeita a revisão científica Comissão científica: Alberto Bernabé, Universidade Complutense de Madrid; André Chevitarese, Universidade Federal, Rio de Janeiro; Aurélio Pérez Jiménez, Universidade de Málaga; Carmen Leal Soares, Universidade de Coimbra; Fábio Souza Lessa, Universidade Federal, Rio de Janeiro; José Augusto Ramos, Universidade de Lisboa; José Luís Brandão, Universidade de Coimbra; Natália Bebiano Providência e Costa, Universidade de Coimbra; Richard McKirahan, Pomona College, Claremont Co-edição: CITCEM – Centro de Investigação Transdisciplinar «Cultura, Espaço e Memória» Via Panorâmica, s/n | 4150-564 Porto | www.citcem.org | [email protected] CECH – Centro de Estudos Clássicos e Humanísticos | Largo da Porta Férrea, Universidade de Coimbra Alexandria University | Cornice Avenue, Shabty, Alexandria Edições Afrontamento , Lda. | Rua Costa Cabral, 859 | 4200-225 Porto www.edicoesafrontamento.pt | [email protected] N.º edição: 1152 ISBN: 978-972-36-1336-0 (Edições Afrontamento) ISBN: 978-989-8351-25-8 (CITCEM) ISBN: 978-989-721-53-2 (CECH) Depósito legal: 366115/13 Impressão e acabamento: Rainho & Neves Lda. | Santa Maria da Feira [email protected] Distribuição: Companhia das Artes – Livros e Distribuição, Lda. [email protected] Este trabalho é financiado por Fundos Nacionais através da FCT – Fundação para a Ciência e Tecnologia no âmbito do projecto PEst-OE/HIS/UI4059/2011 HYPATIA AND THE IDIOSCYNCRASIES OF CHRISTIANITY IN EGYPT – A STUDY OF THE EVENTS OCCURRED AT EASTER 415 A.D.
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Why Mathematical Proof?
    Why Mathematical Proof? Dana S. Scott, FBA, FNAS University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley NOTICE! The author has plagiarized text and graphics from innumerable publications and sites, and he has failed to record attributions! But, as this lecture is intended as an entertainment and is not intended for publication, he regards such copying, therefore, as “fair use”. Keep this quiet, and do please forgive him. A Timeline for Geometry Some Greek Geometers Thales of Miletus (ca. 624 – 548 BC). Pythagoras of Samos (ca. 580 – 500 BC). Plato (428 – 347 BC). Archytas (428 – 347 BC). Theaetetus (ca. 417 – 369 BC). Eudoxus of Cnidus (ca. 408 – 347 BC). Aristotle (384 – 322 BC). Euclid (ca. 325 – ca. 265 BC). Archimedes of Syracuse (ca. 287 – ca. 212 BC). Apollonius of Perga (ca. 262 – ca. 190 BC). Claudius Ptolemaeus (Ptolemy)(ca. 90 AD – ca. 168 AD). Diophantus of Alexandria (ca. 200 – 298 AD). Pappus of Alexandria (ca. 290 – ca. 350 AD). Proclus Lycaeus (412 – 485 AD). There is no Royal Road to Geometry Euclid of Alexandria ca. 325 — ca. 265 BC Euclid taught at Alexandria in the time of Ptolemy I Soter, who reigned over Egypt from 323 to 285 BC. He authored the most successful textbook ever produced — and put his sources into obscurity! Moreover, he made us struggle with proofs ever since. Why Has Euclidean Geometry Been So Successful? • Our naive feeling for space is Euclidean. • Its methods have been very useful. • Euclid also shows us a mysterious connection between (visual) intuition and proof. The Pythagorean Theorem Euclid's Elements: Proposition 47 of Book 1 The Pythagorean Theorem Generalized If it holds for one Three triple, Similar it holds Figures for all.
    [Show full text]
  • Pappus of Alexandria: Book 4 of the Collection
    Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
    [Show full text]
  • The Golden Relationships: an Exploration of Fibonacci Numbers and Phi
    The Golden Relationships: An Exploration of Fibonacci Numbers and Phi Anthony Rayvon Watson Faculty Advisor: Paul Manos Duke University Biology Department April, 2017 This project was submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Graduate Liberal Studies Program in the Graduate School of Duke University. Copyright by Anthony Rayvon Watson 2017 Abstract The Greek letter Ø (Phi), represents one of the most mysterious numbers (1.618…) known to humankind. Historical reverence for Ø led to the monikers “The Golden Number” or “The Devine Proportion”. This simple, yet enigmatic number, is inseparably linked to the recursive mathematical sequence that produces Fibonacci numbers. Fibonacci numbers have fascinated and perplexed scholars, scientists, and the general public since they were first identified by Leonardo Fibonacci in his seminal work Liber Abacci in 1202. These transcendent numbers which are inextricably bound to the Golden Number, seemingly touch every aspect of plant, animal, and human existence. The most puzzling aspect of these numbers resides in their universal nature and our inability to explain their pervasiveness. An understanding of these numbers is often clouded by those who seemingly find Fibonacci or Golden Number associations in everything that exists. Indeed, undeniable relationships do exist; however, some represent aspirant thinking from the observer’s perspective. My work explores a number of cases where these relationships appear to exist and offers scholarly sources that either support or refute the claims. By analyzing research relating to biology, art, architecture, and other contrasting subject areas, I paint a broad picture illustrating the extensive nature of these numbers.
    [Show full text]
  • The Arabic Sources of Jordanus De Nemore
    The Arabic Sources of Jordanus de Nemore IMPORTANT NOTICE: Author: Prof. Menso Folkerts and Prof. Richard Lorch All rights, including copyright, in the content of this document are owned or controlled for these purposes by FSTC Limited. In Chief Editor: Prof. Mohamed El-Gomati accessing these web pages, you agree that you may only download the content for your own personal non-commercial Deputy Editor: Prof. Mohammed Abattouy use. You are not permitted to copy, broadcast, download, store (in any medium), transmit, show or play in public, adapt or Associate Editor: Dr. Salim Ayduz change in any way the content of this document for any other purpose whatsoever without the prior written permission of FSTC Release Date: July, 2007 Limited. Publication ID: 710 Material may not be copied, reproduced, republished, downloaded, posted, broadcast or transmitted in any way except for your own personal non-commercial home use. Any other use Copyright: © FSTC Limited, 2007 requires the prior written permission of FSTC Limited. You agree not to adapt, alter or create a derivative work from any of the material contained in this document or use it for any other purpose other than for your personal non-commercial use. FSTC Limited has taken all reasonable care to ensure that pages published in this document and on the MuslimHeritage.com Web Site were accurate at the time of publication or last modification. Web sites are by nature experimental or constantly changing. Hence information published may be for test purposes only, may be out of date, or may be the personal opinion of the author.
    [Show full text]
  • Notes on Greek Mathematics
    MATHEMATICS IN ANCIENT GREECE Periods in Greek history [AG]. Archaic Period: 750 BC to 490 BC (Emergence of city- states to Battle of Marathon) The Iliad and the Odyssey were composed c. 750-720 (based on the `Trojan war’ of 1250-1225 BC.) Between 670-500 BC, many city-states were ruled by tyrants (a word borrowed into the Greek language from Asia Minor, to signify a man who seizes control of the state by a coup and governs illegally.) Classical Period: 490 to 323 BC (Battle of Marathon to death of Alexander). The years from 480 (Persians driven from Greece) to 430 saw the rise of Athenian democracy (under Pericles). The Parthenon was built, 447-432. Playwrights Sophocles, Aristophanes, Euripides were active in Athens (c. 430-400). Following undeclared war between Athens and Sparta from 460-445, the Peloponnesian war (431-404; account by Thucydides) kept these two states (and their allies throughout the region) busy. This led to the ascendance of Sparta and the `rule of thirty tyrants’ in Athens (404-403). Socrates was tried and executed in 399. His follower Plato wrote his dialogues (399-347) and founded the Academy. The accession of Philip II of Macedon (359) signals the beginning of a period of Macedonian rule. Philip invaded Asia in 336, and was assassinated the same year. His successor Alexander III (`the Great’, 356-323 BC) continued the program of world conquest over the next 13 years, invading India in 325 BC. Hellenistic Period (323-30 BC). Science, mathematics (Euclid) and culture flourished in Egypt (Alexandria) under the Ptolemaic dynasty.
    [Show full text]
  • Generalization of Apollonius Circle Arxiv:2105.03673V1 [Math.MG] 8
    Generalization of Apollonius Circle Omer¨ Avcı∗ Omer¨ Talip Akalın † Faruk Avcı ‡ Halil Salih Orhan§ May 11, 2021 Abstract Apollonius of Perga, showed that for two given points A; B in the Euclidean plane and a positive real number k 6= 1, geometric locus of the points X that satisfies the equation jXAj = kjXBj is a circle. This circle is called Apollonius circle. In this paper we generalize the definition of the Apollonius circle for two given circles Γ1; Γ2 and we show that geometric locus of the points X with the ratio of the power with respect to the circles Γ1; Γ2 is constant, is also a circle. Using this we generalize the definition of Apollonius Circle, and generalize some results about Apollonius Circle. 1 Preliminaries Theorem 1.1 (Apollonius Theorem) For points A; B in the Euclidean plane, and a positive real number k 6= 1, the points X which satisfies the equation jXAj = kjBXj forms a circle. When k = 1, they form the line perpendicular to AB at the middle point of [AB] [1]. Definition 1.1 For three different points A; B; C in Euclidean plane such that A is not on arXiv:2105.03673v1 [math.MG] 8 May 2021 the perpendicular bisector of the segment [BC]. We will use the notation KA(B; C) for the circle which consists of points that holds the equation jXBj jABj = jXCj jACj and MA(B; C) for the center and rA(B; C) for the radius of that circle. During this article, we will call the notation KA(B; C), Apollonius Circle of point A to the points B; C.
    [Show full text]
  • The First Six Books of the Elements of Euclid, in Which
    &, OTll llOkSr mm ma /zm $fj- <a 2KX '•' JTMs. ^n r.yjOQS ¥\*f El/1 ffi* 3^» ^^ 'ff.tfv ,^/^e*- Library of the University of Toronto Aaa BYRNE'S EUCLID THE FIRST SIX BOOKS OF THE ELEMENTS OF EUCLID WITH COLOURED DIAGRAMS AND SYMBOLS ? THE FIRST SIX BOOKS OF THE ELEMENTS OF EUCLID IN WHICH COLOURED DIAGRAMS AND SYMBOLS ARE USED INSTEAD OF LETTERS FOR THE GREATER EASE OF LEARNERS BY OLIVER BYRNE SURVEYOR OF HER MAJESTY'S SETTLEMENTS IN THE FALKLAND ISLANDS AND AUTHOR OF NUMEROUS MATHEMATICAL WORKS LONDON WILLIAM PICKERING 1847 TO THE RIGHT HONOURABLE THE EARL FITZWILLIAM, ETC. ETC. ETC. THIS WORK IS DEDICATED BY HIS LORDSHIP S OBEDIENT AND MUCH OBLIGED SERVANT, OLIVER BYRNE. Digitized by the Internet Archive in 2011 with funding from University of Toronto http://www.archive.org/details/firstsixbooksofeOOeucl SS3 INTRODUCTION. HE arts and fciences have become fo extenfive, that to facilitate their acquirement is of as much importance as to extend their boundaries. Illuftration, if it does not fhorten the time of ftudy, will at leaft make it more agreeable. This Work has a greater aim than mere illuftration ; we do not intro- duce colours for the purpofe of entertainment, or to amuie by certain cottibinations of tint andform, but to affift the mind in its refearches after truth, to increafe the facilities of instruction, and to diffufe permanent knowledge. If we wanted authorities to prove the importance and ufefulnefs of geometry, we might quote every philofopher fince the days of Plato. Among the Greeks, in ancient, as in the fchool of Peftalozzi and others in recent times, geometry was adopted as the beft gymnaftic of the mind.
    [Show full text]